用户名: 密码: 验证码:
中国南瓜(Cucurbita moschata Duch.)资源耐盐砧木筛选及生理特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
设施栽培中由于多年连作和不合理施肥,土壤次生盐渍化严重,严重影响到保护地蔬菜生产的产量和品质。瓜类是我国设施栽培的主要蔬菜,利用耐盐砧木对瓜类实施嫁接栽培是一条合理利用次生盐渍化土壤的有效措施。南瓜是瓜类嫁接栽培中的主要砧木,尤其是黄瓜的主要砧木,具有根系发达、亲合性好、抗土传病害的砧木特点,中国南瓜(Cucurbita moschata Duch.)是南瓜属的一个种,适应性广,抗逆性强,我国有丰富的资源,从中选择耐盐的瓜类砧木材料具有可能,但目前仍没有专用的耐盐瓜类砧木在生产上使用。关于中国南瓜耐盐生理特性的研究也较少,只限于种子发芽和幼苗期的一些耐盐生理研究。本研究以中国南瓜F_1杂种为试验材料,从中筛选出较耐盐的‘360-3×112-2'F_1杂种,用瓜类嫁接生产中应用较普遍的砧木‘黑籽南瓜'(C.ficifolia Bouche.)作参照,比较研究了中国南瓜‘360-3×112-2'F_1杂种耐盐砧木的耐盐生理特性,并通过嫁接研究了‘360-3×112-2'F_1杂种作为砧木利用的可能性。
     1.在组培条件下以中国南瓜为试验材料,采用不同浓度的NaCl处理中国南瓜幼苗,研究了NaCl胁迫对中国南瓜自交系和F_1杂种幼苗的生长抑制率、盐害指数和半致死盐浓度。试验结果表明,自交系幼苗在120 mmol·L~(-1) NaCl浓度处理下生长受到严重抑制,而F_1杂种幼苗在160 mmol·L~(-1) NaCl浓度处理下生长才受到严重抑制。中国南瓜F_1杂种的耐盐性比其自交系的耐盐性强,中国南瓜的耐盐性具有杂种优势。中国南瓜F_1杂种幼苗在120 mmol·L~(-1) NaCl浓度处理下存在明显的耐盐性差异,69份F_1杂种的幼苗在120 mmol·L~(-1) NaCl浓度处理下的盐害指数介于29.94~100之间,呈正态分布,有6份F_1杂种表现出较高的耐盐性,其中‘360-3×112-2'F_1杂种耐盐性最强。提出在组培条件下采用120 mmol·L~(-1) NaCl浓度处理中国南瓜幼苗,可以有效地筛选耐盐材料。
     2.在组织培养条件下,对中国南瓜‘360-3×112-2'F_1杂种和‘黑籽南瓜'的幼苗分别进行不同NaCl浓度胁迫处理,结果表明,‘360-3×112-2'F_1杂种和‘黑籽南瓜'在幼苗期存在明显的耐盐性差异,‘360-3×112-2'F_1杂种耐盐性比‘黑籽南瓜'强,前者的最高耐盐浓度是160 mmol·L~(-1),后者的最高耐盐浓度是120 mmol·L~(-1)。
     3.营养液栽培条件下,在成株期以80 mmol·L~(-1) NaCl胁迫中国南瓜‘360-3×112-2'F_1杂种和‘黑籽南瓜'植株,10d后,测定了植株的生长量和不同器官中Na~+、K~+、Ca~(2+)、Mg~(2+)的含量,结果表明NaCl胁迫后两种南瓜植株体内Na~+含量升高,‘360-3×112-2'F_1杂种的Na~+主要累积在根部,‘黑籽南瓜'主要积累在茎中;K~+、Ca~(2+)、Mg~(2+)的含量在植株体内呈下降的趋势,但‘360-3×112-2'F_1杂种的上位叶中的含量却上升;NaCl胁迫下因Na~+的积累抑制了K~+的吸收,植株各器官的K~+/Na~+普遍降低,但‘黑籽南瓜'比‘360-3×112-2'F_1杂种的K~+/Na~+下降明显。这些结果说明,两种南瓜受到盐胁迫后Na~+的主要积累器官不同,致使地上部各器官有不同的K~+、Ca~(2+)、Mg~(2+)吸收和积累特性,K~+/Na~+降低幅度也不同,从而影响了植株的生长,产生了耐盐性的差异。
     4.在营养液栽培条件下研究了在成株期以80 mmol·L~(-1) NaCl胁迫10d对中国南瓜‘360-3×112-2'F_1杂种和‘黑籽南瓜'植株生长和根系生理特征的影响。结果表明:NaCl胁迫对两种材料的生长有不同程度抑制,其中功能叶单叶面积受抑制程度最大,‘黑籽南瓜'所受抑制更强。NaCl处理能显著提高‘360-3×112-2'F_1杂种的根系活力,却对‘黑籽南瓜'植株根系活力有显著抑制作用。随NaCl胁迫延续,两种材料根系中可溶性糖和脯氨酸含量均呈现先上升后下降的规律,‘360-3×112-2'F_1杂种植株的2种渗透物质上升幅度较大而下降的幅度较小且始终显著高于同期‘黑籽南瓜'。两种材料根系O_2~-产生速率随胁迫延续逐渐上升,但‘360-3×112-2'F_1杂种上升幅度渐减小,而‘黑籽南瓜'上升幅度持续增加;‘360-3×112-2'F_1杂种根系中MDA含量先升后降,‘黑籽南瓜'的MDA含量持续上升;NaCl胁迫使两种材料根系抗氧化酶活性均有不同程度增加,SOD和CAT活性先升后降,POD活性则持续升高,但‘360-3×112-2'F_1杂种的上述酶活性增幅均大于同时期‘黑籽南瓜'。以上结果表明,成株期的中国南瓜‘360-3×112-2'F_1杂种在NaCl胁迫下生长抑制率较低,根系活力较强,具有较强的渗透调节能力和调节活性氧平衡能力,耐盐性比‘黑籽南瓜'强。
     5.在营养液栽培条件下研究80 mmol·L~(-1) NaCl胁迫10d对成株期的中国南瓜‘360-3×112-2'F_1杂种和‘黑籽南瓜'植株生长、根系活性氧水平和游离态多胺含量的影响。结果表明,NaCl胁迫10 d,中国南瓜‘360-3×112-2'F_1杂种和‘黑籽南瓜'植株生长受到抑制,‘360-3×112-2'F_1杂种比‘黑籽南瓜'植株耐盐。NaCl胁迫后南瓜根系O_2~-产生速率和H_2O_2含量提高,‘黑籽南瓜'的O_2~-产生速率和H_2O_2含量高于‘360-3×112-2'F_1杂种。南瓜根系中腐胺(Put)、亚精胺(Spd)、精胺(Spm)和多胺(Pas)含量及Put/PAs值高于对照,呈现先升高后下降的趋势;根系中(Spd+Spm)/Put值低于对照,呈现先下降后升高的趋势。‘360-3×112-2'F_1杂种根系中Put含量和Put/PAs值低于‘黑籽南瓜',而Spd、Spm含量和(Spd+Spm)/Put值高于‘黑籽南瓜';分析认为,两种南瓜根系中多胺含量的升高对减少或清除组织中的ROS有积极的作用,Put向Spd、Spm转化有利于增强植株的耐盐性。‘360-3×112-2'F_1杂种的耐盐性高于‘黑籽南瓜'与根系中Put/PAs值较低、(Spd+Spm)/Put值和PAs含量较高、清除活性氧能力较强有关。
     6.用前期试验筛选出的较耐盐的中国南瓜‘360-3×112-2'、‘077-2×112-2'、‘360-3×635-1'F_1杂种为试验砧木,以生产上常用的黄瓜砧木‘黑籽南瓜'作对照,以‘津春2号'黄瓜为接穗,用靠接法和插接法在温室营养钵育苗条件下,研究中国南瓜F_1杂种作为黄瓜砧木的嫁接亲合性和对嫁接苗生长的影响。结果表明,中国南瓜F_1杂种幼苗下胚轴细而高,嫁接成活率比‘黑籽南瓜'低,插接法嫁接成活率优于靠接法。但嫁接20d后‘360-3×112-2'和‘360-3×635-1'F_1杂种作砧木的嫁接苗单株叶片数、最大叶片面积、根系和地上部鲜重不低于‘黑籽南瓜'嫁接苗,具备作为黄瓜砧木的基本条件,其中‘360-3×112-2'F_1杂种的嫁接苗根冠比较高,幼苗健壮,而‘077-2×112-2'F_1杂种作为砧木嫁接成活率较低,生长指标较差,不宜作黄瓜砧木。
