用户名: 密码: 验证码:
嫁接提高黄瓜幼苗耐盐性的生理机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着设施栽培的快速发展,设施内土壤次生盐渍化日趋严重,已成为限制设施栽培发展的主要障碍。黄瓜是设施内栽培的主要蔬菜之一,其耐盐性较弱,采用嫁接可显著提高黄瓜的耐盐性,但对嫁接提高黄瓜耐盐性的生理机制尚不明晰。本试验对不同基因型的黄瓜和嫁接砧木的耐盐性进行了鉴定,研究了不同接穗和砧木耐盐性差异的生理机制,在此基础上研究了不同砧/穗关系对黄瓜嫁接苗耐盐性的影响及其生理作用机制,以期为阐明嫁接提高黄瓜耐盐性提供理论依据,为指导黄瓜的嫁接栽培提供参考。本研究主要结果如下:
     采用聚类分析对20个黄瓜品种和22个嫁接砧木的耐盐性进行了鉴定。结果表明,20个黄瓜品种中,‘早多佳'、‘华早2号'、‘中农8号'、‘津育1号'、‘津优3号'为耐盐性强的黄瓜品种,‘津冠1号'、‘许优1号'、‘津春5号'、‘津春4号'、‘东方明珠'、‘湘早3号'、‘特早1号'、‘津优1号'为中等耐盐黄瓜品种,‘白皮黄瓜'、‘宁丰8号'、‘美农4号'、‘津春3号'、‘津杂4号'、‘津杂2号'、‘津春2号'为耐盐性弱的黄瓜品种:22个嫁接砧木中,可分为二大类,其中,‘春白玉'西葫芦、‘早青一代'西葫芦、‘铁将军F1'南瓜、‘极早秀玉'西葫芦为耐盐性弱的品种,其它为耐盐性强的品种。耐盐性强的砧木品种可分为3个亚类,‘孝感瓠瓜'、‘同心瓠瓜'、‘汉龙碧玉'瓠瓜和‘超丰8848'瓠瓜耐盐性很强,‘黑籽南瓜'耐盐性强,其它13个品种耐盐性较强。在黄瓜种子萌发期和嫁接砧木苗期可对其耐盐性进行快速鉴定。
     采用‘早多佳'和‘津春2号'黄瓜品种为试验材料,对不同基因型黄瓜在盐胁迫下的盐害指数、生长及生理特性进行了研究。结果表明,黄瓜根系不具备阻止Na~+向叶片运输来减轻盐胁迫的生理机制,是黄瓜不耐盐的根本原因。盐胁迫下,Na~+在黄瓜叶片中大量积累,引起离子毒害,K~+、Ca~(2+)、Mg~(2+)含量显著下降,Na~+/K~+、Na~+/Ca~(2+)比值显著升高,导致离子失去平衡,尽管盐胁迫下黄瓜的SOD、POD活性显著增加,‘早多佳'品种的脯氨酸显著积累,但黄瓜的质膜透性和MDA含量显著增高,地上部含水量显著下降,遭受的氧化胁迫和渗透胁迫严重,叶绿素含量显著下降、光合速率、蒸腾速率、气孔导度显著降低,生长显著受抑,盐害指数显著增大,但对光系统Ⅱ无显著影响。相比较而言,‘早多佳'遭受的盐害、生长受抑制程度较‘津春2号'轻。叶片中较低的Na~+含量、Na~+/K~+比值、Na~+/Ca~(2+)比值和较高的Ca~(2+)含量是‘早多佳'比‘津春2号'耐盐的重要原因。
     采用‘超丰8848'、‘超级拳王'和‘黑籽南瓜'为试验材料,对不同砧木在盐胁迫下的生长及生理特性进行了研究。结果表明,通过根茎阻止Na~+向叶片运输,从而使叶片中Na~+的含量处于较低的水平而使植物减轻离子毒害,是3个砧木耐盐的根本原因。盐胁迫下,3个砧木叶片中Na~+含量逐渐升高,K~+、Ca~(2+)含量逐渐降低、生长显著受抑,光合速率、蒸腾速率、气孔导度显著降低,地上部含水量逐渐下降,但叶绿素荧光参数无显著变化。盐胁迫下,‘超级拳王'和‘黑籽南瓜'的SOD、POD活性、脯氨酸、MDA含量显著增加,根系活力显著下降,但‘超丰8848'的均无显著变化。相比较而言,‘超丰8848'遭受的渗透胁迫、氧化胁迫最轻,‘黑籽南瓜'遭受的渗透胁迫和氧化胁迫最重,‘超丰8848'较高的气体交换能力,较稳定的根系活力是‘超丰8848'比‘超级拳王'和‘黑籽南瓜'耐盐的重要原因。‘超级拳王'较高的Ca~(2+)含量、较低的Na~+/Ca~(2+)比值、较好的光合特性是其比‘黑籽南瓜'耐盐的重要原因。
     采用‘早多佳'和‘津春2号'黄瓜品种作接穗,耐盐的‘超级拳王'作砧木嫁接,以自根苗为对照,对不同接穗嫁接黄瓜苗在盐胁迫下的生长及生理特性进行了测定。结果表明,盐胁迫下,嫁接苗地上部和根干重、叶面积、茎粗降低的程度显著低于自根苗;嫁接苗叶片和接穗茎中Na~+含量和Na~+/K~+、Na~+/Ca~(2+)比值显著低于自根苗,而砧木茎和根中的Na~+含量和Na~+/K~+、Na~+/Ca~(2+)比值显著高于自根苗;嫁接苗叶片中K~+含量、可溶性糖含量、地上部含水量、SOD、POD、CAT、APX活性、AsA/DHA的稳定性、光合速率、蒸腾速率、气孔导度显著高于自根苗,MDA含量显著低于自根苗。盐胁迫下,‘早多佳'嫁接苗的茎粗、叶面积减小的程度、叶片中Na~+含量、Na~+/K~+、Na~+/Ca~(2+)比值显著低于津春2号嫁接苗,K~+、Ca~(2+)、Mg~(2+)、脯氨酸含量、POD、CAT、APX活性、AsA含量、AsA/DHA的稳定性显著高于津春2号嫁接苗,但光合速率、蒸腾速率、地上部含水量和MDA含量与‘津春2号'嫁接苗的无显著差异。‘早多佳'嫁接苗叶片中较低的Na~+含量和Na~+/K~+、Na~+/Ca~(2+)比值,较高的K~+、Ca~(2+)、Mg~(2+)含量,是‘早多佳'嫁接苗比‘津春2号'嫁接苗耐盐的重要原因。
     采用‘超丰8848'和‘黑籽南瓜'作砧木,‘津春2号'黄瓜作接穗嫁接,以‘津春2号'自根苗为对照,研究了盐胁迫对不同砧木嫁接黄瓜苗生长及生理特性的影响。结果表明,盐胁迫下,嫁接苗地上部和根干重、叶面积、茎粗受抑制的程度显著低于自根苗;嫁接苗叶片中Na~+、MDA、H_2O_2含量、超氧阴离子产生速率、Na~+/K~+和Na~+/Ca~(2+)比值显著低于自根苗,而叶片中K~+含量、可溶性糖含量、地上部含水量、SOD、POD、CAT、APX活性、AsA/DHA的稳定性、光合速率、蒸腾速率、气孔导度显著高于自根苗;嫁接苗的胞间CO_2浓度显著下降,自根苗的则显著上升。盐胁迫下,‘超丰8848'嫁接苗生长受抑制程度、叶片中的Na~+/k~+比值、MDA、H_2O_2含量显著低于‘黑籽南瓜'嫁接苗,脯氨酸含量、可溶性蛋白质含量、地上部含水量、SOD、POD、CAT、APX、GR活性、光合速率、蒸腾速率和气孔导度显著高于‘黑籽南瓜'嫁接苗,因此,耐盐性显著强于‘黑籽南瓜'嫁接苗。
     通过根茎限制Na~+向叶片运输来减轻盐胁迫,是嫁接提高黄瓜耐盐性的主要生理机制。无论是采用不同接穗嫁接还是采用不同砧木嫁接,限制Na~+向地上部运输的部位主要是砧木的根和茎,砧木在提高黄瓜耐盐性的作用中远大于接穗。
With the development of protected culture,soil secondary salinization has been more and more severe and has become the biggest obstacle of limiting the development of protected culture.Cucumber(Cucumis sativus L.) is one of the most important vegetables in protected culture which is salt sensitive.It is showed that grafting can improve cucumber tolerance to salt stress,though the physiological mechanism is not known.In our study,the cultivars with different salt sensitivity were evaluated from a great deal of cucumbers and rootstocks,and the physiological mechanism of different cucumbers and rootstocks to salt stress was determined.Basis am it,the effects and physiological mechanism of the connection of rootstock and scion on the salt tolerance of grafted cucumber plants were studied which supply theoretic basis for clarify grafting enhance salt tolerance of cucumber and reference for directing the grafted culture of cucumber. The main results in the present study are presented as follows:
     Salt resistance of 20 cucumber cultivars and 22 species of rootstocks were evaluated by using the cluster analysis.The results showed that:Among 20 cucumber cultivars, 'Zaoduojia','Huazao No.2','Zhongnong No.8','Jinyu No.1' and 'Jinyou No.3' held high resistance to salt stress,whereas 'Jinguan No.1','Xuyou No.1','Jinchun No.5','Jinchun No.4','Dongfangmingzhu','Xiangzao No.3','Tezao No.1' and 'Jinyou No.1' were moderately salt tolerant,but 'Baipihuanggua','Ningfeng No.8','Meinong No.4', 'Jinchun No.3','Jinza No.4','Jinza No.2' and 'Jinchun No.2' cucumber cultivars were sensitive to salt stress.Among 22 species of rootstocks,the rootstocks could be clustered to two groups,Cucurbit pepo L.cv.'Chunbaiyu','Zaoqingyidai' and 'Jizao xiuyu',and Cucurbita moschata Duch.cv.'Tiejiangjun F_1' were sensitive to salt stress whereas the other species of rootstocks were tolerant to salt stress,and salt resistant rootstocks could be clustered to three subgroups,Lagenaria siceraria Standl.var.clavata Makino cv. 'Xiaoganhugua','Tongxinhugua','Hanlongbiyu' and 'Chaofeng8848' showed the highest salt resistance,Cucurbit ficifolia cv.'Heizinangua' exhibited tolerant,whereas the other thirteen species showed more salt resistance.The salt resistance of cucumbers and rootstocks could be screened at germination stage and seedling stage,respectively.
