用户名: 密码: 验证码:
北京西山典型游憩林生态保健功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生态保健游憩成为现代城市居民的必然需求,呼吸新鲜空气是保健游憩的主要目的,北京西山是北京市民进行游憩活动的重要区域。本文以百望山森林公园为例,从空气质量和人体身心反应两个方面研究了北京西山三种典型游憩林(侧柏纯林、黄栌纯林、混交林)的生态保健功能。空气质量指标主要选取了气候舒适度、空气悬浮颗粒物(包括TSP、PM10、PM2.5、PM1.0)、空气微生物(包括细菌、真菌)、空气负离子水平、有机挥发物,这些指标于2007年一年四季昼夜同步观测(其中挥发物只在侧柏林于春、夏、秋三季和黄栌林于夏、秋季观测),并在市区万泉河绿地于秋季作了对比观测,在这几个指标分别研究的基础上,又用主成分分析和灰关联分析评价了游憩林空气保健指数(AHI);至于人体对游憩林身心反应的研究,通过简明心境状态量表(BPOMS)问卷调查人体对游憩林的主观感受,并用澳大利亚埃德公司(ADInstruments)出产的PowerLab系统测定游憩前后人体身心指标的变化。通过研究,得出以下初步结论:
     1、北京西山几种典型游憩林均具有巨大的生态保健作用,通过显著的减尘、抑菌、增加空气负离子能力,以及释放许多对人体有益的有机挥发物等作用,使得到北京西山游憩后人体情绪趋于稳定放松,身心健康得到明显改善。
     2、一年内,北京西山几种典型游憩林与保健有关的空气质量和小气候舒适情况有着明显的季节变化。①林内小气候夏季舒适期最长,其次为秋季和春季。②TSP和PM10浓度秋季最低,PM2.5和PM1.0浓度最低的季节是春季;PM10、PM2.5、PM1.0浓度冬季最高,夏季次之。③空气真菌和微生物总量夏季>春季>秋季>冬季,空气细菌春季>夏季>秋季>冬季。④空气负离子夏季最高,冬季次之。⑤侧柏林有机挥发物成分种类春季>夏季>秋季,TBVOC浓度秋季>夏季>春季;黄栌林有机挥发物成分夏季远高于秋季,而TBVOC浓度秋季>夏季。⑥AHI冬、春季明显最低,秋季稍高于夏季。
     3、一天中,北京西山几种典型游憩林由各指标所反映的空气质量和最适游憩时间不尽相同。①春、秋季林内小气候舒适期集中在9:00~17:00;夏季小气候全天均使人感到舒适(混交林11:00除外);冬季气候舒适度显示外出游憩应选择13:00左右。②空气细菌和微生物总量日变化趋势一年四季基本上均呈早(9:00)、晚(17:00~23:00)高,中午前后(11:00~15:00)和凌晨低的“双峰双谷”型,而空气真菌多呈“三峰三谷”型。③四种粒径空气颗粒物日变化趋势在4个季节均近似呈早上7:00~9:00和晚上19:00~3:00高、午后15:00左右和凌晨5:00左右低的“双峰双谷”型。④空气负离子春、夏、冬均表现出凌晨到早上高、白天低的日变化趋势,秋季日变化曲线近似呈“双峰双谷”的“M”型。⑤游憩林有机挥发物在不同季节的日变化因不同成分而异,TBVOC近似呈“三峰三谷”型,高峰多出现在9:00~11:00、17:00~21:00和5:00左右。⑥由AHI来看,北京西山典型游憩林一年四季的全天几乎均可进行游憩活动。春季13:00~17:00最适合;夏季最适游憩时间是傍晚17:00~19:00和早上9:00~11:00;秋季最佳游憩时间是11:00~17:00;冬季9:00~15:00外出游憩最佳。
     4、不同游憩林相比较,林内气候舒适度和空气质量存在一定差异。①春、秋季混交林小气候使人感到舒适的时间较长;而夏季小气候舒适程度以侧柏林(白天)和黄栌林(夜间)为高。②空气颗粒物浓度侧柏林夏秋季个别时刻较高,且夜间高峰出现迟、高峰值大、高峰期持续时间长。③空气微生物一般以侧柏林最低,混交林最高。④春季侧柏林空气负离子最高,其他季节混交林最高。⑤AHI显示北京最冷的冬季和最热的夏季户外游憩时,应首先选择常绿的侧柏林,而春季应多考虑混交林。
     5、游憩林内与生态保健有关的几个因子相互间存在密切的关系。①空气细菌与空气颗粒物特别是TSP呈显著正相关。②空气负离子与空气颗粒物呈负相关,而且粒径越大负相关性越显著。③空气负离子具有抑菌作用(尤其对空气细菌)。④植物有机挥发物在一定程度上能抑制空气微生物、增加空气负离子。
     6、小气候因子会影响游憩林空气质量指标,风、雨、雪、雾、云等不同天气条件下游憩林空气质量也会有很大差别,这些天气因素对空气质量的影响往往是交叉的,而且还受季节变化等其他因素的制约。
     最后,文中提出了游憩林保健功能研究的一些建议和发展方向。①统一保健指标的观测方法;②完善游憩林保健功能的综合指数;③加强游憩林对人体身心健康效应的直接研究;④加强理论研究的宣传应用,借鉴天气预报的形式将游憩林空气质量向公众实时预报,以指导市民的出行;⑤通过合理的树种选择和配置构建以人为本的城市游憩林。
     本项研究补充了先前对城市绿地保健作用只考虑环境质量而缺乏人体反应的不足;打破了先前的零散研究而较为系统地研究了游憩林保健功能的动态变化及其相互关系;初次提出并制定了表征游憩林保健效应的AHI。这为游客外出时间的选择、游憩林的建设和管理提供了理论依据,同时也为旅游区空气质量的预报提供了重要思路。
Ecological health recreation is having become a necessity for modern urban residents, and one of main aims of ecological health recreation is breathing fresh air. The West Mountain of Beijing is an important area where Beijing citizen recreate outside. So, taking Baiwang Mountain as an example, this paper researched ecological health effects of 3 typical recreation forests (pure Platycladus orientalis forest, pure Cotinus coggygria forest, and the mixed forest) in the West Mountain of Beijing through air quality and human body and mind effects. Thereinto, climate cormfort, airborne suspended particulate matters (PM, including TSP, PM10, PM2.5 and PM1.0), airborne microbes (including airborne bacteria and airborne fungi), aero-anion levels and organic volatile compounds (VOCs) were researched in air quality index of recreation forests, and those index were observed synchronously in 4 seasons in 2007 (VOC of Platycladus orientalis forest were observed only in spring, summer and autumn; VOC of Cotinus coggygria forest were monitored only in summer and autumn), and were compared with urban CK Wanquanhe greenland in autumn. On the basis of researches of those index separately, Air Health Index (AHI) were appraised using Primary Component Analysis and Gray Related Analysis. For human body and mind effects on recreation forests, human subjective feelings were investigated by BPOMS questionnaire, and human body and mind reflection were observed before and after recreation by PowerLab system made in ADInstruments Company in Australia. Throuth research some preliminary conclusions were as follows:
     1. Several kinds of typical recreation forests in the West Mountain of Beijing all had tremendous ecological effects. They can make human mood states relax, and body and mind health improved greatly, by means of their obvious dust reduction, bacteria restraining, aero-anion increase abilities and benefit BVOCs release.