Due to the continuous cultivation and unreasonable fertilization in protected cultivation soil,the secondary salinization soil has become a very serious problem, resulting in a serious reduction of yield and quality of vegetable protection production. Cucurbits are one of the main vegetable species in protected cultivation.It is showed that cucurbits grafting cultivation using salt-tolerant rootstock is an effective measure to utilize the secondary salinization soil reasonable.Pumpkin is the main rootstock species of grafted cucurbits production,which have some features such as well developed roots,good compatibility,resistance soil-borne diseases.Cucurbita moschata is a cultivated species of Cucurbita,which have extensive adaptability,strong stress resistance,abundant germplasm resources in China.It is reasonable that screening salt-tolerant cucurbits rootstock from C. moschata,however,special salt-tolerant rootstock were not used in cucurbits production. Less physiological characteristics of salt-tolerant on C.moschata was studied,these are only in salt-toleran physiological of germination period and seedling stage.We use C. moschata hybrids as trial material,and screening salt-tolerant hybrid,and then using C. ficifolia,widely used in grafted cucumber production as a control,comparisons of salt-tolerant physiological were made between salt-tolerant hybrid and C.ficifolia in their adult stages.
     1.In vitro comparison of the salt tolerance of C.moschata were made at the seedling stage exposed to a series of NaCl concentration.The results showed that hybrids are stronger than their inbred lines in salt tolerance,there is heterosis about salt tolerance of C. moschata.The growth of 3 inbred lines and 6 hybrids seedlings were inhibited seriously under MS medium supplemented with 120 and 160 mmol·L~(-1) NaCl respectively.There were significant differences in salt tolerance among 10 tested materials with 6 salinities(0, 40,80,120,160,200 mmol·L~(-1)).The salt injury index(SII) of seedlings of 69 pumpkin hybrids ranged from 29.94 to 100 and the frequency distribution was normal by normal test. Salt-tolerant hybrids of 6 were obtained,of which '360-3×112-2' showed the strongest salt tolerance.120 mmol·L~(-1) NaCl was determined as an effective concentration to select salt-tolerant materials from pumpkin hybrid seedlings.
     2.In vitro comparison of the salt tolerance of C.ficifolia and C.moschata hybrid of '360-3×112-2' which showed stronger salt tolerance with previously selected experimental result,were made at the seedling stage exposed to a series of NaCl concentration(0、40、80、120、160、200 mmol·L~(-1)).The results showed that obvious difference in salt tolerance was exited between C.moschata hybrid of '360-3×112-2' and C.ficifolia,and the salt tolerance of the former was significantly higher than the later.It was suggested that 160 mmol·L~(-1) and 120 mmol·L~(-1) NaCl were the maximum stress value that C.moschata hybrid of '360-3×112-2' and C.ficifolia could tolerate respectively.Those results make hybrid of '360-3×112-2' available in breeding of salt-tolerant rootstock.
     3.To compare '360-3×112-2'hybrid of salt tolerance with C.ficifolia,both of them were cultured in nutrient solution added with 0 mmol·L~(-1) or 80 mmol·L~(-1) NaCl in adult plant period.After 10 days,the growth traits and the contents of Na~+,K~+,Ca~(2+) and Mg~(2+) in six organs including root,stem,petiole,upper leaf,middle leaf and lower leaf of all plants were determined.Results showed that growth inhibition of two tested plants was obvious under NaCl stress for 10 days,growth of '360-3×112-2' hybrid plants was less inhibited than that of C.ficifolia Bouche.Na~+ contents in six organs of two tested materials were all increased,Na~+ contents of '360-3×112-2' hybrid mainly accumulated in