     The effects of NaCl stress on the salt injury index,plant growth and physiological trait of different cucumbers were investigated by using 'Zaoduojia' and 'Jinchun No.2' as the test materials.The results showed that:The cucumber roots have not the mechanism of limiting the translocation of Na~+ to leaf to alleviate salt stress.It is the essential cause that cucumber makes salt sensitive.Na~+ accumulated in the leaf and cause ion toxicity,the content of K~+,Ca~(2+),Mg~(2+) in leaf decreased markedly,Na~+/K~+ ratio and Na~+/Ca~(2+) ratio of both cultivars increased significantly resulted in ion unbalance with increasing concentrations of NaCl.Despite the SOD and POD activities of both cultivars increased significantly and the free proline content of 'Zaoduojia' increased markedly,the membrane permeability,MDA content and the salt injury index increased markedly,and the shoot water content decreased significantly resulting in severe oxidation and osmotic stress.The chlorophyll content and photosynthetic rate decreased significantly,plant growth was restrained,but Fo、Fv/Fm、F PSⅡand qP of both cultivars was unaffected by salt stress.'Zaoduojia' exhibits a better protection mechanism against oxidative damage and lipid peroxidation by maintaining lower Na~+ content,Na~+/K~+ ratio,Na~+/Ca~(2+) ratio and higher Ca~(2+) content in leaf than salt sensitive cv.'Jinchun No.2'.
     The effects of NaCl stress on the plant growth and physiological trait of different rootstocks were investigated by using 'Chaofeng 8848','Chaojiquanwang' and 'Heizinangua' as the tested materials.The results showed that:It is essential that salt tolerance can be obtained by three rootstocks for limiting the translocation of Na~+ from the root and stem to the leaf,making the lower Na~+ content in the leaf to alleviate ion injury.The contents of Na~+ in the leaf of three rootstocks were unaffected by at 50 mmol/L NaCl and increased significantly at 100 and 150 mmol/L NaCl.The K~+,Ca~(2+) and shoot water content was gradually decreased under salt stress.The photosynthetic rate, transpiration rate,stomatal conductance of three rootstocks decreased markedly and plant growth was restrained with increasing concentrations of NaCl,but Fo,Fv/Fm,F PSⅡ,qP of three rootstocks were unaffected by salt stress.The proline content,MDA content, SOD and POD activities of Chaojiquanwang and 'Heizinangua' increased,the root activity was decreased significantly,whereas those of 'Chaofeng 8848' were unaffected under salt stress.The degree of oxidation stress and osmotic stress of 'Chaofeng 8848' sufferred was the slightest whereas that of 'Heizinangua' was the most severe.'Chaofeng 8848' exhibits a better protection mechanism against salt stress by maintaining higher photosynthetic rate ability and root activity than 'Chaojiquanwang' and 'Heizinangua'. 'Chaojiquanwang' exhibits a better protection mechanism against salt stress by maintaining lower Na~+/Ca~(2+) ratio,higher Ca~(2+) content in the leaf and photosynthetic ability than 'Heizinangua'.
     The ungrafted cucumber plants used as controls,the effects of grafting with different scions on cucumber growth and physiological trait were investigated by using 'Zaoduojia' and 'Jinchun No.2' as scion,and 'Chaojiquanwang' as rootstock under NaCl stress.The results showed that:Under NaCl stress,the reductions in the shoot and root dry weight, leaf area,stem diameter of grafted plant(?) were lower than those of ungrafted plants.The Na~+ content,Na~+/K~+ ratio,Na~+/Ca~(2+) ratio in the leaf and scion stem of grafted plants were lower whereas those of in the rootstock stem a(?)d root were higher than in ungrafted plants. The K~+ contents,soluble sugar contents,shoot water contents,SOD,POD,CAT,APX activity,the stability of AsA/DHA,Photosynthetic rate,transpiration rate and stomatal conductance were higher,whereas the MDA contents in the leaf of grafted plants were lower than that in ungrafted plants.The reductions in leaf area and stem diameter of grafted 'Jinchun No.2' plants were more severe than those of grafted 'Zaoduojia' ones. The Na~+ contents and Na~+/K~+,Na~+/Ca~(2+) ratio in leaf were lower whereas K~+,Ca~(2+),Mg~(2+), AsA and proline contents,POD,CAT,APX activities,the stability of AsA/DHA in leaves of grafted 'Zaoduojia' plants were higher than those of grafted 'Jinchun No.2' plants under the same NaCl stress.However,the shoot water content,MDA content, Photosynthetic rate,transpiration rate and stomatal conductance were not different between the grafted 'Zaoduojia' plants and the grafted Jinchun No.2 ones under salt stress.Grafted 'Zaoduojia' plants exhibit a higher salt tolerance by maintaining lower Na~+ content,Na~+/K~+,Na~+/Ca~(2+) and higher k~+,Ca~(2+) and Mg~(2+) contents than grafted 'Jinchun No.2' ones.But grafting reduces the difference of salt tolerance between 'Zaoduojia' and 'Jinchun No.2'.
     The Ungrafted cucumber plants used as controls,the effects of grafting with different rootstocks on cucumber growth and physiological trait were investigated by using 'Chaofeng 8848' and 'Heizinangna' as rootstocks,'Jinchun No.2' as scion under NaCl stress.The results showed that:The reductions in the shoot and root dry weights, leaf area,stern diameter of grafted plants were lower than those of ungrafted plants under the same NaCl stress.Na~+,MDA,H_2O_2 contents,O_2~- producing rate,Na~+/K~+ ratio, Na~+/Ca~(2+) ratio were lower,whereas K~+,solube sugar,shoot water content,SOD,POD, CAT,APX activity,the stability of AsA/DHA,Photosynthetic rate,transpiration rate and stomatal conductance in the leaf of grafted plants were higher than those of ungrafted plants at the same NaCl stress.Intercellular CO_2 concentration of grafted plants decreased whereas that of ungrafted plants increased significantly under salt stress.The reductions in shoot and root dry weight,leaf area and stem diameter of grafted 'Chaofeng 8848' plants were significantly lower than those of grafted 'Heizinangua' plants ones.MDA, H_2O_2 contents and Na~+/K~+ ratio were lower whereas proline contents,soluble protein content,SOD,POD,CAT,APX,GR activities,Photosynthetic rate,transpiration rate and stomatal conductance in leaves of grafted 'Chaofeng 8848' plants were higher than those of grafted 'Heizinangua' plants under the same NaCl stress.Therefore Then,the salt tolerance of grafted 'Chaofeng 8848' plants is higher than those of ungrafled 'Heizinangua' plants ones.
     It is the most possible physiological mechanism of grafting improves the salt tolerance of cucumber through root and stem limiting the translocation of Na~+ to the leaf to alleviate salt damage.Whether grafting either using different scions or different rootstocks,the parts of limiting the translocation of Na~+ to the shoot were mostly the stem and root of the rootstock,the effects of the rootstocks were are bigger than the scion on improving the salt tolerance of cucumber.