     2. Obvious seasonal variations of climate comfort and air quality related with ecological health were showed in several kinds of typical recreation forests in the West Mountain of Beijing in one year.①The duration which the micro-climate of recreation forests make human body comfort was longest in summer, and secondly in autumn and spring.②TSP and PM10 concentrations were the lowest in autumn, and the lowest concentrations of PM2.5 and PM1.0 presented in spring. The highest concentrations of PM10, PM2.5 and PM1.0 were in winter, and in summer subsequently.③Airborne fungi and total airborne microbe contents were higher in order of summer>sping>autumn>winter, while for airborne bacteria, the order was spring>summer>autumn>winter.④Aero-anion concentrations of recreation forests were highest in summer, and secondly in winter.⑤VOCs species amount in Platycladus orientalis forest was spring>summer>autumn, and TBVOC concentration was autumn >summer> spring; for Cotinus coggygria forest, VOCs species amount was higher in summer than autumn, and TBVOC concentration was higher in autumn than summer.⑥Air health index (AHI) was lowest in winter and spring than the other two seasons, and appreciably higher in autumn than summer.
     3. In a day, air quality and the fittest recreation time reflected by several index in recreation forests in the West Mountain of Beijing were different.①The periods in which micro-climate of recreation forests make people comfort were 9:00~17:00 in spring and autumn; recreation forests micro-climate made people comfort in the whole day in summer (except at 11:00 in the mixed forest); and in winter, climate comfort degree showed recreation outside should be taken at about 13:00.②Diurnal variations of airborne bacteria and total airborne microbe contents all mostly showed“two peaks and two vales”in 4 seasons, and peaks presented at 9:00 in the morning and 17:00~23:00 in the evening, while vales presented around at noon (11:00~15:00) and wee hours. Diurnal variations of airborne fungi contents mostly showed“three peaks and three vales”.③Diurnal variation curves of PM concentrations with 4 kinds of diameters all showed nearly“two peaks and two vales”in 4 seasons, and two peaks presented at 7:00~9:00 and 19:00~3:00, and two vales presented at around 15:00 and 5:00 respectively.④Concentrations of aero-anion were higher from wee hours to the morning, and were lower in the day in spring, summer and winter; while in the autumn, diurnal variation curves of aero-anion levels showed“M”with two peaks and two vales.⑤Diurnal variations of BVOCs varied with different compounds in different seasons, the diurnal variation curve of TBVOC showed nearly“three peaks and three vales”, and peaks occurred at 9:00~11:00, 17:00~21:00 and around 5:00.⑥According to Air Health Index (AHI), 3 typical recreation forests in the West Mountain of Beijing were almost fit for recreation outside in a whole day in 4 seasons. In detail, the fittest time for recreation was 13:00~17:00 in spring, 17:00~19:00 and 9:00~11:00 in summer, 11:00~17:00 in autumn and 9:00~15:00 in winter.
     4. Comparingly, climate comfort degree and air quality had a certain difference in different recreation forests.①The duration that the micro-climate make people comfort was longer in the mixed forest in spring and autumn; while in summer, climate comfort degree were higher in Platycladus orientalis forest and cotinus coggygria forest.②PM concentration of Platycladus orientalis forest were higher than the other two forests sometimes in summer and autumn, and in Platycladus orientalis forest, PM peak time at night occurred later, PM concentration was higher at peaks time, and the duration of the peak was longer.③Airborne microbe contents were generally lowest in Platycladus orientalis forest, and highest in the mixed forest.④Aero-anion concentration was highest in Platycladus orientalis forest in spring, and was highest in the mixed forest in other 3 seasons.⑤For AHI, it showed evergreen Platycladus orientalis forest was first selection when we recreate outside in coldest winter and hottest summer in Beijing, while the mixed forest should be considered more in spring.