roots,while C. ficifolia Bouche.in stem.K~+,Ca~(2+) and Mg~(2+) contents generally decreased in plant,however, increased in upper leaf of'360-3×112-2' hybrid.Although K~+/Na~+ values in all organs were decreased under NaCl stress,'360-3×112-2' hybrid decreased less than C.ficifolia Bouche. Therefore,difference in organs accumulating high Na~+ contents,and difference in K~+,Ca~(2+), Mg~(2+) contents and K~+/Na~+ decrease range in shoot were the main reasons for the differences of salt tolerance between the two tested materials under NaCl stress after 10 days.
     4.To evaluate the salt tolerance of '360-3×112-2' hybrid at adult plant stage(with 10 leaves),the roots physiological and biochemical characteristics and plants growth were further studied comparing with C.ficifolia under NaCl stress in condition of solute culture. The results showed:(1) NaCl stress had lower inhibitory effect on the plants growth of hybrid which reflected in the reduction of fresh weight of roots and shoots,length of main stem,number of functional leaves,especially in individual areas of the youngest functional leaves comparing with C.ficifolia based on the investigation data at 9 day after NaCl treatment(DAT).(2) NaCl treatment could promote the roots vigor of '360-3×112-2' hybrid and inhibit that of C.ficifolia significantly.(3) Although the two osmoregulatory substances in roots of two tested materials had peak value in the first day of NaCl stress and appeared similar change tendency which rose first and fell later,the hybrid were always higher than C.ficifolia.The rising range of soluble sugar and proline in earlier phase were more obvious than the descend range in later stress time in hybrid.(4) O_2~-production rate of two test material roots gradually increased,but the rising range of O_2~-production rate of hybrid became lower than that of C.ficifolia with NaCl stress.Content of MDA of hybrid roots was raised firstly then dropped,yet that of C.ficifolia increased gradually.(5) Activity of SOD,POD and CAT of two material roots were increased under NaCl stress,and SOD and CAT raised firstly then dropped,POD increased continuous,the range of increase of 3 antioxidase of '360-3×112-2' hybrid roots at same stress time were higher than that of C.ficifolia roots.Those results indicated that '360-3×112-2' hybrid plants had lower growth inhibition rate,higher roots vigor,better osmotic adjustment ability and regulation balance of active oxygen under NaCl stress at adult plant stage.The comparing research also concluded that '360-3×112-2' hybrid has higher tolerance to NaCl stress than C.ficifolia.
     5.Plant growth,O_2~-production rate,H_2O_2 content and contents of free polyamines (PAs) includ free putrescine(Put),Spermidine(Spd),Spermine(Spin) in the roots of Cucuibita moschata Duch.hybrid and C.ficifolia which differing in salt sensitivity at adult plant stage(10 leavies) were investigated under 80 mmol·L~(-1) NaCl stress in hydroponic for 10 days.The results showed that salt injuries and growth inhibition occurred both in tested plants after 10d stress,and that of C.ficifolia Bouche were much more serious than '360-3×112-2' hybrid.During NaCl stress,O_2~-production rate and H_2O_2 content in '360-3×112-2' hybrid were increased similar to C.ficifolia Bouche.,yet absolute values were lower than that of the latter.Contents of Put,Spd,Spm,PAs and Put/PAs value on two test material roots were always higher than control,rised first and fall later,while (Spd+Spm)/Put value were lower than