引文
1.艾希珍,于贤昌,王绍辉,邢禹贤.低温胁迫下黄瓜嫁接苗与自根苗某些物质含量的变化.植物生理学通讯,1999,35:26-28
    2.白丽萍,周宝利,李宁,陈作民,刘宪敏.嫁接茄子对NaCl胁迫的反应.植物生理学通讯,2005,41:31-33
    3.陈贵林,高洪波,乜兰春,尚庆茂,刘中笑.钙对茄子嫁接苗生长和抗冷性的影响.植物营养与肥料学报,2002,8:478-482
    4.陈建勋,王晓峰.植物生理学实验指导.广州:华南理工大学出版社,2002,122-129
    5.陈杰,杨祥龙,周胜军,陈杰,朱育强,樊琦.中国设施园艺研究现状与发展趋势.中国农学通报,2005,21:236-238
    6.陈洁,林栖风.植物耐盐生理及耐盐机理研究进展.海南大学学报(自然科学版),2003,21:177-182
    7.陈淑芳,朱月林,刘友良,胡春梅,张古文.NaCl胁迫对番茄嫁接苗叶片ABA 和多胺含量的影响.园艺学报,2006,33:58-62
    8.陈淑芳,朱月林,刘友良,李式军.NaCl胁迫对番茄嫁接苗保护酶活性、渗透调节物质含量及光合特性的影响.园艺学报,2005,32:609-613
    9.陈淑芳.嫁接番茄幼苗耐盐机理研究.[博士学位论文].南京:南京农业大学图书馆,2006
    10.陈晓红,邹志荣.温室蔬菜连作障碍研究现状及防治措施.陕西农业科学,2002,12:16-17,20
    11.刁丰秋,章文华,刘友良.盐胁迫对大麦叶片类囊体膜脂组成和功能的影响.植物生理学报,1997,23:105-110
    12.杜丽璞,徐惠君,叶兴国,林忠平.小麦转TPS基因植株的获得及其初步功能鉴定.麦类作物学报,2007,27:369-373
    13.冯忻,于贤昌,郭恒俊,马红,魏民.低温胁迫对黄瓜嫁接苗和自根苗保护酶活性的影响.山东农业大学学报(自然科学版),2002,33:302-304
    14.高丽红.保护地土壤次生盐渍化对主要蔬菜生长发育的影响.南京农业大学学报,1998,12:69-71
    15.高梅秀,李树和,刘玉芹,孙世海,赵仁顺,汴风梅,闰秀风.不同砧木对茄子抗病性、生理活性及产量的影响.园艺学报,2001,28:463-465
    16.葛荣朝,赵宝存,陈桂平,秘彩莉,沈银柱,黄占景.小麦耐盐相关基因TaSTK 的克隆.作物学报,2007,33:857-860
    17.顾兴芳,张圣平,张思远,王长林.抗南方根结线虫黄瓜砧木的筛选.中国蔬菜, 2006,2:4-8
    18.郭巧生,张君毅,易茜茜,马慧,蒋传中.半夏不同居群根系活力和生化指标对高温胁迫的响应.中国中药杂志,2007,32:1508-1510
    19.郭文忠,刘声锋,李丁仁,赵顺山.设施蔬菜土壤次生盐渍化发生机理的研究现状与展望.土壤,2004,36:25-29
    20.韩志平,郭世荣,朱国荣,欧阳以勇.砧木对嫁接西瓜生长发育、产量和品质的影响.中国蔬菜,2006,2:22-23
    21.郝再彬,苍晶,徐仲.植物生理实验.哈尔滨:哈尔滨工业大学出版社,2004,113-115
    22.郝治安,吕有军.植物耐盐机制研究进展.河南农业科学,2004,11:30-33
    23.华春,王仁雷,刘友良.外源AsA对盐胁迫下水稻叶绿体活性氧清除系统的影响.作物学报,2004,30:692-696
    24.黄占斌,山仑.水分利用效率及其生理生态机理研究进展.生态农业研究,1998,6:19-23
    25.季玉龙,刘世名,陈靠山,彭正华,张举仁,张长铠.氯化胆碱对小麦幼苗叶片在渗透胁迫下的影响.干旱地区农业研究,2002,20:57-60
    26.揭雨成,黄丕生,李宗道.干旱胁迫下苎麻的生理生化变化与抗旱性的关系.中国农业科学,2000,33:33-39
    27.李合生.现代植物生理学.北京:高等教育出版社,2002,407-409
    28.李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000,105-278
    29.李红丽,王明林,于贤昌,王华森,高俊杰,于超.不同接穗/砧木组合对日光温室黄瓜果实品质的影响.中国农业科学2006,39:1611-1616
    30.李红丽,于贤昌,王华森,于超,李静援.嫁接和嫁接砧木对黄瓜果实品质的影响.西北农业学报,2005,14:129-132
    31.李建武,王蒂,雷武生.干旱胁迫对马铃薯叶片膜保护酶系统的影响.江苏农业科学,2007,3:100-103
    32.李式军.设施园艺学.北京:中国农业出版社,2002,1
    33.李卫欣,陈贵林,赵利,任良玉,王冉,吕桂云.NaCl胁迫下不同南瓜幼苗耐盐性研究.植物遗传资源学报,2006,7:192-196
    34.李云鹏,周宝利,李之璞,尹玉玲,姜玲玲,付亚文.嫁接茄的黄萎病抗性与根际土壤生物学活性的关系.生物学杂志,2007,26:831-834
    35.李志英,卢育华,徐立.土壤低温对嫁接黄瓜生理生化特性的影响.园艺学报,1998,25:258-263
    36.廖岩,彭友贵,陈桂珠.植物耐盐性机理研究进展.生态学报,2007,27:2077-2088
    37.林栖凤,李冠一.植物耐盐性研究进展.生物工程进展,2000,20:20-26
    38.林栖凤.耐盐植物研究.北京:科学出版社,2004,11-64
    39.刘德,吴凤芝.哈尔滨市郊蔬菜大棚土壤盐分状况及其影响.北方园艺,1998,6:1-3
    40.刘国花.植物抗盐机理研究进展.安徽农业科学,2006,34:6111-6112
    41.刘慧英,朱祝军,吕国华,钱琼秋.低温胁迫下西瓜嫁接苗的生理变化与耐冷性关系的研究.中国农业科学,2003,36:1325-1329
    42.刘慧英,朱祝军,吕国华.低温胁迫对嫁接西瓜耐冷性和活性氧清除系统的影响.应用生态学报,2004,15:659-662
    43.刘家栋,翟兴礼,王东平.植物抗盐机理的研究.农业与技术,2001,21:26-29
    44.刘家尧,衣艳君,张其德.盐胁迫对不同抗盐性小麦叶片荧光诱导动力学的影响.植物学通报,1998,15:46-49
    45.刘晶,周树峰,陈华,韩和平,李银心.农杆菌介导的双价抗盐基因转化番茄的研究.中国农业科学,2005,38:1636-1644
    46.刘润秋,张红梅,徐敬华,黄丹枫,姚方杰.砧木对嫁接西瓜生长及品质的影响.上海交通大学学报(农业科学版),2003,21:289-294
    47.刘世鹏,刘济明,陈宗礼,曹娟云,白重炎.模拟干旱胁迫对枣树幼苗的抗氧化系统和渗透调节的影响.西北植物学报,2006,26:1781-1787
    48.刘晚苟,黄小明,杨秀坚.壳聚糖对芒果离体叶片渗透胁迫的缓解效应.干旱地区农业研究,2004,22:195-197
    49.刘翔,许明,李志文.番茄苗期耐盐性鉴定指标初探.北方园艺,2007,3:4-7
    50.刘勋甲,郑世发.丝瓜作砧木嫁接西瓜的形态学及抗涝性初步研究.华中农业大学学报,1995,14:267-271
    51.刘友良,毛才良,汪良驹.植物耐盐性研究进展.植物生理学通讯,1987,4:1-7
    52.刘正鲁,朱月林,胡春梅,魏国平,杨立飞,张古文.氯化钠胁迫对嫁接茄子生长、抗氧化酶活性和活性氧代谢的影响.应用生态学报,2007,18:537-541
    53.马丽清,韩振海,周二峰,许学峰.盐胁迫对珠美海棠和山定子膜保护酶系统的影响.果树学报,2006,23:495-499
    54.乜兰春,陈贵林,高洪波.茄子抗冷砧木的筛选和嫁接苗抗冷性研究.中国蔬菜,2004,1:4-6
    55.潘瑞炽.植物生理学.第四版.北京:高等教育出版社,2001
    56.钱琼秋,魏国强,朱祝军,李娟.不同品种黄瓜幼苗光合机构对盐胁迫的响应.科技通报,2004,20:459-461
    57.尚庆茂,宋士清,张志刚,郭世荣.外源BR诱导黄瓜(Cucumis sativus L.)幼 苗的抗盐性.中国农业科学,2006,39:1872-1877
    58.沈根祥,杨建军,黄沈发,姚政,唐浩.塑料大棚盐渍化土壤灌水洗盐对水环境污染负荷的研究.农业工程学报,2005,21:124-127
    59.史庆华,朱祝军,Khalida Al-aghabary,钱琼秋.等渗Ca(NO_3)_2和NaCl胁迫对番茄光合作用的影响.植物营养与肥料学报,2004,10:188-191
    60.史跃林,刘佩瑛,罗庆熙,叶玉龙.黑籽南瓜砧对黄瓜抗盐性的影响研究.西南农业大学学报,1995,17:232-236
    61.宋士清,刘微,郭世荣,尚庆茂,张志刚.化学诱抗剂诱导黄瓜抗盐性及其机理.应用生态学报,2006,17:1871-1876
    62.宋兴舜.黄瓜、番茄叶片细胞器中活性氧代谢系统对逆境的响应机制.[博士学位论文].杭州:浙江大学图书馆,2006
    63.孙方行,孙明高,夏阳,魏海霞,张金风.NaCl处理对海棠渗透调节的影响.西北林学院学报,2005,20:62-64
    64.孙金月,赵玉田,常汝镇,梁博文,刘方.小麦细胞壁糖蛋白的耐盐性保护作用与机制研究.中国农业科学,1997,30:9-15
    65.孙令强,耿广东,王倩,张素勤.设施蔬菜土壤次生盐渍化原因及解决途径.西北园艺,2005,1:4-6
    66.童有为,陈淡飞.温室土壤次生盐渍化的形成和治理途径研究.园艺学报,1991,18:159-162
    67.王爱国,罗广华.植物的超氧化物自由基与羟胺的定量关系.植物生理学通讯,1990,26:5-7
    68.王宝山,赵可夫.胁迫下玉米黄化苗质外体和共质体与浓度的变化.作物学报,1997,23:27-33
    69.王宝山,邹崎,赵可夫.NaCl胁迫对高粱不同器官离子含量的影响.作物学报,2000,26:845-850
    70.王宝山,邹崎.质膜转运蛋白及其与植物耐盐性关系研究进展.植物学通讯,2000,17:17-26
    71.王广印,周秀梅,张建伟,沈军.NaCl胁迫对不同品种黄瓜种子发芽的影响.干旱地区农业研究,2005,23:121-124,133
    72.王广印,周秀梅,张建伟,沈军.不同黄瓜品种种子萌发期的耐盐性研究.植物遗传资源学报,2004,5:299-303
    73.王汉荣,茹水江,王连平,冯忠民.黄瓜嫁接防治枯萎病和疫病技术的研究.浙江农业学报,2004,16:336-339
    74.王贺正,马均,李旭毅,李艳,张荣萍,刘慧远,汪仁全.水稻开花期抗旱性鉴定指标的筛选.作物学报,2005,31:1485-1489
    75.王冀川,徐雅丽,姜莉.盐胁迫对油葵种子活力和幼苗生理生化特性的影响.种子,2004,23.18-20
    76.王丽萍,崔美香,孟艳玲.NaCl胁迫对黄瓜幼苗生长及抗氧化系统的影响.西北农业学报,2007,16.170-173
    77.王茹华,周宝利,张启发,付亚文.茄子/番茄嫁接抗病增产效果初报.中国蔬菜,2003,4:10-11
    78.王素平,郭世荣,胡晓辉,李王景,焦彦生.盐胁迫对黄瓜幼苗叶片光合色素含量的影响.江西农业大学学报,2006a,28:32-38