     5. There were a close relationship among several factors related to ecological health in recreation forests.①There were a significantly positive relationship between airborne bacteria and PM especially TSP.②Aero-anion and PM were negatively related, and the more significant the coarser of PM diameters.③Aero-anion can restrain airborne bacteria.④BVOCs can decrease airborne microbe contents and increase aero-anion concentrations in a certain sense.
     6. Air quality of recreation forests can be influenced by micro-climate factors. In addition, Air quality of recreation forests had a major change difference on different weather conditions such as wind, rain, snow, fog and cloud. Furthermore, the influence of those weather conditions on air quality was intersectant, and affected by other factors like seasons.
     In the end, some suggestion and development directions about health effects of recreation forests were put forward.①Unify the observation methods of health index;②Perfect comprehensive index of health effects of recreation forests;③Strengthen direct research on health effects of recreation forests on human body and mind;④Publicize the theoretic research, and develop air quality forecast of recreation forests using weather forecast for reference, in order to provide guidance to citizen for recreation outside;⑤Construct urban recreation forests of“people oriented”through rational tree species selection and configuration.
     This paper filled up a lack of only considering environmental quality not caring for human reflects for recreation forests’ecological health effects; broke previous scattered researches through researching systematically dynamic variations and their relationship of ecological health effects of recreation forests; put firstly forward AHI in token of health effects of recreation forests. That will provide a theoretical basis for tourist travelling time, constructions and managements of recreation forests, and also, provide a good idea for air quality forecast of recreation areas.
引文
[1] R Bray,C Vakil,D Elliott. Report on public health and urban sprawl in Ontario. Environmental Health Committee, Ontario College of Family Physicians,2005, 1:1~53
    [2]吴章文.森林游憩区保健旅游资源的深度开发.北京林业大学学报,2003a,25(2):63~67
    [3]章建斌,吴彩云.试论城郊森林公园生态旅游功能的实现.世界林业研究,2005,18(1):73~77
    [4]钟林生,吴楚材,肖笃宁.森林旅游资源评价中的空气负离子研究.生态学杂志,1998,17(6):56~60
    [5]褚泓阳,弓弼,杨祖山.森林旅游环境资源的保护.西北林学院学报,1995,10(1):80~83
    [6]吴楚材.论生态旅游资源的开发与建设.社会科学家,2000,15(4):1~7
    [7]黄晓鸾,张国强.城市生存环境绿色量值群的研究(1).中国园林,1998a,14(55):61~63
    [8]万美强.风景游憩林与城市公共绿地.中国园林,1997,13(5):54~56
    [9]张杰,徐波,那守海.森林公园生态旅游环境保护体系的构建.东北林业大学学报,2003,31(4):20~23
    [10]李迪华,范闻捷,崔光文等.北京香山公园锻炼身体人群研究.中国园林,1999,15(62):64~67
    [11]李迪华,范闻捷.北京城市离退休居民与城市公园绿地的关系.城市环境与城市生态,2001,14(3):33~35
    [12]郑华.北京市绿色嗅觉环境质量评价研究.北京林业大学博士学位论文,2002,1~115
    [13]于涛,魏明建,肖怀朋等.北京西山末次冰期中期植被演化序列研究.首都师范大学学报(自然科学版),2005,26(3):81~86
    [14]陈鹏飞,吕林昭,李继磊等.北京西山地区火烧迹地植被恢复研究.林业资源管理,2007(1):64~68
    [15]周维,孟永庆,叶兵等.基于3S技术的景观结构分析——以北京百望山地区为例.广西林业科学,2002,31(4):175~177
    [16]孙向阳.北京西山古土壤母质上发育的土壤之粘粒矿物与表面化学特性.北京林业大学学报,2002,24(5/6):35~38
    [17]吴文强,李吉跃,张志明等.北京西山地区人工林土壤水分特性的研究.北京林业大学学报,2002,24(4):51~55
    [18]董建文,翟明普,徐程扬等.京郊风景游憩林侧柏-刺槐群落林下植被种间联结研究.江西农业大学学报,2007,29(1):66~71
    [19]傅和玉,蔡宝军,胡晋茹.景观技术在京北山区生态保育工程中的应用.中国水土保持科学,2006,4(B12):161~164
    [20]张晓萍.风景游憩林的营造技术和可持续经营.福建农林科技,2006(1):31~34
    [21]陈鑫峰,贾黎明,京西山区森林林内景观评价研究.林业科学,2003,39(4):59~66
    [22] A Cooper, R A Murray. Structured method of landscape assessment and countryside management. Applied Geography, 1992(12): 319~338
    [23]李晓储,万志洲,黄利斌.紫金山风景林林相改造异龄复层混交模式研究.中国城市林业,2006,4(4):9~12
    [24] E G Mcpherson, J R Simpson, P J Peper et al. Municipal forest benefits and costs in five US cities. Journal of Forestry, 2005, 12:411~416
    [25] E G McPherson. A benefit–cost analysis of ten street tree species in Modesto, California, US. Journal of Arboriculture,2003a,29(1):1~8
    [26] E G Mcpherson. Urban foresty: benefits and drawbacks of city trees. Apwa congress, 2003b, 8:29~30
    [27] D J Nowak, D E Crane, J C Stevens. Air pollution removal by urban trees and shrubs in the United States. Urban Forestry & Urban Greening, 2006(4): 115~123
    [28] D J Nowak, R A Rowntree, E G Mcpherson, et al. Measuring and analyzing urban tree cover. Landscape and Urban Planning, 1996, 36: 49~57