control,decreased firstly and then increased. Compared with C.ficifolia Bouche.,Put/PAs value and Put content in '360-3×112-2' hybrid roots were always lower,while(Spd+Spm)/Put value and contents of Spd and Spm were always higher.It was concluded that increasing PAs content levels in two pumpkin roots played an active role on decreasing or scavenging ROS under NaCl stress.The conversion of Put to Spd and Spin was advantageous to the increase of plant salt tolerance. The higher salt tolerance of '360-3×112-2' than C.ficifolia Bouche.was closely related to its some physiological characteristics in roots,such as the lower Put/PAs value,the higher (Spd+Spm)/Put value and PAs content,the stronger the capacity to scavenge active oxygen species.
     6.The compatibility and grafted seedling growth of different C.moschata hybrids ('360-3×112-2'、'077-2×112-2'、'360-3×635-1') and C.ficifolia rootstocks on cucumber cultivar of 'Jinchun 2' were studied by approach grafting and sprout insertion grafting using pot cultivation in greenhouse.the results showed that 3 C.moschata hybrids rootstocks were compatible with 'JinChun 2' cucumber cultivar,but with lower survival rates than C. ficifolia rootstocks,differences in hypocotyls diameter and height between C.moschata hybrids and C.ficifolia rootstocks reduced the survival ratio of grafts,while with higher survival ratio of grafts by sprout insertion grafting than approach grafting.'360-3×112-2' and '360-3×635-1' hybrids have the basic conditions of cucumber rootstock for their average leaves number,the largest leaf area,the fresh weight of roots and tops of grafted seedling no less than that of C.ficifolia rootstocks after grafting 20 days.And '360-3×112-2' hybrid is recommended as a cucumber rootstock for it's stronger grafted seedling with higher root-top ratio,but '077-2×112-2' hybrid is not recommended for it's the lower grafting survival rates and poor growth vigor.
引文
1.曹建华,林位夫,陈俊明.砧木与接穗嫁接亲合力研究综述.热带农业科学,2005,25(4):64-69
    2.陈贵林,乜兰春,李建文,等.低温胁迫对西葫芦嫁接苗光合特性的影响.上海农业学报,2000,(1):42-45
    3.陈洁,林栖风.植物耐盐生理及耐盐机理研究进展.海南大学学报(自然科学版),2003,21(2):177-182
    4.陈利平,宋增军,马兴庄,等.嫁接对日光温室黄瓜产品品质的影响.西北农业学报,2004,13(2):170-171
    5.陈淑芳,朱月林,刘友良,等.NaCl胁迫对番茄嫁接苗叶片ABA和多胺含量的影响.园艺学报,2006,33(1):58-62
    6.程美廷.温室土壤盐分积累、盐害及其防治.土壤肥料,1990(1):1-4
    7.丁顺华,邱念伟,杨洪兵,等.小麦耐盐性生理指标的选择.植物生理学通讯,2001,37(2):98-102
    8.董晓霞,赵树慧,孔令安,等.苇状羊茅盐胁迫下生理效应的研究.草业学报,1998,15(5):10-13
    9.段九菊,郭世荣,樊怀福,等.盐胁迫对黄瓜幼苗根系脯氨酸和多胺代谢的影响.西北植物学报,2006,26(12):2486-2492
    10.段九菊,郭世荣,康云艳,等.外源亚精胺对盐胁迫下黄瓜根系多胺含量和抗氧化系统的影响.生态与农村环境学报,2007,23(4):11-17
    11.段九菊,郭世荣,康云艳.外源亚精胺对盐胁迫下黄瓜幼苗活性氧水平和抗氧化酶活性的影响.园艺学报,2006,33(3):639-641
    12.高丽红,张福墁.日光温室黄瓜生产中存在的问题及解决途径.沈阳农业大学学报,2000,31(1):113-116
    13.高翔,齐新丹,李骅.我国设施农业的现状与发展对策分析.安徽农业科学,2007,35(11):3453-3454
    14.郭世荣.无土栽培学.北京:中国农业出版社,2003:114
    15.郭望模,傅亚萍,孙宗修.水稻芽期和苗期耐盐指标的选择研究.浙江农业科学,2004(1):30-33
    16.郭文忠,李锋,秦垦,等.南瓜的价值及抗逆栽培生理研究进展.长江蔬菜,2002(9):30-32
    17.韩志平,郭世荣,朱国荣,等.砧木对嫁接西瓜生长发育、产量和品质的影响.中国蔬菜,2006(2):22-23
    18.何传龙,徐继平,王世祥,等.大棚土壤障碍因子形成及调控技术的研究进展.安徽农业科学,2003,31(6):1040-1042
    19.何欢乐,蔡润,潘俊松,等.盐胁迫对黄瓜种子萌发特性的影响.上海交通大学学报(农业科学版),2005,23(2):148-153
    20.何明,王国忠,陆峥嵘,等.日本环境保护型设施农业土肥管理技术的研究动态.上海农业学报,2002,18(4):92-96
    21.何文亮,黄承红,杨颖丽,等.盐胁迫过程中抗坏血酸对植物的保护功能.西北植物学报,2004,24(12):2196-2201
    22.侯云霞,钱光熹,王建明,等.上海蔬菜保护地的土壤盐分状况.上海农业学报,1987,3(4):31-38
    23.寇伟锋,刘兆普,郑宏伟.海水胁迫对向日葵苗期生长及矿质营养吸收特性的影响.生态学杂志,2006,25(5):521-525
    24.李丙东,刘宜生,王长林.南瓜属蔬菜生物学基础研究概况及育种进展.中国蔬菜,1996(6):48-50
    25.李长润,刘友良.盐胁迫下小麦幼苗离子吸收运输的选择性与叶片耐盐量.南京农业大学学报,1993,16(1):16-20