    79.王素平,李娟,郭世荣,胡晓辉,李王景,汪天.NaCI胁迫对黄瓜幼苗植株生长和光合特性的影响.西北植物学报,2006b,26:455-461
    80.王学军,李仁所,李式军,仝爱玲,陈丽平,郭红芸.黄瓜抗盐选择研究.山东农业大学学报(自然科学版),2000,31:71-73
    81.王艳青,陈雪梅,李悦,蒋湘宁,刘群录,李素艳.植物抗逆中的渗透调节物质及其转基因工程进展.北京林业大学学报,2001,23:66-70
    82.王羽梅,任安祥,潘春香,新居直祜.长时间盐胁迫对苋菜叶片细胞结构的影响.植物生理学通讯,2004,40:289-292
    83.王忠.植物生理学.北京:中国农业出版社,2000,457-459
    84.王子华,金基石,高俊平.谷胱甘肽提高月季切花失水胁迫耐性与GR活性的关系.园艺学报,2006,33:89-94
    85.魏国平,朱月林,刘正鲁,杨立飞,张古文.NaCl胁迫对茄子嫁接苗生长和离子分布的影响.西北植物学报,2007,27:1172-1178
    86.魏国强,朱祝军,方学智,李娟,程俊.NaCl胁迫对不同品种黄瓜幼苗生长、叶绿素荧光特性和活性氧代谢的影响.中国农业科学,2004,37:1754-1759
    87.魏宏贺,高崇娟.低温胁迫对甜瓜嫁接苗抗逆生理指标的研究.北方园艺,2006,1:23-24
    88.武斌,李新海,肖木辑,谢传晓,郝转芳,李明顺,张世煌.53份玉米自交系的苗期耐旱性分析.中国农业科学,2007,40:665-676
    89.谢田玲,沈禹颖,邵新庆,高崇岳.黄土高原4种豆科牧草的净光合速率和蒸腾速率日变化及水分利用效率.生态学报,2004,24:1679-1686
    90.徐敬华,黄丹枫,支月娥.PAL活性与嫁接西瓜枯萎病抗性传递的相关性.上海交通大学学报(农业科学版),2004,22:12-16
    91.徐胜利,陈青云,陈小青,高疆生,李绍华.嫁接栽培伽师甜瓜的抗枯萎病能力及其增产效应.园艺学报 2005,32:521-523
    92.徐胜利,陈青云,陈小青,李绍华.盐胁迫下嫁接伽师甜瓜植株生长与多胺以及多胺氧化酶活性的关系.果树学报,2006,23:260-265
    93.徐胜利,陈小青,陈青云.伽师甜瓜嫁接栽培的防病增产效果研究.西北农林科技大学学报(自然科学版),2004,32:39-43
    94.徐云岭,余叔文.植物适应逆境过程中的能量消耗.植物生理学通讯,1990,6:70-73
    95.许祥明,叶和春,李国凤.植物抗盐机理的研究进展.应用与环境生物学报,2000,6:379-387
    96.杨洪兵,韩振海,许雪峰.三种苹果属植物幼苗拒Na~+机理的研究.园艺学报,2004,31:143-148
    97.杨立飞,朱月林,胡春梅,刘正鲁,魏国平.NaCl胁迫对营养液栽培嫁接黄瓜生物量及离子分布的影响.西北植物学报,2006a,26:2500-2505
    98.杨立飞,朱月林,胡春梅,刘正鲁,张古文,魏国平.氯化钠胁迫对嫁接黄瓜叶片多胺含量的影响.应用生态学报,2007,18:831-836
    99.杨立飞,朱月林,胡春梅,刘正鲁,张古文.NaCl胁迫对嫁接黄瓜膜脂过氧化、渗透调节物质含量及光合特性的影响.西北植物学报,2006b,26:1195-1200
    100.杨立飞,朱月林,胡春梅,张古文,刘正鲁.NaCl胁迫下营养液栽培嫁接西瓜生长动态及叶片生理生化特性的研究.西南农业学报,2005,18:439-441
    101.杨明峰,韩宁,陈敏,王宝山.植物盐胁迫响应基因表达的器官组织特异性.植物生理学通讯,,2002,38:394-398
    102.杨松杰,张富春,刘世贵.盐渍化土壤改良利用新方法---植物耐盐基因的遗传转化.世界林业研究,2006,21:14-19
    103.杨宇,周宝利,王伟,付亚文,雷琦宇.嫁接对茄子果实中蛋白质、VC、可溶性糖含量及分布的影响.中国蔬菜,2005,7:10-12
    104.杨月红,孙庆艳,沈浩.植物的盐害和抗盐性.生物学教学,2002,27:1-2
    105.叶乃好,翟衡,杜中军,许宏.水分胁迫条件下10种苹果砧木抗旱性评价.果树学报,2004,21:395-398
    106.于泉林.NaC1对水稻不同品种发芽和幼苗生长的影响.种子,2003,129:41-42,54
    107.于贤昌,王立江.蔬菜嫁接的研究与应用.山东农业大学学报,1998a,29:249-256
    108.于贤昌,邢禹贤,马红,魏珉,冯炘.黄瓜嫁接苗对不同低温胁迫的反应.上海农业学报,1999a,15:47-50
    109.于贤昌,邢禹贤,马红,魏珉,冯炘.黄瓜嫁接苗抗冷特性研究.园艺学报,1997,24:348-352
    110.于贤昌,邢禹贤,马红,魏珉,李滨.低温胁迫下黄瓜嫁接苗与自根苗内源激素的变化.园艺学报,1999b,26:406-407
    111.于贤昌,邢禹贤,马红,魏珉.不同砧木与接穗对黄瓜嫁接苗抗冷性的影响.中 国农业科学,1998b,31:36-40
    112.郁继华,杨秀玲,许耀照,张国斌.NaCl胁迫对黄瓜自根苗和嫁接苗光合速率的影响.植物营养与肥料学报,2004.10:554-556
    113.曾义安,朱月林,黄保健,杨立飞.黑籽南瓜砧对黄瓜生长结实、抗病性及营养元素含量的影响.植物资源与环境学报,2004,13.15-19
    114.张恩平,张淑红,司龙亭,庞金安,马德华.NaCl胁迫对黄瓜幼苗子叶膜脂过氧化的影响.沈阳农业大学学报,2001,32:446-448
    115.张古文,朱月林,杨立飞,刘正鲁,胡春梅.NaCl胁迫对番茄嫁接苗根系多胺含量的影响.园艺学报,2007,34:1011-1014
    116.张古文,朱月林,杨立飞,刘正鲁,胡春梅.NaCl胁迫对番茄嫁接苗生物量及离子含量的影响.西北植物学报,2006,26:2069-2074
    117.张海燕,赵可夫.盐分和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究.植物学报,1998,40:56-60
    118.张寄阳,段爱旺,孙景生,孟兆江,刘祖贵.作物水分状况自动监测与诊断的研究进展.农业工程学报,2006,22:174-178
    119.张建锋,李吉跃,宋玉民,邢尚军,郗金标,马丙尧.植物耐盐机理与耐盐植物选育研究进展.世界林业研究,2003,16:16-22
    120.张健,刘美艳,肖炜.丝瓜作砧木提高黄瓜耐涝性的研究.植物学通报,2003,20.85-89
    121.张军民.茄科异属砧木嫁接对茄子抗病性及品质的影响.黑龙江农业科学,2004,6:13-15
    122.张艳艳,刘俊,刘友良.一氧化氮缓解盐胁迫对玉米生长的抑制作用.植物生理与分子生物学学报,2004,30:455-459
    123.张云起,刘世琦,王海波.耐盐砧木嫁接对西瓜幼苗抗盐特性的影响.上海农业学报 2004,20:62-64
    124.张云起,刘世琦,杨凤娟,李东方.耐盐西瓜砧木筛选及其耐盐机理的研究.西北农业学报,2003,12:105-108
    125.赵可夫,李发曾.中国盐生植物.北京:科学出版社,1999,51-59
    126.赵可夫.植物抗盐生理.北京:中国科学技术出版社,1993,24-27,230-231
    127.赵旭,王林权,周春菊,尚浩博.盐胁迫下对不同基因型冬小麦发芽和出苗的影响.干旱地区农业研究,2005,23:108-112
    128.周宝利,高艳新,林桂荣,付亚文.嫁接茄子抗病性与电导率、脯氨酸含量及苯丙氨酸解氨酶活性的关系.园艺学报,1998,25:300-302
    129.周艳虹,喻景权,钱琼秋,黄黎锋.低温弱光对黄瓜幼苗生长及抗氧化酶活性的影响.应用生态学报,2003,14:921-924
    130.朱进,别之龙,李娅娜.黄瓜种子萌芽期及嫁接砧木幼苗期耐盐力评价.中国农业科学,2006a,39:772-778
    131.朱进,别之龙,李娅娜.盐胁迫对不同基因型黄瓜幼苗生长和光合作用的影响.沈阳农业大学学报,2006b,37:476-478
    132.朱进,别之龙,徐容,汤谧,裴芸.不同砧木嫁接对黄瓜生长、产量和品质的影响.华中农业大学学报,2006c,25:668-671
    133.朱新广和张其德.NaCl对光合作用影响的研究进展.植物学通报,1999,16:332-338
    134.邹琦.植物生理学实验指导.北京:中国农业出版社,2000,171-172
    135.Aim S J,Im Y J,Chung G C,Cho B H,Suh S R.Physiological responses of grafted-cucumber leaves and rootstock roots affected by low root temperature.Sci Hort,1999,81:397-408
    136.Alamgir A N M,Ali M Y.Effect of salinity on leaf pigments,sugar and protein concentrations and chloroplast ATPase activity of rice(Oryza sativa L).Bangladesh J Bot,1999,28:145-149
    137.Al-Hinai Y K,Roper T R.Rootstock effects on growth and quality of 'Gala' apple.HortScience,2004,39:1231-1233
    138.Al-Jaleel A,Zekri M,Hammam Y.Yield,fruit quality,and tree health of 'Allen Eureka' lemon on seven rootstocks in Saudi Arabia.Sci Hort,2005,105:457-465
    139.Allakhverdiev S I,Sakamoto A,Nishiyama Y,Inaba M,Murata N.Ionic and osmotic effects of NaCl induced inactivation of photosystems Ⅰ and Ⅱ in Synechococcus sp.Plant Physiol,2000,123:1047-1056
    140.Allen R.Dissection of oxidative stress tolerance using transgenic plants.Plant Physiol,1995,107,1049-1054
    141.Almansa M S,Hernandez J A,Jimenez A,Botella M A,Sevilla F.Effect of salt stress on the superoxide disrmutase activity in leaves of Citrus limonum in different rootstock-scion combinations.Biol Plant,2002,45:545-549