    [29] E G McPherson, D J Nowak, R A Rowntree. Chicago’s Urban Forest: Results of the Chicago Urban Forest Climate Project. Northeastern Forest Experimental Station, Delaware, NEFES/9,1994, 4~11
    [30] K I Scott, E G Mcpherson, J R Simpson. Air pollution uptake by Sacramento’s urban forest. Journal of Arboriculture, 1998, 24(4): 223~234
    [31] Dina Cappiello .Trees may play role in reducing Houston's smog. Houston Chronicle,2005, 12: 1~3
    [32] D J Nowak. Impact of urban forest management on air pollution and greenhouse gases. Proceedings of the society of American foresters 1999 national convention Portland,Oregon, 1999,9: 143~148
    [33] D J Nowak. Tree species selection, design and management to improve air quality. ASLA annual meeting proceedings, 2002: 23~27
    [34] D J Nowak, P J McHale, M Ibarra et al. Modelling the effects of urban vegetation on air pollution. In: Gryning, S, Chaumerliac, N (Eds.), Air Pollution Modelling and its Application XII, Plenum Press, New York, 1998: 399~407
    [35] E G Mcpherson, D J Nowak. Value of urban greenspace for air quality improvement: Lincoln park, Chicago. Arborist,1993, 2(6): 30~32
    [36] C L Brack. Pollution mitigation and carbon sequestration by urban forest. Environmental Pollution, 2002, 116: 195~200
    [37] S Streiling, A Matzarakis. Influence of single and small clusters of trees on the bioclimate of a city: A case study. Journal of Arboriculture, 2003, 29(6): 309~316
    [38]丁振才,黄利斌.常熟虞山森林空气环境效应测定分析.中国城市林业,2006,4(3):31~32
    [39]韩锡君,钟锡均,周毅等.东莞市大岭山森林公园小气候效应调查.广东林业科技,2005,21(3):14~18
    [40]王忠君.福州国家森林公园生态效益与自然环境旅游适宜性评价研究.北京林业大学硕士学位论文,2004:1~143
    [41]史欣,徐太平,刘燕堂等.广州帽峰山森林公园旅游区的气候环境研究.中国城市森林建设理论与实践.北京:中国林业出版社,2006:238~243
    [42]陈勇,梁小僚,孙冰.深圳市生态风景林的人体舒适度效应.中国城市林业,2006,4(2):48~51
    [43] G M Heisler, R H Grant, W Gao. Ultraviolet radiation and its impacts on agriculture and forests. Agricultural and Forest Meteorology, 2003, 120: 3~7
    [44] G M Heisler, R H Grant. Ultraviolet radiation, human health and the urban forest. USDA forest service, general technical report ne-268, square PA: U.S. Department of Agriculture, Forest Service, Northeastern Research Station, 2000, 2: 1~35
    [45] R H Grant, G M Heisler. What you see is not what you get: The difference between visible sunlight and ultraviolet radiation.The natural inquirer: The Urban Forest Edition, 2006, 6(1): 8~14
    [46] D L Peterson, Darci Bowers,Sarah Brace. Tropospheric ozone in the Nisqually River drainage, Mount Rainier National Park. Northwest science, 1999, 73(4): 241~276
    [47]杨尚英,张秦伟,陈小宁等.旅游气候资源的fuzzy评价探讨.咸阳师范专科学校学报,1999,14(6):30~33
    [48]李树人,赵勇,李相宽.城市森林对热污染和人体舒适度影响的研究.河南农业大学学报,1995,29(1):11~19
    [49]吴章文.流溪河国家森林公园旅游气候研究.中南林学院学报,1995,15(1):67~74
    [50]李海梅,何兴元.中国城市森林研究现状及发展趋势.生态学杂志,2004,23(2):55~59
    [51]杨士弘.城市绿化树木的降温增湿效应研究.地理研究,1994,13(4):74~80
    [52]陈自新,苏雪痕,刘少宗等.北京城市园林绿化生态效益的研究(2).中国园林,1998,14(56):51~54
    [53]陆鼎煌.颐和园夏季小气候.见:中国林学会林业气象专业委员会、中国气象学会农业气象专业委员会合编.中国林业气象文集.北京:气象出版社,1989,221~228
    [54]郑敬刚,张景光.郑州市热岛效应研究与人体舒适度评价.应用生态学报,2005,16(10):1838~1842
    [55]王晓明,李贞,蒋昕等.城市公园绿地生态效应的定量评估.植物资源与环境学报,2005,14(4):42~45
    [56]彭鹓,达良俊.城市近自然森林生态效益.中国城市森林建设的理论与实践.北京:中国林业出版社,2006,218~224
    [57]祝宁,李敏,柴一新.哈尔滨市绿地系统生态功能分析.应用生态学报,2002,13(9):1117~1120
    [58]刘学全,唐万鹏,周志翔等.宜昌市城区不同绿地类型环境效应.东北林业大学学报,2004,32(5):53~54,83
    [59]秦耀民,刘康,王永军等.西安城市绿地生态功能研究.生态学杂志,2006,25(2):135~139
    [60]李辉,赵卫智,古润泽等.居住区不同类型绿地释氧固碳及降温增湿作用.环境科学,1999,20(6):41~44
    [61]韩铭哲,段广德,刘果厚等.哈达门森林公园的旅游气候资源.内蒙古林学院学报(自然科学版),1996,18(2):33~38
    [62]林锦屏,郭来喜.中国南方十一座旅游名城避寒疗养气候旅游资源评估.人文地理,2003,18(6):26~30
    [63]刘实,姚渝丽,徐威.净月潭国家森林公园旅游气候资源分析及评价.东北林业大学学报,2005,33(6):87~89
    [64]吴章文.亚热带森林旅游区夏季舒适温度的持续时间.浙江林学院学报,2003b,20 (4):380~384
    [65]鲍淳松,曾新宇,楼建华等.杭州植物园的冷岛效应.浙江林业科技,2001,21(5):56~58
    [66]史欣,吴统贵,徐太平等.广州帽峰山森林公园的“冷岛”效应分析.中国城市林业,2005,3(3):46~48
    [67]刘艳菊,丁辉.植物对大气污染的反应与城市绿化.植物学通报,2001,18(5):577~586
    [68]任丽新,游荣高,吕位秀等.城市大气气溶胶的物理化学特性及其对人体健康的影响.气候与环境研究,1999,4(1):67~73
    [69] N T K Oanh, N Upadhyaya, Y H Zhuang. Particulate air pollution in six Asian cities: Spatial and temporal distributions, and associated sources. Atmospheric Environment, 2006, 40(18): 3367~3380
    [70] G H Wang, L M Huang, S X Gao et al. Characterization of water-soluble species of PM10 and PM2.5 aerosols in urban area in Nanjing, China. Atmospheric Environment,2002a,36:1299~1307