    26.李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2003:110-261
    27.李红丽,王明林,于贤昌,等.不同接穗/砧木组合对日光温室黄瓜果实品质的影响.中国农业科学,2006,39(8):1611-1616
    28.李红丽,于贤昌,王华森,等.嫁接和嫁接砧木对黄瓜果实品质的影响.西北农业学报,2005,14(1):129-132
    29.李卫欣,陈贵林,赵利,等.NaCl胁迫下不同南瓜幼苗耐盐性研究.植物遗传资源学报,2006,7(2):192-196
    30.林德佩.南瓜植物的起源和分类.中国西瓜甜瓜,2000(1):36-38
    31.林君,孙玉强,吕有军,等.种子盐引发对转基因抗虫棉耐盐性的影响.棉花学报,2006,18(6):338-341
    32.刘慧英,朱祝军,钱琼秋,等.砧木对小型早熟西瓜果实糖代谢及相关酶活性的影响.园艺学报,2004,31(1):47-52
    33.刘俊,刘友良.盐胁迫下大麦幼苗多胺的种类和状态与多胺氧化酶活性的关系.植物生理与分子生物学学报,2004,30(2):141-146
    34.刘伟,魏日凤,潘廷国.NaCl胁迫及外源Ca~(2+)处理下甘薯幼苗叶片多胺水平的变化.福建农林大学学报(自然科学版),2005,34(2):244-247
    35.刘友良,汪良驹.植物对盐胁迫的反映和耐盐性.见:余叔文,汤章诚主编.植物生理与分子生物学(第二版).北京:科学出版社,1998:752-769
    36.卢青.植物耐盐性的分子生物学研究进展.生物学杂志,2000,17(4):9-11
    37.卢文经.薄皮甜瓜嫁接抗病增产技术研究.辽宁农业科学,2002,(1):16-20
    38.卢元芳,冯立田.NaCl胁迫对菠菜叶片中水分和光合气体交换的影响.植物生理学通讯,1999,35(4):290-292
    39.鲁滨,著(苏).蔬菜和瓜类生理.北京:农业出版社,1982:376-379
    40.吕庆,郑荣梁.干旱及活性氧引起小麦膜脂过氧化与脱酯化.中国科学(C辑),1996,26(1):26-30
    41.米海莉,许兴,马雅琴,等.小麦品种耐盐性的研究.干旱地区农业研究,2003,21(1):134-138
    42.钱琼秋,刘慧英,朱祝军.嫁接西瓜果实发育过程中蔗糖代谢及相关酶调控的研究.浙江大学学报(农业与生命科学版),2004,30(3):285-289
    43.饶贵珍,彭士涛,王宝剑.不同砧木嫁接白皮黄瓜的综合效应研究.中国农学通报,2003,19(5):150-153
    44.沈禹颖,王锁民,陈亚明.盐胁迫对牧草种子萌发及其恢复的影响.草业学报,1999,8(3):54-60
    45.施木田,陈如凯.锌硼营养对苦瓜产量品质与叶片多胺、激素及衰老的影响.应用生态学报,2004,15(1):77-80
    46.石雪晖,王淑英,吴艳纯,等.葡萄叶片中生理生化物质含量与嫁接亲和力关系的研究.果树学报,2001,18(1):24-27
    47.石玉林.西北地区土地荒漠化与水土资源利用研究.北京:科学出版社,2004:42-105
    48.史跃林,刘佩瑛,罗庆熙,等.黑籽南瓜砧对黄瓜抗盐性的影响研究.西南农业大学学报,1995,17(3):232-236
    49.史跃林,罗庆熙,刘佩瑛.Ca~(2+)对盐胁迫下黄瓜幼苗中CaM、MDA含量和质膜透性的影响.植物生理学通讯,1995,31(5):347-349
    50.史跃林.黄瓜的抗盐调控及其机理研究.西南农业大学硕士论文,1996:12-18
    51.舒迎春.主要瓜类蔬菜栽培简史.中国农史,1998,17(3):94-99
    52.孙小芳,郑青松,刘友良.NaCl胁迫对棉花种子萌发和幼苗生长的伤害.植物资源与环境学报,2000,9(3):22-25
    53.孙艳,黄炜,田霄鸿,等.黄瓜嫁接苗生长状况、光合特性及养分吸收特性的研究.植物营养与肥料学报,2002,8(2):181-185
    54.汤菊香,李新峥,李广领,等.不同品种南瓜幼苗生长耐盐性的研究.安徽农业科学,2005,33(10):1802,1839
    55.童有为,陈淡飞.温室土壤次生盐渍化的形成和治理途径研究.园艺学报,199l,18(2):159-162
    56.王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系.植物生理学通讯,1990,26(6):55-57
    57.王宝山,赵可夫,邹琦.作物耐盐机理研究进展及提高作物抗盐性的对策.植物学通报,1997,14:25-30
    58.王宝山,赵可夫.NaCl胁迫下玉米黄化苗质外体和共质体Na~+与Ca~(2+)浓度的变化.作物学报,1997,23(1):27-33
    59.王广印,韩世栋,赵一鹏,等.NaCl胁迫及Ca~(2+)和GA_3对南瓜属3种蔬菜种子发芽的影响.植物资源与环境学报,2005,14(1):26-30
    60.王广印,周秀梅,张建伟,等.NaCl胁迫对不同品种黄瓜种子发芽的影响.干旱地区农业研究,2005,23(1):121-125
    61.王海英,孙建设,马宝焜,等.苹果砧木组培苗耐盐筛选技术研究.果树科学,2000,17(3):188-191
    62.王仑山,王鸣刚,王亚馥.利用组织和细胞培养筛选作物耐盐突变体的研究.植物学通报,1996,13(2):7-12
    63.王冉,陈贵林,梁静,等.盐胁迫对黑籽南瓜和白籽南瓜种子萌发特性的影响.河北农业大学学报,2005,28(5):42-44
    64.王冉,陈贵林,宋炜,等.NaCl胁迫对两种南瓜幼苗离子含量的影响.植物生理与分子生物学学报,2006,32(1):94-98
    65.王淑英,石雪晖,谷继成.葡萄嫁接愈合过程.葡萄栽培与酿酒,1998(4):12-14
    66.王素平,郭世荣,胡晓辉,等.盐胁迫对黄瓜幼苗叶片光合色素含量的影响.江西农业大学学报,2006,28(1):32-38
    67.王素平,李娟,郭世荣,等.NaCl胁迫对黄瓜幼苗植株生长和光合特性的影响.西北植物学报,2006,26(3):455-461
    68.王喜庆.嫁接甜瓜防病增产效果初步研究.中国西瓜甜瓜,2002(2):22-23
    69.王学奎.植物生理生化实验原理和技术(第二版).北京:高等教育出版社,2006:202-268
    70.王玉彦,贾卫国,申斯乐,等.不同砧木对嫁接黄瓜生理影响的研究.中国蔬菜,1995(2):31 -34
    71.王忠.植物生理学.北京:中国农业出版社,2000:107-109,314-348
    72.王遵亲.中国盐渍土.北京:科学出版社,1993:322-375
    73.魏国强,朱祝军,方学智,等.NaCl胁迫对不同品种黄瓜幼苗生长、叶绿素荧光特性和活性氧代谢的影响.中国农业科学,2004,37(11):1754-1759
    74.翁森红,李维炯,刘玉新.关于植物耐盐性和抗盐性的研究.内蒙古科技与经济,2005(10):15-17
    75.吴凤芝,刘德,王东凯,等.大棚蔬菜连作年限对土壤主要理化性状的影响.中国蔬菜,1998,(4):5-8
    76.吴旭红,高玉芝.盐胁迫对植物形态和生理过程的影响.高师理科学报,2002,22(4):51-53
    77.吴雪霞,朱月林,朱为民,等.组织培养条件下不同番茄品种幼苗期的耐盐性比较.上海农业学报,2006,22(3):59-62
    78.项玉英,杨祥田,张光.设施栽培土壤次生盐渍化的调查及防治对策.浙江农业科学,2006(1):17-19
    79.谢德意,王惠萍,王付欣,等.盐胁迫对棉花种子萌发及幼苗生长的影响.中国棉花,2000,27(9):12-13
    80.谢苏婧.原子吸收光谱法测定翅果油树体内的八种无机元素.光谱学与光谱分析,2006,26(1):54-55
    81.谢学东.南京市尧化镇蔬菜大棚土壤肥力状况调查研究.江苏农业科学,1999(3):55-57