    142.Alpaslan M and Gunes A.Interactive effects of boron and salinity stress on the growth,membrane permeability and mineral composition of tomato and cucumber plants.Plant Soil,2001,236,123-128
    143.Alscher R G,Erturk N,Heath L S.Role of superoxide dismutases(SODs) in controlling oxidative stress in plants.J Exp Bot,2003,53:1131-1341
    144.Apse M P,Aharon G S,Snedden W A,Blumwald E.Salt tolerance conferred by over expression of a vacuolar Na~+/H~+ antiport in Arabidopsis.Science,1999,285:1256-1258
    145.Apse M P,Blumwald E.Engineering salt tolerance in plants.Current Opinion Biotech,2002,13:146-150
    146.Apse M P,Blumwald E.Na~+ transport in plants.FEBSLett,2007,581:2247-2254
    147.Aro E M,V'trgin I,Anderson B.Pbotoinhibition and D1 protein degradation in peas acclimated to different growth irradiance.Plant Physiol,1993,103:835-841
    148.Asada K.The water-water cycle in chloroplasts:Scavenging of active oxygens and dissipation of excess photons.Annu Rev Plant Physiol Plant Mol Biol,1999,50:601-639
    149.Ashraf M,Harris P J C.Potential biochemical indicators of salinity tolerance in plants.Plant Sci,2004,166:3-16
    150.Atkinson C J,Else M A,Taylor L,Dover C J.Root and stem hydraulic conductivity as determinants of growth potential in grafted trees of apple(Malus pumila Mill.).J Erp Bot,2003,54:1221-1229
    151.Badawi G H,Yamauchi Y,Shimada E,Sasaki R,Kawano N,Tanaka K,Tanaka K.Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco(Nicotiana tabacum) chloroplasts.Plant Sci,2004,166:919-928
    152.Banuls and Primo-Millo.Effects of salinity on some citrus scion-rootstock combinations.Ann Bot,1995,76:97-102
    153.Bayuelo-Jimenez J S,Debouck D G,Lynch J P.Growth,gas exchange,water relations,and ion composition of phaseolus species grown under saline conditions.Field Crops Research,2003,80:207-222
    154.Bie Z L,Ito T,Shinohara Y.Effects of sodium sulfate and sodium bicarbonate on the growth,gas exchange and mineral composition of lettuce.Sci Hort,2004,99:215-224
    155.Blumwald E,Aharon G S,Apse M P.Sodium transport in plant cells.Biochim BiophysActa,2000,1465:140-151
    156.Bohnert H J,Jensen R G.Strategies for engineering water stress tolerance in plants.Trends Biotech,1996,14:879-897
    157.Bongi G,Loreto F.Gas-exchange properties of salt-stressed olive(Olea europea L.)leaves.Plant Physiol,1989,90:1408-1416
    158.Bor M,Ozdemir F,Tukan I.The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L.and wild beet Beta maritime L.Plant Sci,2003,164:77-84
    159.Borsani O,Valpuesta V,Botella M A.Developing salt tolerant plants in a new century: a molecular biology approach. Plant Cell Tissue Organ Culture, 2003, 73: 101-115
    160.Bowler C, Camp W V, Montagu M V, Inze D. Superoxide dismutase in plants. Crit Rev Plant Sci, 1994,13:199-218
    161.Camara-Zapata J M, Garcia-Sanchez F, Martinez V, Nieves M, Cerda A. Effect of NaCl on citrus cultivars. Agronomie, 2004, 24:155-160
    162.Chartzoulakis K, Loupassaki M, Bertaki M, Androulakis I. Effects of NaCl salinity on growth, ion content and CO_2 assimilation rate of six olive cultivars. Sci Hort, 2002, 96,235-247
    163.Chen H X, Li W J, An S Z, Gao H Y. Characterization of PSII photochemistry and thermostability in salttreated Rumex leaves. J Plant Physiol, 2004,161: 257-264
    164.Chen T H H, Murata N. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr opin plant boil, 2002, 5: 250-257
    165.Chow W S, Ball M C, Anderson J M. Growth and photosynthetic responses of spinach to salinity: implications of K~+ nutrition for salt tolerance. Aust J Plant Physiol, 1990,17: 563-578
    166.Claussen W. Proline as a measure of stress in tomato plants. Plant Sci, 2005, 168: 241-248
    167.Colom M R, Vazzana C. Photosynthesis and PS II functionality of drought-resistant and drought-sensitive weeping lovegrass plants. Environ Exp Bot, 2003,49:135-144
    168.Corney H J, Sasse J M, Ades P K. Assessment of salt tolerance in eucalypts using chlorophyll fluorescence attributes. New Forests, 2003, 26: 233-246
    169.Cramer G R, Epstein E, Lauchli A. Effects of sodium potassium and calcium on salt stressed barley I . Growth analysis. Physiol Plant, 1990,80: 83-88
    170.Cramer G R, Epstein E, Lauchli A. Effects of sodium potassium and calcium on salt stressed barley (II) elemental analysis. Physiol Plant, 1991, 81:197-202
    171.Cramer G R, Lauchli A, Polito V S. Displacement of Ca~(2+) by Na~+ from the plasmalemma of root ceels. Plant Physiol, 1985, 79: 207-211
    172.Dasgan H Y, Aktas H, Abak K, Cakmak I. Determination of screening techniques to salinity tolerance in tomatoes and investigation of genotype responses. Plant Sci, 2002,163: 695-703
    173.Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegen F. Dual action of the active oxygen species during plant stress responses. Cellular Mol Life Sci, 2000, 57: 779-795.