    [71] N A Powe, K G Willis. Mortality and morbidity benefits of air pollution (SO2 and PM10) absorption attributable to woodland in Britain. Journal of Environmental Management, 2004, 70: 119~128
    [72] S Rodrgueza, X Querola, A Alastueya et al. Comparative PM10~PM2.5 source contribution study at rural, urban and industrial sites during PM episodes in Eastern Spain. Science of the Total Environment, 2004, 328: 95~113
    [73] K M Latha, E J Highwood. Studies on particulate matter (PM10) and its precursors over urban environment of Reading, UK. Journal of Quantitative Spectroscopy & Radiative Transfer, 2006, 101(2): 367~379
    [74] K P Beckett, P H Freer-Smith, G Taylor. Urban woodlands: their role in reducing the effects of particulate pollution. Environmental Pollution, 1998, 99: 347~360
    [75] B A Begum, K Swapan, Biswas. Temporal variations and spatial distribution of ambient PM2.2 and PM10 concentrations in Dhaka, Bangladesh. The Science of the Total Environment, 2006, 358(1/3): 36~45
    [76] B K Lee, H K Lee, N Y Jun. Analysis of regional and temporal characteristics of PM10 during anAsian dust episode in Korea. Chemosphere, 2006, 63(7): 1106~1115
    [77] Y I Tsai, C L Chen. Characterization of Asian dust storm and non-Asian dust storm PM2.5 aerosol in southern Taiwan. Atmospheric Environment, 2006, 40(25): 4734~4750
    [78] X M Hou, G S Zhuang, Y Sun et al. Characteristics and sources of polycyclic aromatic hydrocarbons and fatty acids in PM2.5 aerosols in dust season in China. Atmospheric Environment, 2006, 40(18): 3251~3262
    [79] W S Yue, X L Lia, J F Liu et al. Characterization of PM2.5 in the ambient air of Shanghai city by analyzing individual particles. The Science of the Total Environment, 2006, 368(2-3): 916~925
    [80] P Herckes, G Engling, Kreidenweis et al. Particle size distributions of organic aerosol constituents during the 2002 Yosemite aerosol characterization study. Environmental Science & Technology, 2006, 40(15): 4554~4562
    [81]杨复沫,贺克斌,马永亮等.北京PM2.5浓度的变化特征及其与PM10、TSP的关系.中国环境科学,2002a,22(6):506~510
    [82]杨复沫,贺克斌,马永亮.北京大气PM2.5中微量元素的浓度变化特征与来源.环境科学,2003,24(6):33~37
    [83] N S Holmes, L Morawska, K Mengersen et al. Spatial distribution of submicrometre particles and CO in an urban microscale environment. Atmospheric Environment, 2005, 39(22): 3977~3988
    [84] I Salma, W Maenhaut. Changes in elemental composition and mass of atmospheric aerosol pollution between 1996 and 2002 in a Central European city. Environmental Pollution, 2006, 143(3): 479~488
    [85] Y Song, M S Zhang, X H Cai. PM10 modeling of Beijing in the winter. Atmospheric Environment, 2006, 40(22): 4126~4136
    [86]胡伟,魏复盛.部分城市空气中颗粒物的元素组成比较.上海环境科学,2002,21(7):408~411
    [87] S W See, R Balasubramanian, W Wang. A study of the physical, chemical, and optical properties of ambient aerosol particles in Southeast Asia during hazy and nonhazy days. Journal of Geophysical Research, 2006, 111(D10): S1008-1~S1008-12
    [88] J L Hand, S M Kreldenweis, D E Sherman et al. Aerosol size distributions and visibility estimates during the Big Bend regional aerosol and visibility observational (BRAVO) study. Atmospheric Environment, 2002, 36(32): 5043~5055
    [89] J Xu, D DuBois, M Pitchford et al. Attribution of sulfate aerosols in Federal Class I areas of the western United States based on trajectory regression analysis. Atmospheric Environment, 2006, 40(19): 3433~3447
    [90]杨茂生,姜在民,梅秀英等.粉尘污染对黄帝陵侧柏一些生理指标及生长的影响.干旱地区农业研究,1994,12(4):99~104
    [91] M Takagi, K Gyokusen. Light and atmospheric pollution affect photosynthesis of street trees in urban environments. Urban Forestry and Urban Greening, 2004, 2(3): 167~171
    [92] J Schwartz. Air pollution and daily mortality: a review and metaanalysis. Environmental Research, 1994, 64: 36~52
    [93] N Hewitt.Trees and sustainable urban air quality.Center for Ecology & Hydrology, 2004: 1~10
    [94] D W Dockery, C A Pope, III Xiping X et al. An association between air pollution and mortality in six US. cities. N. Eng. J. Med. ,1993, 329:1753~1759
    [95] M Berico, A Luciani, M Formignani. Atmospheric aerosol in an urban area-measurements of TSP and PM10 standards and pulmonary deposition assessments. Atmospheric environment, 1997, 31(21): 3659~3665