    82.徐胜利,陈小青,陈青云.嫁接西瓜植株的生理特性及其抗枯萎病能力.中国农学通报,2004,20(2):149-151
    83.杨立飞,朱月林,胡春梅,等.NaCl胁迫对嫁接黄瓜膜脂过氧化、渗透调节物质含量及光合特性的影响.西北植物学报,2006,26(6):1195-1200
    84.杨立飞,朱月林,胡春梅,等.NaCl胁迫对营养液栽培嫁接黄瓜生物量及离子分布的影响.西北植物学报,2006,26(12):2500-2505
    85.杨立飞,朱月林,胡春梅,等.NaCl胁迫下营养液栽培嫁接西瓜生长动态及叶片生理生化特性的研究.西南农业学报,2005,18(4):439-443
    86.杨立飞,朱月林,胡春梅,等.氯化钠胁迫对嫁接黄瓜叶片多胺含量的影响.应用生态学报,2007,18(4):831-836
    87.杨世杰,卢善发.植物嫁接基础理论研究.生物学通报,1995,30(9):10-12
    88.杨伟力,吴波,周宝利,等.瓜类蔬菜嫁接栽培及生理研究进展.辽宁农业科学,2005(3):39-41
    89.杨秀玲,郁继华,李雅佳,等.NaCl胁迫对黄瓜种子萌发及幼苗生长的影响.甘肃农业大学学报,2004,39(1):6-9
    90.杨月红,孙庆艳,沈浩.植物的盐害和抗盐性.生物学教学,2002,27(11):1-2
    91.于海武,李莹.植物耐盐性研究进展.北华大学学报(自然科学版),2004,5(3):257-263
    92.于贤昌,王立江.蔬菜嫁接的研究与应用.山东农业大学学报,1998,(2):249-256.
    93.于贤昌.黄瓜嫁接苗抗冷性研究.南京农业大学博士学位论文,1997:13-24
    94.余海英,李廷轩,周健.典型设施栽培土壤盐分变化规律及潜在的环境效应研究.土壤学报,2006,43(4):571-576
    95.余海英,李廷轩,周健.设施土壤次生盐渍化及其对土壤性质的影响.土壤,2005,37(6):581-586
    96.於丙军,吉晓佳,刘俊,等.氯化钠胁迫下野生和栽培大豆幼苗体内的多胺水平变化.应用生态学报,2004,15(7):1223-1226
    97.郁继华,杨秀玲,许耀照,等.NaCl胁迫对黄瓜自根苗和嫁接苗光合速率的影响.植物营养与肥料学报,2004,10(5):554-556
    98.袁祖华,蔡雁.盐胁迫下嫁接黄瓜幼苗有机渗透调节物质含量及膜脂过氧化水平研究.湖南农业大学学报,2007,33(2):180-183
    99.岳青,苗如意,范三江,等.不同砧木对西瓜嫁接效果的影响.山西师范大学学报(自然科学版),1999(1):53-55
    100.曾义安,朱月林,黄保健,等.黑籽南瓜砧木对黄瓜生长结实、抗病性及营养元素含量的影响.植物资源与环境学报,2004,13(4):15-19
    101.曾义安,朱月林,黄保健,等.嫁接黄瓜的光合特性及叶片激素含量和可溶性蛋白研究.南京农业大学学报,2005,28(1):16-19
    102.张恩平,张淑红,司龙亭,等.NaCl胁迫对黄瓜幼苗子叶膜脂过氧化的影响.沈阳农业大学学报,2001,32(6):446-448
    103.张福锁.环境胁迫与植物育种。北京:中国农业出版社,1993:101-132
    104.张红梅,黄丹枫,丁明,等.不同苗龄接穗的西瓜嫁接体愈合过程中的3种酶活性变化.物生理学通讯,2005,41(3):302-304
    105.张继梅,葛志东.嫁接技术在薄皮甜瓜上的应用效果.中国西瓜甜瓜,2002(1):26-27
    106.张立钦,郑勇平,金佩英.用组织培养技术筛选杨树耐盐种质.浙江林学院学报,1996,13(4):397-404
    107.张其德.盐胁迫对植物及其光合作用的影响(中).植物杂志,2000(1):28-29
    108.张新春,庄炳昌,李白超.植物耐盐性研究进展.玉米科学,2002,10(1):50-56
    109.张衍鹏,于贤昌,张振贤,等.日光温室嫁接黄瓜的光合特性和保护酶活性.园艺学报,2004,31(1):94-96
    110.张玉鑫,李喜娥,陈年来.NaCl胁迫对甜瓜幼苗生长的影响.中国瓜菜,2006(10):4-6
    111.张云起,刘世琦,王海波.耐盐砧木嫁接对西瓜幼苗抗盐特性的影响.上海农业学报,2004,20(3):62-64
    112.张云起,刘世琦,王海波.耐盐砧木嫁接对西瓜生长、产量及品质的影响.山东农业科学,2004(4):30-31
    113.张云起,刘世琦,杨凤娟,等.耐盐西瓜砧木筛选及其耐盐机理的研究.西北农业学报,2003,12(4):105-108
    114.赵福庚,何龙飞,罗庆云.植物逆境生理生态学.北京:化学工业出版社,2004:193-207
    115.赵可夫.植物抗盐生理.北京:中国科学技术出版社,1993
    116.赵秀梅,张剑侠,王跃进.葡萄组培苗耐盐性研究.果树学报,2005,22(3):202-206
    117.郑群,宋维慧.国内外蔬菜嫁接技术研究进展(上).长江蔬菜,2000(8):1-4
    118.周宝利,林桂荣,李宁义.蔬菜嫁接栽培.北京:中国农业出版社,1997:17-18,44-45
    119.朱进,别之龙,李娅娜.黄瓜种子萌芽期及嫁接砧木幼苗期耐盐力评价.中国农业科学,2006,39(4):772-778
    120.朱进,别之龙,徐容,等.不同砧木嫁接对黄瓜生长、产量和品质的影响.华中农业大学学报,2006,25(6):668-671
    121.朱庆松,赵海英,石玉保.NaCl胁迫下对西瓜种子发芽特性的影响.河南职业技术师范学院学报,2004,32(3):29-31
    122.Akbar M,Khush G S,Hillerislambers D.Genetics of salt tolerance in rice.Proceeding of the International Rice genetics Symposium,IRRJ,1985,5:399-409
    123.Asao T,Shimizu N,Ohta K,et al.Effect of rootstocks on the extension of harvest period of cucumber(Cucumis sativus L.) growth in non-renewal hydroponics.Journal of the Japanese Society for Horticultural Science,1999,68:589-602
    124.Ashraf M,Ahmad S.Influence of sodium chloride on ion accumulation,yield components and fibre characteristics in salt-tolerant and salt-sensitive lines of cotton(Gossypium hirsutum L.).Field Crops Research,2000,66:115-127
    125.Ashraf M,O'Leary J W.Distribution of cations in leaves of salt-tolerant and salt-sensitive lines of sunflower under saline conditions.Journal of Plant Nutrition,1995,18:2379-2388
    126.Ashraf M,O'Leary J W.Does pattern of ion accumulation vary in alfalfa at different growth stages?.Journal of Plant Nutrition,1994,17:1443-1461
    127. Asish K P, Anath B D. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 2005, 60: 324 - 349
    