    174.Davies W J,Wilkinson S,Loveys B.Stomatal control by chemical signaling and the exploitation of this mechanism to increase water use efficiency in agriculture.New Phytol,2002,153:449-460
    175.Dhindsa R S,Matowe W.Drought tolerance in two mosser:correlated with enzymatic defence against lipid peroxidation.J Exp Bot,1981,32:79-91
    176.Dietz K J,Tavakoli N,Kluge C,Mimura T,Sharma S S,Harris G C,Chardonnens A N,Golldack D.Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on themolecular and biochemical level.J Exp Bot,2001,52:1969-1980
    177.Drew M C,Lauchli A.The role of the mesocotyl in sodium exclusion from the shoot of Zea mays L.(cv Pioneer 3906).J Exp Bot,1987,38:409-418
    178.Durand M,Lacan D.Sodium partitioning within the shoot of soybean.Physiol Plant,1994,91:65-71
    179.Edelstein M,Ben-Hur M,Cohen R Y,Burger Y,Ravina I.Boron and salinity effects on grafted and non-grafted melon plants.Plant Soil,2005,269:273-284
    180.Elkahoui S,Hemandez J A,Abdelly C,Ghrir R,Limam F.Effects of salt on lipid peroxidation and antioxidant enzyme activities of Catharanthus roseus suspension cells.Plant Sci,2005,168:607-613
    181.Estafi M T,Martinez-Rodriguez M M,Perez-Alfocea F,Flowers T J,Bolarin M C.Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot.J Exp Bot,2005,56:703-712
    182.Everard J D,Gucci R,Kann S C,Flore J A,Loescher W H.Gas exchange and carbon partitioning in the leaves of celery(Aptium graveolens L.) at various level of root zone salinity.Plant Physiol,1994,106:281-292
    183.Farquhar G D,Sharkey T D.Stormatal conductance and photosynthesis.Annu Rev Plant Physiol,1982,33:317-345
    184.Fernandez-Ballester G,Garcia-Sanchez F,Cerda A,Martinez V.Tolerance of citrus rootstock seedlings to saline stress based on the ability to regulate ion uptake and transport.Trees Physiol,2003,23:265-271
    185.Fernandez-Ballester G,Martinez V,Ruiz D,et al.Changes in inorganic and organic solutes in citrus growing under saline stresses.J Plant Nutri,1998,21:2497-2514
    186.Fernandez-Garcia N,Martinez V,Carvajal M.Effect of salinity on growth,mineral composition,and water relations of grafted tomato plants.J Plant Nutr Soil Sci,2004a,167:616-622
    187.Fernandez-Garcia N,Martinez V,Cerda A,Carvajal M.Fruit quality of grafted tomato plants grown under saline conditions. J Hort Sci Biotech, 2004b, 79: 995-1001
    188.Fernandez-Garcia N, Martinez V, Cerda A, Carvajal M. Water and nutrient uptake of grafted tomato plants grown under saline conditions. J Plant Physiol, 2002, 159: 899-905
    
    189.Flowers T J. Improving crop salt tolerance. J Exp Bot, 2004, 55: 307-319
    190.Gao F, Gao Q, Duan X G, Yue G D, Yang A F, Zhang J R. Cloning of an H~+-PPase gene from Thellungiella halophila and its heterologous expression to improve tobacco salt tolerance. J Exp Bot, 2006, 57: 3259-3270
    191.Garcia-Legaz M F, Gomez E L, Beneyto J M, Torrecillas A, Sanchez-bianco M J. Effects of salinity and rootstock on growth, water relations, nutrition and gas exchange of loquat. J Hort Sci Biotech, 2005,80:199-203
    192.Garcia-Sanchez F, Carvajal M, Cerda A, Martinez V. Response of 'Star Ruby' grapefruit on two rootstocks to NaCl salinity. J Hort Sci Biotech, 2003,78: 859-865
    193.Garcia-Sanchez F, Jifon J L, Carvajal M, Syvertsen J P. Gas exchange, chlorophyll and nutrient contents in relation to Na~+ and Cl~- accumulation in 'Sunburst' mandarin grafted on different rootstocks. Plant Sci, 2002,162: 705-712
    194.Garcia-Sanchez F, Perez-Perez J G, Botia P, Martinez V. The response of young mandarin trees grown under saline conditions depends on the rootstock. European J Agronomy, 2006, 24:129-139
    195.Gebauer J, El-Siddig K, Salih A A, Ebert G Tamarindus indica L. seedlings are moderately salt tolerant when exposed to NaCl-induced salinity. Sci Hort, 2004,103: 1-8
    196.Gibberd M R, Walker R R, Condon A G Whole-plant transpiration efficiency of Sultana grapevine grown under saline conditions is increased through the use of a Cl" excluding rootstock. Functional Plant Biol, 2003,30: 643-652
    197.Giorgi M, Capocasa F, Scalzo J, Murri G, Battino M, Mezzetti B. The rootstock effects on plant adaptability, production, fruit quality, and nutrition in the peach (cv. 'Suncrest'). Sci Hort, 2005,107: 36-42
    198.Gomez J M, Jimenez A, Olmos E, Sevilla F. Location and effects of long-term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzymes of pea (Pisum sativum cv. Puget) chloroplasts. J Exp Bot, 2004, 55:119-130
    199.Grattan S R, Grieve C M. Mineral element acquisition and growth response of plants grown in saline environment. Agri Ecosyst Environ, 1992, 38: 275-300
    200.Greenway H, Munns R. Mechanisms of salt tolerance in non-halophytes. Annu Rev Plant Physiol,1980,31:149-190
    201.Hernandez J A,Fetter M A,Jimenez A,Barcelo A R,Sevilla F.Antioxidant systems and O_2~-/H_2O_2 production in the apoplast of pea leaves:Its relation with salt-induced necrotic lesions in minor veins.Plant Physiol,2001,127:817-831
    202.Hoagland D R,Arnon D S.The water culture method for growing plants without soil.Calif Agri Exp Star Circ,1950,347:1-32
    203.Holmstrom K O,Somersalo S,Mandal A,Palva T E,Welin B.Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine.J Exp Bot,2000,51:177-185
    204.James R A,Munns R,Caemmerer S V,Trejo C,Miller C,Condon O.Photosynthetic capacity is related to the cellular and subcellular partitioning of Na~+,K~+ and Cl~-in salt-affected barley and durum wheat.Plant,Cell Environ,2006,29:2185-2197
    205.Jimenez M S,Gonzalez-Rodriguez A M,Morales D,Cid M C.Evaluation of chlorophyll fluorescence as a tool for salt stress detection in roses.Photosynthetica,1997,33:291-301
    206.Jones R W,Jr,Pike L M,Yourman L F.Salinity influences cucumber growth and yield.J Amer Soc Hort Sci,1989,114:547-551
    207.Kao W Y,Tsai H C,Tsai T T.Effect of NaCl and nitrogen availability on growth and photosynthesis of seedlings of a mangrove species,Kandelia candel(L.) Druce.J Plant Physiol,2001,158:841-846
    208.Kavi-Kishor P B,Hong Z,Miao G H,Hu C A A,Verma D P S.Overexpression of delta 1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants.Plant Physiol,1995,108:1387-1394
    209.Ke Y Q,Pan T G.Effects of salt stress on the ultrastructure of chloroplast and the cativities of some protective enzymes on leaves of sweet potato.Acta Phytophysiol Sin,1999,25:229-233
    210.Khah E M.Effect of grafting on growth,performance and yield of aubergine (Solarium rnelongena L.) in the field and greenhouse.J Food/lgri Environ,2005,3:92-94
    211.Khavarinejad R A,Mostofi Y.Effects of NaCl on photosynthetic pigments,saccharides,and chloroplast ultrastructure in leaves of tomato cultivars.Photosynthetica,1998,35:151-154
    212.Kingsbury R W,Epstein E,Pearcy R W.Physiological responses to salinity in selected lines of wheat.Plant Physiol,1984,74:417-423
    213.Koyro H W.Effect of salinity on growth,photosynthesis,water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environ Exp Bot, 2006,56:136-146
    214.Kumar S G, Reddy A M, Sudhakar C. NaCl effects on proline metabolism in two high yielding genotypes of mulberry (Morus Alba L.) with contrasting salt tolerance. Plant Sci, 2003,165:1245-1251
    215.Lee D H, Kim Y S, Lee C B. The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). J Plant Physiol, 2001,158: 737-745
    216.Lee G, Carrow R N, Duncan R R. Growth and water relation responses to salinity stress in halophytic seashore paspalum ecotypes. Sci Hort, 2005,104: 221-236
    217.Lee J M. Cultivation of grafted vegetables I. Current status, grafting methods, and benefits. HortScience, 1994, 29: 235-239
    218.Liu T, Staden J V. Growth rate, water relations and ion accumulation of soybean callus lines differing in salinity tolerance under salinity stress and its subsequent relief. Plant Growth Regulation, 2001,34: 277-285