    [96] Juha Pekkanen, K L Timonen, Juhani Ruuskanen et al. Effects of ultrafine and fine particles in urban air on peak expiratory flow among children with asthmatic symptoms. Environmental Research, 1997, 74: 24~33
    [97] M Morishita, G J Keeler, J G Wagner et al. Source identification of ambient PM2.5 during summer inhalation exposure studies in Detroit, MI. Atmospheric Environment, 2006, 40(21): 3823~3834
    [98] W A Jedrychowski, F P Perera, A Pac et al. Variability of total exposure to PM2.5 related to indoor and outdoor pollution sources - Krakow study in pregnant women. The Science of the Total Environment, 2006, 366(1): 47~54
    [99] Birgul Isik, Candan Hamamci, Recep Isik. Effect of winter air pollution on lipid peroxidation product levels of patients with chronic obstructive pulmonary disease. Asian Journal of Chemistry, 2006, 18(2): 1433~1436
    [100] J Ferin, G Oberdorster, D P Penney et al. Increased pulmonary toxicity of ultra-fine particles? 1. Particle clearance, translocation, morphology. Journal of Aerosol Science, 1990, 21: 381~384
    [101] J Ferin, G Oberdorster, D P Penney. Pulmonary retention of ultra-fine and fine particles in rats. American Journal of Respiratory Cell and Molecular Biology, 1992, 6: 535~542
    [102] N Ozaki, K Nitta, T Fukushima. Dispersion and dry and wet deposition of PAHs in an atmospheric environment. Water Science and Technology, 2006, 53(2): 215~224
    [103]冯沈迎,高春梅,仝青等.不同粒径空气颗粒物中11种多环芳烃的分析测定.中国环境监测,2001,17(4):34~37
    [104] C S Kim, S C Hu. Total respiratory tract deposition of fine micrometer-sized particles in healthy adults: empirical equations for sex and breathing pattern. Journal of Applied Physiology, 2006, 101(2): 401~412
    [105] J P Oudinet, J Meline, W Chehmicki et al. Towards a multidisciplinary and integrated strategy in the assessment of adverse health effects related to air pollution: The case study of Cracow (Poland) and asthma. Environmental Pollution, 2006, 143(2): 278~284
    [106] J G Wilson, S Kingham, A P Sturman. Intraurban variations of PM10 air pollution in Christchurch, New Zealand: Implications for epidemiological studies. The Science of the Total Environment, 2006, 367(2-3): 559~572
    [107] Y C Chan, R W Simpson, G H Mctainsh et al. Characterisation of chemical species in PM2.5 and PMl0 aerosols in Brisbane, Australia. Atmospheric Environment, 1997, 31( 22): 3773~3785
    [108] J D Herner, P G Green, M J Kleeman. Measuring the trace elemental composition of size-resolved airborne particles. Environmental Science & Technology, 2006, 40(6): 1925~1933
    [109] S Waheed, A Rahman, N Khalid et al. Assessment of air quality of two metropolitan cities in Pakistan: Elemental analysis using INAA and AAS Radiochimica Acta, 2006, 94(3): 161~166
    [110] H S Munir, N Shaheen, M Jaffar et al. Spatial variations in selected metal contents and particle size distributionin an urban and rural atmosphere of Islamabad, Pakistan. Journal of Environmental Management, 2006, 78(2): 128~137
    [111] V Ariola, A D'Alessandro, F Lucarelli et al. Elemental characterization of PM10, PM2.5 and PM1.0 in the town of Genoa(Italy). Chemosphere, 2006, 62(2): 226~232
    [112] J D Surratt, S M Murphy, J H Kroll et al. Chemical composition of secondary organic aerosol formed from the photooxidation of isoprene. The Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics,Environment & General Theory, 2006, 110(31): 9665~9690
    [113] F Mazzei, A D'Alessandro, F Lucarelli et al. Elemental composition and source apportionment of particulate matter near a steel plant in Genoa (Italy). Nuclear Instruments & Methods in Physics Research. B, Beam Interactions with Materials and Atoms, 2006, 249: 548~551
    [114] M Chiari, P Del Carmine, I G Orellana et al. Hourly elemental composition and source identification of fine and coarse PM10 in an Italian urban area stressed by many industrial activities. Nuclear Instruments & Methods in Physics Research. B, Beam Interactions with Materials and Atoms, 2006, 249: 584~587
    [115] M T Spencer, L G Shields, D A Sodeman et al. Comparison of oil and fuel particle chemical signatures with particle emissions from heavy and light duty vehicles. Atmospheric Environment, 2006, 40(27): 5224~5235