    128. Azhar F M, McNeilly T. The genetic basis variation for salt tolerance in Sorghum bicolor (L.) Moench seedings. Plant Breeding, 1988, 101: 114-121
    
    129. Blumwald E. Sodium transport and salt tolerance in plants. Current Opinion in Cell Biology, 2000,12:431-434
    
    130. Borsani, O, Vlapuesta V, and Botella M A. Developing salt tolerant plants in a new century: A molecular biology approach. Plant Cell, Tissue and Organ Culture, 2003, 73: 101 - 115
    
    131.Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiology, 1992, 98: 1222 -1227
    
    132. Cano E. A., Perez - Alfocea F., Moreno V., et al. Evaluation of salt tolerance in cultivated and wild tomato species through in vitro shoot apex culture. Plant Cell, Tissue and Organ Culture, 1998, 53:19-26
    
    133. Cheeseman J M. Mechanisms of salinity tolerance in plants. Plant Physiology, 1988, 87: 547 - 550
    
    134. Cohen R, Burger Y, Horev C, et al. Performance of Galia-type melons grafted on to Cucurbita rootstock in Monosporascus cannonballus-infested and non-infested soils. Annals of Applied Biology, 2005,146: 381 - 387
    
    135. Dipireeo N, Mondelli D, Paciolla C, et al. Changes in the ascorbate system in the response of pumpkin (Cucurbita pepo L.) roots to aluminium stress. Journal of Plant Physiology, 2005, 162:529 - 536
    
    136. Drolet G, Dumbroff E B, Legg R, et al. Radical scavenging properties of polyamines.Phytochemistry, 1986, 25: 367 - 371
    
    137. Edelstein M, Ben - Hur M, Cohen R, et al. Boron and salinity effects on grafted and non-grafted melon plants. Plant and Soil, 2005, 269: 273 - 284
    
    138. Edelstein, M. Grafting vegetable - crop plants: pros and cons. Acta Horticulturae, 2004, 659: 235 -238
    
    139. Ericson M C, Alfinito S H. Proteins produced during salt stress in tobacco cell culture. Plant Physiology, 1987, 74: 506 - 509
    
    140. Fernandez - Garcia N, Cerda A, Carvajal M. Grafting, a useful technique for improving tolerance of tomato?. Acta Horticulturae, 2003, 609: 251 - 256
    
    141. Flowers TJ. Improving crop salt tolerance. Journal of Experimental Botany, 2004, 55: 307 - 319
    142. Foyer C H. Ascorbic acid. In: Alscher RG, Hess J L, eds. Antioxidants in higher plants. Boca Raton:CRC Press, 1993:31-58
    
    143. Gisbert C, Rus A M, Bolarin M C, et al. The yeast HAL1 gene improves salt tolerance of transgenic tomato. Plant Physiology, 2000, 123: 393 - 402
    
    144. Glenn E P, Watson M C, O'Leary J W, et al Comparison of salt tolerance and osmotic adjustment of low - sodium and high - sodium subspecies of the C_4 halophyte, Atriplex canescens. Plant, Cell and Environment, 1992, 15:711-718
    
    145. Guiltinan M J, Marcotte W R Jr, Quatrano R S. A plant leucine zipper protein that recognizes an abscisic acid response element. Science, 1990, 250: 267 - 271
    
    146. Hajibagheri M A, Yeo A R, Flowers T J, et al. Salinity resistance in Zeamays: fluxes of potassium,sodium and chloride, cytoplasmic concentrations and microsomal membrane lipids. Plant, Cell and Environment, 1989, 12: 753 - 757
    
    147. Hasegawa M, Bressan R. The dawn of plant salt tolerance genetics. Trends in plant science, 2000, 5:317-319
    
    148. Hong Z, Lakkineni K, Zhongming Z, et al. Removal of feedback inhibition of Δ~1 - pyrroline - 5 -carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiology, 2000, 122: 1129 -1136
    
    149. Jantaro S, Maenpaa P, Mulo P, et al. Content and biosynthesis of polyamines in salt and osmotically stressed cells of Synechocystis sp. PCC 6803. FEMS Microbiology Letters, 2003, 228:129 -135
    
    150. Kato T, Lou H. Effect of rootstocks on the yield, mineral nutrition and hormone level in xylem sap in eggplant. Journal of the Japanese Society for Horticultural Science, 1989, 58: 345 - 352 151. Khatun S, Flowers T J. Effects of salinity on seed set in rice. Plant Cell Environment, 1995, 18: 61-67
    
    152. Kim H T, Kang N J, Kang K Y. Selection of "Pusan Daemok 1" for high yield and quality in rootstock of cucumber. Journal of Horticultural Science, 1998, 40: 158 - 161
    
    153. Krishnamurthy R, Bhagwat K A. Polyamines as modulators of salt tolerance in rice cultivars. Plant Physiology, 1989, 91: 500 - 504
    
    154. Lee J M, Bang H J, Ham HS. Grafting of vegetables. Journal of the Japanese Society for Horticultural Science, 1998, 67: 1098 -1104
    
    155. Lee J M. Cultivation of grafted vegetables I. Current status, grafting methods, and benefits. Hort Science, 1994,29:235-239
    
    156. Leung J, Giraudat J. Abscisic acid signal transduction. Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49: 199 - 222
    
    157. Loupassaki M H, Chartzoulakis K, Digalaki N, et al. Effects of salt stress on concentration of nitrogen, phosphorus, potassium, calcium, magnesium and sodium in leaves, shoots and roots of six olive cultivars. Journal of Plant Nutrition, 2002, 25: 2457 - 2482
    
    158. Masuda M, Nakamura T, Gomi K. Studies on the characteristics of nutrient absorption of rootstocks in grafting fruit vegetable. Bulletin Faculty of Agriculture, 1981, 27: 179 -186
    
    159. Maurei C. Aquaporins and water permeability of plant membranes. Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48: 399 - 429
    
    160. Michelet B, Boutry M. The plasmamembrane H~+ - ATPase (A highly regulated enzyme with multiple physiological functions). Plant Physiology, 1995,108: 1 - 6
    
    161. Miguel A, Maroto J V, Bautista A S, et al. The grafting of triploid watermelon is an advantageous alternative to soil fumigation by methyl bromide for control of Fusarium wilt. Scientia Horticulturae, 2004, 103: 9 - 17
    
    162. Mittova V, Tal M, Volokita M, et al. Salt stress induces upregulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersion pennellii but not in the cultivated species. Physiologia Plantarum, 2002,115: 393 - 400
    
    163. Moghaieb R E A, Tanaka N, Saneoka H, et al. Expression of betaine aldehyde dehydrogenase gene in transgenic tomato hairy roots leads to the accumulation of glycine betaine and contributes to the maintenance of the osmotic potential under salt stress. Soil Science and Plant Nutrition, 2000, 46,873 - 883
    
    164. Moore R, Walker D B. Studies of vegetative compatibility - incompatibilty in higher plants. I. A structural study of compatible autograft in Sedum telephiodes (Crassulaceae). American Journal of Botany, 1981,68:820-830
    
    165. Moran J F, Becana M, Iturke - onnaetxe I, et al. Drought induces oxidative stress in pea plants,Planta, 1994, 94: 346 - 352
    
    166. Munns R, Termaat A. Whole plant responses to salinity. Australian Journal of Plant Physiology,1986: 143-160
    
    167. Nakamura Y, Tanaka K, Ohta E, et al Protective effect of external Ca~(2+) on elongation and the intracellular concentration of K~+ in intact mung bean roots under high NaCl stress. Plant and Cell Physiology, 1990, 31: 815 - 821
    
    168. Neto ADA, Prisco J T, Eneas-Filho J, et al. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany, 2006, 56: 87 - 94
    