    219.Lopez-Gomez E, Juan M A S, Diaz-Vivancos P, Beneyto J M, Garcia-Legaz M F, Hernandez J A. Effect of rootstocks grafting and boron on the antioxidant systems and salinity tolerance of loquat plants (Eriobotrya japonica Lindl.). Environ Exp Bot, 2007, 60:151-158
    220.Lu C M, Qiu NW.Lu Q T, Wang B S, Kuang T Y. Does salt stress lead to increased susceptibility of photosystem II to photoinhibition and changes in photosynthetic pigment composition in halophyte Suaeda salsa grown outdoors? Plant Sci, 2002, 163:1063-1068
    221.Lu C M, Qiu N W, Wang B S , Zhang J H. Salinity treatment shows no effects on photosystem II photochemistry, but increases the resistance of photosystem II to heat stress in halophyte Suaeda salsa. J Exp Bot, 2003, 54: 851-860
    222.Lu C M, Zhang J H. Role of light in the response of PS II photochemistry to salt stress in the cyanobacterium Spirulina platensis. J Exp Bot, 2000,51: 911-917
    223.Lycoskoufis I H, Savvas D, Mavrogianpoulos G Growth, gas exchange, and nutrient status in pepper (Capsicum annuum L.) grown in recirculating nutrient solution as affected by salinity imposed to half of the root system. Sci Hort, 2005,106:147-161
    224.Maathuis F J M, Amtmann A. K~+ Nutrition and Na~+ Toxicity: The Basis of Cellular K~+Na~+ Ratios. Ann Bot, 1999, 84:123-133
    225.Maeshima M. Tonoplast transporters: organization and function. Ann Rev Plant Physiol Plant Mol Biol, 2001, 52: 469-497
    226.Mansour M M F, Salama K H A. Cellular basis of salinity tolerance in plants. Environ Exp Bot,2004,52,113-122
    227.Mansour M M E NaCl alteration of plasma membrane of Allium cepa epidermal cells,alleviation by calcium.J Plant Physiol,1995,145:726-730
    228.Maser P,Eckelman B,Vaidyanathan R,Horie T,Fairbairn D J,Kubo M,Yamagami M,Yamaguchi K,Nishimura M,Uozumi N,Robertson W,Sussman M R,Schroeder J I.Altered shoot/root Na distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Nat transporter AtHKT1.FEBS Lett,2002,531:157-161
    229.Maslenkora L T.Adaptation to salinity as monitored by PSⅡoxygen evolving reactions in barely.J Plant Physiol,1993,142:629-643
    230.Massai R,Remorini D,Tattini M.Gas exchange,water relations and osmotic adjustment in two scion/rootstock combinations of Prunus under various salinity concentrations.Plant Soil,2004,259:153-162
    231.Meena S K,Gupta N K,Gupta S,Khandelwal S K,Saatry E V D.Effect of sodium chloride on the growth and gas exchange of young Ziziphus seedling rootstocks.J Hort Sci Biotechnol,2003,78:454-457
    232.Meloni D A,Oliva M A,Martinez C A,Cambrala J.Photosynthesis and activity of superoxide dismutase,peroxidase and glutathione reductase in cotton under salt stress.Environ Exp Bot,2003,49:69-76
    233.Mickelbart M V,Arpaia M L.Rootstock influence changes in ion concentrations,growth,and photosynthesis of 'Hass' avocado trees in response to salinity.J Amer Soc Hort Sci,2002,127:649-655
    234.Miguel A,Maroto J V,Bautista A S,Baixauli C,Cebolla V,Pascual B,Lopez S,Guardiola J L.The grafting of triploid watermelon is an advantageous alternative to soil fumigation by methyl bromide for control of Fusarium wilt.Sci Hort,2004,103:9-17
    235.Misra N,Gupta A K.Effect of salt stress on proline metabolism in two high yielding genotypes of green gram.Plant Sci,2005,169:331-339
    236.Morant-Manceau A,Pradier E,Tremblin G.Osmotic adjustment,gas exchanges and chlorophyll fluorescence of a hexaploid triticale and its parental species under salt stress.J Plant Physiol,2004,161:25-33
    237.Moya J L,Gomez-Cadenas A,Primo-Millo E,Talon M.Chloride absorption in salt-sensitive Carrizo citrange and salt-tolerant Cleopatra mandarin citrus rootstocks is linked to water use.J Exp Bot,2003,54:825-833
    238.Moya J L,Tadeo F R,Gtmez-Cadenas A,Pfimo-Millo E,Taltn M.Transmissible salt tolerance traits identified through reciprocal grafts between sensitive Carrizo and tolerant Cleopatra citrus genotypes. J Plant Physiol, 2002,159: 991-998
    239.Miihling K H, Lauchli A. Effect of salt stress on growth and cation compartmentation in leaves of two plant species differing in salt tolerance. J Plant Physiol, 2002,159:137-146
    240.Munne-Bosch S, Alegre L. Interplay between ascorbic acid and lipophilic antioxidant defences in chloroplasts of water-stressed Arabidopsis plants. FEBS Lett, 2002,524:145-148
    241.Munns R, Husain S, Rivelli A R, James R A, Condon A G, Lindsay M P, Lagudah E S, Schachtman D P, Hare R A. Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. Plant Soil, 2002, 247: 93-105
    242.Munns R. Comparative physiology of salt and water stress. Plant Cell Environ, 2002, 25: 239-250
    243.Munns R. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ, 1993,16:15-24
    244.Nakamura T, Osaki M, Ando M. Differences in mechanisms of salt tolerance between rice and barley plants. Soil Sci Plant Nutr, 1996,42: 303-314
    245.Nenmann P. Salinity resistance and plant growth revisited. Plant Cell Environ, 1997, 20:1193-1198
    246.Nieves F G, Vicente M, Micaela C. Effect of salinity on growth, mineral composition, and water relations of grafted tomato plants. J Plant Nutr Soil Sci, 2004, 167: 616-622
    247.Nisini P T, Colla G, Granati E, Temperini, Crino P, Saccardo F. Rootstock resistance to fusarium wilt and sffect on fruit yield and quality of two muskmelon cultivars. Sci Hort, 2002,93: 281-288
    248.Okubo and Sakuratani. Effects of sodium chloride on survival and stem elongation of two Asian pear rootstock seedlings. Sci Hort, 2000, 85: 85-90
    249.Okubo M, Furukawa Y, Sakuratani T. Growth, flowering and leaf properties of pear cultivars grafted on two Asian pear rootstock seedlings under NaCl irrigation. Sci Hort, 2000, 85: 91-101
    250.Paranychianakis N V, Aggelides S, Angelakis A N. Influence of rootstock, irrigation level and recycled water on growth and yield of Soultanina grapevines. Agri Water Management, 2004, 69: 13-27
    251.Parida A K, Das A B. Salt tolerance and salinity effects on plants: a review. Ecotoxicology Environ Safety, 2005,60: 324-349
    252.Parida A, Das A B, Das P. NaCl stress causes changes in photosynthetic pigments, proteins and other metabolic components in the leaves of a true mangrove,Bruguiera parviflora,in hydroponic cultures.J Plant Biol,2002,45:28-36
    253.Park B J,Liu Z C,Kanno A,Kameya T.Genetic improvement of Chinese cabbage for salt and drought tolerance by constitutive expression of a B.napus LEA gene.Plant Sci,2005,169:553-558
    254.Plaut Z.Sensitivity of crop plants to water stress at specific developmental stages:revaluation of experimental finding.Israel J Plant Sci,1995,43:99-111
    255.Rao G G.Rao G R.Pigment composition & chlorophyllase activity in pigment pea (Cajanus indicus Spreng) & gingelley(Seamun indicum L.) under NaCl salinity.India J Exp Biol,1981,19:768-770
    256.Raveh E,Levy Y.Analysis of xylem water as an indicator of current chloride uptake status in citrus trees.Sci Hort,2005,103:317-327
    257.Reddy Y T N,Kurian R M,Ramachander P R,Singh G,Kohli R R.Long-term effects of rootstocks on growth and fruit yielding patterns of 'Alphonso' mango (Mangifera indica L.).Sci Hort,2003,97:95-108
    258.Romero L,Belakbir A,Ragala L,Ruiz J M.Response of plant yield and leaf pigments to saline conditions:effectiveness of different rootstocks in melon plants (Cucumis melo L.).Soil Sci Plant Nutr,1997,43:855-862
    259.Romero-Aranda R,Moya J L,Tadeo F R,Legaz F,Primo-Millo E,Talon M.Physiological and anatomical disturbances induced by chloride salts in sensitive and tolerant citrus:beneficial and detrimental effects of cations.Plant,Cell Environ,1998,21:1243-1253
    260.Romero-Aranda R,Soria T,Cuartero J.Tomato plant-water uptake and plant-water relationships under saline growth conditions.Plant Sci,2001,160:265-272