    [116] E Kim, P K Hopke. Characterization of fine particle sources in the Great Smoky Mountains area. The Science of the Total Environment, 2006, 368(2-3): 365~573
    [117] C C Cheng. Polycyclic aromatic hydrocarbon concentration and acute toxicity of airborne particulate matter: using microtox as a toxicity screening tool. Polycyclic Aromatic Compounds, 2003, 23(3): 249~258
    [118] C Wiedinmyer, B Quayle, C Geron et al. Estimating emissions from fires in North America for air quality modeling. Atmospheric Environment, 2006, 40(19): 3419~3432
    [119] NYMJ Omar, T C Mon, N A Rahman. Distributions and health risks of polycyclic aromatic hydrocarbons (PAHs) in atmospheric aerosols of Kuala Lumpur, Malaysia. The Science of the Total Environment, 2006, 369(1-3): 76~81
    [120] A W Ellis, D M Brommer, R C Balling. Climatic conditions linked to high PM10 concentration in a bi-national airshed: Nogales (Arizona, USA, and Sonora, Mexico) Climate Research, 2006, 30(2): 113~124
    [121] K F Ho, S C Lee, J J Cao et al. Seasonal variations and mass closure analysis of particulate matter in HongKong. The Science of the Total Environment, 2006, 355(1/3): 276~287
    [122] K F Chang, G C Fang, J C Chen et al. Atmospheric polycyclic aromatic hydrocarbons (PAHs) in Asia: A review from1999 to 2004. Environmental Pollution, 2006, 142(3): 388~396
    [123] Esmaiel Malek, Tess Davis, S Randal et al. Meteorological and environmental aspects of one of the worst national air pollution episodes (January, 2004) in Logan, Cache Valley, Utah, USA. Atmospheric Research, 2006, 79(2): 108~122
    [124] B Buzcu, Z W Yue, M P Fraser et al. Secondary particle formation and evidence of heterogeneous chemistry during a wood smoke episode in Texas. Journal of Geophysical Research, 2006, 111(D10): S1013-1~S1013-14
    [125] T Rissanen, T Hyotylainen, M Kallio et al. Characterization of organic compounds in aerosol particles from a coniferous forest by GC-MS. Chemosphere, 2006, 64(7): 1185~1195
    [126] K P Beckett, P H Freer-Smith, G Taylor. Particulate pollution capture by urban trees: effect of species and windspeed. Global Change Biology, 2004, 6(8): 995~1003
    [127]安俊岭,张仁健,韩志伟.北方15个大型城市总悬浮颗粒物的季节变化.气候与环境研究,2000,5(1):25~29
    [128]吴国平,胡伟,滕恩江等.我国四城市空气中PM2.5和PM10的污染水平.中国环境科学,1999,19(2):133~137
    [129]柴一新,祝宁.城市绿化树种的滞尘效应——哈尔滨市为例.应用生态学报,2002,13(9):1121~1126
    [130]吴中能,于一苏.合肥主要绿化树种滞尘效应研究初报.安徽农业科学,2001,29(6):780~783
    [131]孙淑萍,古润泽,张晶.北京城区不同绿化覆盖率和绿地类型与空气中可吸入颗粒物(PM10).中国园林,2004(3):77~79
    [132]张新献,古润泽,陈自新等.北京城市居住区绿地的滞尘效益.北京林业大学学报,1997,19(4):12~17
    [133]赵勇,李树人.大气污染分区与绿化模式的研究.环境科学,1994,15(6):23~28
    [134]冯建军,沈家芬,苏开君.广州市道路绿化模式环境效益分析.城市环境与城市生态,2001,14(2):4~6
    [135]周志翔,邵天一,王鹏程等.武钢厂区绿地景观类型空间结构及滞尘效应.生态学报,2002,22(12):2036~2040
    [136]石强,贺庆棠,吴章文.张家界国家森林公园大气污染物浓度变化及其评价.北京林业大学学报,2004a,24(4):20~24
    [137]吴楚材,郑群明,钟林生.森林游憩区空气负离子水平的研究.林业科学,2001,37(5):75~81
    [138]毛辉青.不同功能区空气负离子的监测分析.环境污染与防治,1996,18(3):37,31
    [139]黄建武,陶家元.空气负离子资源开发与生态旅游.华中师范大学学报(自然科学版),2002,36(2):257~260
    [140]吴楚材,黄绳纪.桃源洞国家森林公园的空气负离子含量及评价.中南林学院学报,1995,15(1):9~12
    [141] B R Jovanic, S B Jovanic. The effect of high concentration of negative ions in the air on the chlorophyll content in plant leaves. Water, Air, and Soil Pollution, 2001, 129(1-4): 259~265
    [142] Mitsuo Terasawa, Tadaaki Yoneyama, Akiko Sugawara.The Relationship between Hyperoxidation of Brain Lipid and Thiamine by Ion Circumstances. World Multiconference on Systemics, Cybernetics and Informatics Vol.10: Concepts and Applications of Systemics, Cybernetics and Informatics, Jul 23-26, 2000, Orlando, Florida, USA, 2000, 10: 385~388
    [143] Ichiro Watanabe, Hiroshi Noro, Yoshinori Ohtsuka. Physical effects of negative air ions in a wet sauna. International Journal of Biometeorology, 1997, 40(2): 107~112
    [144] A P Krueger. The biological effects of air ions. Washington: International Journal of Biometeorol, 1985, 29: 205
    [145]高凯年.空气负离子对小鼠体力和智力的影响.河南大学学报(自然科学版),1995, 25(1):85~86
    [146]吴际友,程政红.园林树种林分中空气负离子水平的变化.南京林业大学学报(自然科学版),2003,27(4):78~80
    [147]章志攀,俞益武,孟明浩等.旅游环境中空气负离子的研究进展.浙江林学院学报,2006,23(1):103~108
    [148]李伟华,陈章和.城镇绿地对空气质量的影响——以中山市小榄镇为例.应用与环境生物学报,2003, 9 (4) : 362~366