    169. Niu X, Bressan R A, Hasegawa P M, et al. Ion homeostasis in NaCl stress environments. Plant Physiology, 1995, 109: 735 - 742
    
    170. Nober M W, Gbbs S E, Bernsten C S, et al. NaCl - tolerance tobacco plants from cultured cell. Z. P.flanzenphysiol, 1980, 97: 13 - 17
    
    171. Nyman L P, Conzeles C J, Arditt I J. In vitro selection for salt tolerant of taro. Annals of Botany,1983,51:229-336
    
    172. Paris H. Paintings (1769 - 1774) by A. N. Duchesne and the History of Cucurbita pepo. Annals of Botany, 2000, 6, 85: 815 - 830
    
    173. Pina A, Errea P. A review of new advances in mechanism of graft compatibility - incompatibility.Scientia Horticulturae, 2005, 106: 1 - 11
    
    174. Pulgar G, Vilora G, Moreno D A, et al. Improving the mineral nutrition in grafted watermelon plants: nitrogen metabolism. Biologia Plantarum, 2000, 43: 607 - 609
    
    175. Qiu Q S, Barkla B J, Zhu J K. Na~+/H~+ exchange activity in the plasma membrane of Arabidopsis.Plant physiology, 2003, 132: 1041 - 1052
    
    176. Raton B. Morpho-physiological aspects of productivity and quality in squash and pumpkins (Cucurbita spp.). Critical Reviews in Plant Sciences, 2004, 23: 337 - 363.
    
    177. Romero-Aranda R, Soria T, Cuartero J. Tomato plant - water up take and plant - water relationships under saline growth conditions. Plant Science, 2001,160:265 - 272
    
    178. Roxas V P, Lodhi S A, Garrett D K, et al. Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiology, 2000, 41:1229-1234
    
    179. Ruiz J M, Belakbir A, Lhpez-Cantarero I, et al. Leaf - macronutrient content and yield in grafted melon plants. A model to evaluate the influence of rootstock genotype. Scientia Horticulturae, 1997,71:227-234
    
    180. Ruiz J M, Rios J J, Rosales M A, et al. Grafting between tobacco plants to enhance salinity tolerance. Journal of Plant Physiology, 2006, 163: 1229 -1237
    
    181. Ruiz J M, Romero L. Nitrogen efficiency and metabolism in grafted melon plants. Scientia Horticulturae, 1999, 81: 113 -123
    
    182. Rus A M, Estan M T, Gisbert C, et al. Expressing the yeast HAL1 gene in tomato increases fruit yield and enhances K~+/Na~+ selectivity under salt stress. Plant, Cell and Environment, 2001, 24: 875-880
    183. Sanchez D H, Cuevas J C, Chiesa M A, et al. Free spemidine and spermine contents in Lotus glaber under long-term salt stress. Plant Science, 2005,168: 541 - 546
    
    184. Saranga Y, Cahaner A, Zamir D, et al. Breeding tomatoes for salt tolerance - inheritance of salt tolerance and related traits in interspecific populations. Theoretical and Applied Genetics, 1992, 84:390 - 396
    
    185. Saranga Y, Zamir D, Marani A, et al. Breeding tomatoes for salt tolerance - field-evaluation of Lycopersicon germplasm for yield and dry-matter production. Journal of the American Society for Horticultural Science, 1991,116: 1067 -1071
    
    186. Shalata A, Tal M. The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiologia Plantarum,1998,104: 169-174
    
    187. Sivritepe H O, Sivritepe N, Eris A, et al. The effects of NaCl pre-treatments on salt tolerance of melons grown under long-term salinity. Scientia Horticulturae, 2005, 106: 568 - 581
    
    188. Sivritepe N, Sivritepe H O, Eris A. The effects of NaCl priming on salt tolerance in melon seedlings grown under saline condition. Scientia Horticulture, 2003, 97: 229 - 237
    
    189. Smith T A. The di- and poly- amine oxidase of higher plants. Biochemical Society Transactions,1985,13:319-322
    
    190. Sreenivasulu N, Grimm B, Wobus U, et al. Differential response of antioxidants to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtailmillet (Setaria italica). Physiologia Plantarum,2000,109: 435 - 442
    
    191. Storey R, Walker R R. Citrus and salinity. Scientia Horticulturae, 1999, 78: 39-81
    
    192. Trajkova F, Papadantonakis N, Sawas D. Comparative effects of NaCl and CaCl_2 salinity on cucumber grown in a closed hydroponic system. Hortscience, 2006, 41: 437 - 441
    
    193. Traka-Mavrona E, Koutsika-Sotiriou M, Pritsa T. Response of squash (Cucurbita spp.) as rootstock for melon (Cucumis melo L.). Scientia Horticulturae, 2000, 83: 353 - 362
    
    194. Villora G, Moreno D A, Pulgar G, et al. Yield improvement in zucchini under salt stress:determining micronutrient balance. Scientia Horticulturae, 2000, 86: 175 -183
    
    195. Volkmar K M, Hu Y, Steppuhn H. Physiological responses of plants to salinity: a review.Canadian Journal of Plant Science, 1998, 78:19 - 27
    
    196. Ye J M, Kao K N. Harvey screening salt-tolerant barley genotype via anther culture in salt stress media. Theoretical and Applied Genetics, 1987,74:426 - 429
    
    197. Yetisir H, Sari N. Effect of hypocotyl morphology on survival rate and growth of watermelon seedlings grafted on rootstocks with different emergence performance at various temperatures.Turkish Journal of Agriculture and Forestry, 2004, 28: 231 - 237
    
    198.Zaiter H Z, Coyne D P, Clark R B. Temperature, grafting method, and rootstock influence on iron-deficiency chlorosis of bean. Journal of the American Society for Horticultural Science, 1987,112:1023-1026
    
    199. Zhao F G, Sun C, Liu Y L, et al. Effects of salinity stress on the levels of convalently and nonconvalently conjugated polyamines in plasma membrane and tonoplast isolated from barely seedlings. Acta Botanica Sinica, 2000, 42: 920 - 926
    
    200. Zhao F G, Sun C, Liu Y L, et al. Relationship between polyamine metabolism in roots and salt tolerance of barley seedlings. Acta Botanica Sinica, 2003,45: 295 - 300
    
    201. Zhu J K, Liu J, Xiong L. Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell, 1998,10: 1181
    
    202. Zhu J K. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiology, 2000, 124:941-948

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700