    261.Rosa M R,Juan M R,Luis R.Role of grafting in horticultural plants under stress conditions.Food,Agri Environ,2003,1:70-74
    262.Rout N P,Shaw B P.Salt tolerance in aquatic macrophytes:possible involvement of the antioxidative enzymes.Plant Sci,2001,160:415-423
    263.Ruiz J M,Blasco B,Rivero R M,Romero L.Nicotine-free and salt-tolerant tobacco plants obtained by grafting to salinity-resistant rootstocks of tomato.Physiol Plant,2005,124:465-475
    264.Ruiz J M,Rios J J,Rosales M A,Rivero R M,Romero L.Grafting between tobacco plants to enhance salinity tolerance.J Plant Physiol,2006,163:1229-1237
    265.Sairam R K,Rao K V,Srivastava G C.Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress,antioxidant activity and osmolyte concentration. Plant Sci, 2002a, 163:1037-1046
    
    266.Sairam R K, Srivastava G C. Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci, 2002b, 162: 897-904
    267.Santa-Cruz A, Martinez-Rodriguez M M, Perez-Alfocea F, Romero-Aranda R, Bolarin M C. The rootstock effect on the tomato salinity response depends on the shoot genotype. Plant Sci, 2002,162: 825-831
    268.Santos C, Azevedo H, Caldeira G In situ and in vitro senescence induced by KC1 stress: nutritional imbalance, lipid peroxidation and antioxidant metabolism. J Exp Bot, 2001,52: 351-360
    269.Santos C, CaldeiraG Comparative responses of Helianthus annuus plants and calli exposed to NaCl I. Growth rate and osmotic regulation in intactplants and calli. J Plant Physiol, 1999,155: 769-777
    270.Santos C. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci Hort, 2004,103: 93-99
    271.Saqib M, Akhar J, Qureshi R H. Na~+ exclusion and salt resistance of wheat (Triticum aestivum) in saline-waterlogged conditions are improved by the development of adventitious nodal roots and cortical root aerenchyma. Plant Sci, 2005,169:125-130
    272.Sawas D, Meletiou G, Margariti S, Tsirogiannis I. Modeling the relationship between water uptake by cucumber and NaCl accumulation in a closed hydroponic system. HortScience, 2005, 40: 802-807
    273.Schachtman D, Liu W. Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants. Trends Plant Sci, 1999, 4: 281-287
    274.Shalata A, Mitova V, Volokita M, Guy M, Tal M. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: The root antioxidative system. Physiol Plant, 2001,112: 487-494
    275.Shalata A, Tal M. The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol Plant, 1998,104:169-174
    276.Shannon M C, Grieve C M. Tolerance of vegetable crops to salinity. Sci Hort, 1999, 78: 5-38
    277.Sharma R R, Saxena S K. Rootstocks influence granulation in Kinnow mandarin (Citrus nobilis x C. deliciosa). Sci Hort, 2004,101: 235-242
    278.Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K. Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot, 2002, 53: 1305-1319
    279.Sibole J V,Montero E,Cabot C,Poschenrieder C,Barcelo J.Role of sodium in ABA-mediuated long-term growth response of bean to salt stress.Physiol Plant,1998,104:299-305
    280.Smirnoff N,Cumbes Q J.Hydroxyl radical scavenging activity of compatible solutes.Phytochem,1989,28:1057-1060
    281.Smirnoff N.The role of active oxygen in the response of plants to water deficit and desiccation.New Physiol,1993,125:27-31
    282.Stepien P,Klobus G Water relations and photosynthesis in Cucumis sativus L.leaves under salt stress.Biologia Plant,2006,50:610-616
    283.Storey R,Walker R R.Citrus and salinity.Sci Hort,1999,78:39-81
    284.Sudhakar C,Lakshmi A,Giridarakumar S.Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry(Morus Alba L.) under NaCl salinity.Plant Sci,2001,161:613-619
    285.Sudhakar C,Reddy P S,Veeranjaneynlu K.Effect of salt stress on the enzymes of proline synthesis and oxidation in greengram(Phaseolus aureus P.) seedlings.J Plant Physiol,1993,141:621-623
    286.Tani C,Sasakawa H.Proline accumulates in Casuarina equisetifolia seedlings under salt stress.Soil Sci Plant Nutr,2006,52:21-25
    287.Tester M,Davenport R.Na~+ tolerance and Na~+ transport in higher plants.Ann Bot,2003,91:503-527
    288.Trajkova F,Papadantonakis N,Savvas D.Comparative effects of NaCl and CaCl_2salinity on cucumber grown in a closed hydroponic system.HortScience,2006,41:437-441
    289.Tsipouridis C,Thomidis T.Effect of 14 peach rootstocks on the yield,fruit quality,mortality,girth expansion and resistance to frost damages of May Crest peach variety and their susceptibility on Phytophthora citrophthora.Sci Hort,2005,103:421-428
    290.Vaidyanathan H,Sivakumar P,Chakrabarty R,Thomas G Scavenging of reactive oxygen species in NaCl-stressed rice(Oryza sativa L.)-diferential response in salt-tolerant and sensitive varieties.Plant Sci,2003,165:1411-1418
    291.Verbruggan N,Villarrole R,Van-Montagu M.Osmoregulation of a delta 1-pyrroline-5-carboxylate redutase gene in Arabidopsis thaliana.Plant Physiol,1993,103:771-781
    292.Very A A,Sentenac H.Molecular mechanisms and regulation of K~+ transport in higher plants. Annu Rev Plant Biol, 2003,54: 575-603
    293.Vicente O, Boscaiu M, Naranjo M A, Estrelles E, Belles J M, Soriano P. Responses to salt stress in the halophyte plantago crassifolia (Plantaginaceae). J Arid Environ, 2004,58: 463-481
    294.Wahome P K, Jesch H H, Grittner I. Mechanisms of salt stress tolerance in two rose rootstocks: Rosa chinensis 'Major' and R. rubiginosa. Sci Hort, 2001, 87: 207-216
    295 .Walker R R, Blackmore D H, Sun Q. Carbon dioxide assimilation and foliar ion concentration in leaves of lemon (Citrus Limon L.) trees irrigated with NaCl or Na_2SO_4. AustJ Plant Physiol, 1993, 20:173-185
    
    296.Walker R R. Grapevine response to salinity. Bull OIV, 1994, 67: 635-660
    297.Wang S Y, Jiao H. Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen. J Agri Food Chem, 2000, 48: 5677-5684
    298.Wang Y, Nii N. Changes in chlorophyll, ribulose bisphosphate carboxylase oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. J Hort Sci Biotech, 2000, 75: 623-627
    299.Webb A A R, Baker A J. Stomatal biology: New techniques, new challenges. New Phytol, 2002,153: 365-370
    300.Wu Y Y, Chen Q J, Chen M, Chen J, Wang X C. Salt-tolerant transgenic perennial ryegrass (Lolium perenne L.) obtained by Agrobacterium tumefaciens-mcdiated transformation of the vacuolar Na~+/H~+antiporter gene. Plant Sci, 2005,169: 65-73
    301.Xu C X, Liu Y L, Zheng Q S, Liu Z P. Silicate improves growth and ion absorption and distribution in Aloe vera under Salt Stress. J Plant Physiol Mol Biol, 2006, 32: 73-78
    302.Yamaguchi T, Blumwald E. Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci, 2005,10: 615-620
    303.Yang Y, Jiang D A, Xu H X, Yan C Q, Hao S R. Cyclic electron flow around photosystem 1 is required for adaptation to salt stress in wild soybean species Glycine cyrtoloba ACC547. Biol Plant, 2006, 50: 586-590
    304.Yetisir H, Sari N. Effect of different rootstock on plant growth, yield and quality of watermelon. Australian J ExpAgri, 2003, 43: 1269-1274
    305.Yoshiba Y, Kiyosue T, Kataggiri T, Ueda H, Mizoguchi T, Yamaguchi-Shinozaki K, Wada k, Harada Y, Shinozaki K. Correlation between the induction of a gene for delta l-pyrroline-5-carboxylate synthetase and accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J, 1995, 7: 751-760
    306.Zelith I.Further studies on O_2 resistant photosynthesis and photorespiration in a tobacco mutant with the enhanced catalase activity.Plant Physiol,1990,92:352-357
    307.Zhang QF,Li YY,Pang CH,Lu CM and Wang BS.NaCI enhances thylakoid-bound SOD activity in the leaves of C_3 halophyte Suaeda Salsa L.Plant Sci,2005,168:423-430
    308.Zhu,J K.Plant salt tolerance.Trends Plant Sci,2001,6:66-71
    309.Zhu,J K.Salt and drought stress signal transduction in plants.Ann Rev Plant Biol,2002,53:247-273

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700