    [149]蔡春菊,王成,陶康华.城市绿地对空气负离子水平的影响研究.中国城市森林建设的理论与实践.北京:中国林业出版社,2006,193~199
    [150]石强,钟林生,吴楚材.森林环境中空气负离子浓度分级标准.中国环境科学,2002a,22(4):320~323
    [151]刘云国,吕健,张合平等.大型人造园林中的空气负离子分布规律.中南林学院学报,2003,23(1):89~92
    [152]王洪俊.城市森林结构对空气负离子水平的影响.南京林业大学学报(自然科学版),2004,28(5):96~98
    [153]倪军,徐琼,石登荣等.城市绿地空气负离子相关研究——以上海公园为例.中国城市林业,2004,2(3):30~33
    [154]蒙晋佳,张燕.广西部分景点地面上空气负离子浓度的分布规律.环境科学研究,2004,17(3):25~27
    [155]石强,舒惠芳,钟林生等.森林游憩区空气负离子评价研究.林业科学,2004b,40(1):36~40
    [156]刘凯昌,苏树权,江建发等.不同植被类型空气负离子状况初步调查.广东林业科技,2002,18(2):37~39
    [157]张荣健.龙岩国家森林公园云顶茶园空气负离子浓度的测定与评价.福建林业科技,2005,32(4):86~89
    [158]周集体,王竞,杨凤林.微生物固定CO2的研究进展.环境科学研究,1999,7(1):1~9
    [159] Abdel Hameed A Awad. Vegetation: A source of air fungal bio-contaminant. Aerobiologia, 2005, 21(1): 53~61
    [160] B A Zucker, W Muller. Investigation on airborne microorganisms in animals stables 3. report: relationship between inhalable endotoxin, inhalable dust and airborne bacteria in a hen house. Berliner und Munchener Tierarztliche Wochenschrift, 2000, 113(7/8): 279~283
    [161] R E Sherburn, R O Jenkins. Aerial release of bacteria from cot mattress materials and the sudden infant death syndrome. Journal of Applied Microbiology, 2005, 98(2): 293~298
    [162]于玺华.现代空气微生物学.人民军医出版社,2002:5,344
    [163] H Zhu, P E Phelan, T H Duan. Experimental study of indoor and outdoor airborne bacterial concentrations inTempe, Arizona, USA. Aerobiologia, 2003, 19(3/4): 201~211
    [164] K H Bartlett, S M Kennedy, M Brauer et al. Evaluation and determinants of airborne bacterial concentrations in schoolclassrooms. Journal of Occupational and Environmental Hygiene, 2004, 1(10): 639~647
    [165] G Ramachandran, J L Adgate, S Banerjee. Indoor air quality in two urban elementary schools--measurements of airborne fungi, carpet allergens, CO2, temperature, and relative humidity. Journal of Occupational and Environmental Hygiene, 2005, 2(11): 553~566
    [166] Jeffrey Philip Obbard, Lim Su Fang. Airborne concentrations of bacteria in a hospital environment in Singapore. Water, Air and Soil Pollution, 2003, 144(1/4): 333~341
    [167] Shun Cheng Lee, W M Li, Chio-Hang Ao. Investigation of indoor air quality at residential homes in Hong Kong case study. Atmospheric Environment, 2002, 36(2): 225~237
    [168] C Y Huang, C C Lee, F C Li. The seasonal distribution of bioaerosols in municipal landfill sites: a 3-yr study. Atmospheric Environment, 2002, 36(27): 4385~4395
    [169] W H Lin. Associations of Fungal Aerosols, Air Pollutants, and Meteorological Factors. AerosolScience and Technology, 2000, 32(4): 359~368
    [170] Y Y Tong, B Lighthart. Effect of simulated solar radiation on mixed outdoor atmospheric bacterial populations. FEMS Microbiology Ecology, 1998, 26(4): 311~316
    [171] Y Y Tong, B Lighthart. The annual bacterial particle concentration and size distribution in the ambient atmosphere in a rural area of the Willamette Valley, Oregon. Aerosol Science and Technology, 2000, 32(5): 393~403
    [172] Jordan Reccia, Holly M Werth, Shelly Miller et al. Effects of relative humidity on the ultraviolet induced inactivation of airborne bacteria. Aerosol Science and Technology, 2001, 35(3): 728~740
    [173] T Lee, S A Grinshpun, D Martuzevicius et al. Relationship between indoor and outdoor bioaerosols collected with a button inhalable aerosol sampler in urban homes. Indoor Air, 2006, 16(1): 37~47
    [174] P C Wu, C Y Lin, H J Su. Characteristics of indoor and outdoor airborne fungi at suburban and urban homes in two seasons. The Science of the Total Environment, 2000, 253(1-3): 111~118
    [175] G T O'connor, M Walter, H Mitchell. Airborne fungi in the homes of children with asthma in low-income urban communities: The Inner-City Asthma Study. The Journal of Allergy and Clinical Immunology, 2004, 114(3): 599~606
    [176] Lee Ji Hyun, Jo Wan Kuen. Exposure to airborne fungi and bacteria while commuting in passenger cars and public buses. Atmospheric Environment, 2005, 39(38): 7342~7350
    [177]周小琴.城市森林滞尘、抑菌效应研究.南京林业大学硕士学位论文,2001,1~27
    [178]谢慧琳,李树人,袁秀云.植物挥发性分泌物对空气微生物杀灭作用的研究.河南农业大学学报,1999,33(2):127~133
    [179]戚继忠,由士江,王洪俊等.园林植物清除细菌能力的研究.城市环境与城市生态,2000a,13(4):36~38
    [180]黄健屏,吴楚才.与城区比较的森林区微生物类群在空气中的分布状况.林业科学,2002,38(2):173~176
    [181]罗英,李晓储,何小弟等.城市森林不同类型绿地植物配置抑菌效应初探.中国城市林业,2005,3(6):23~25
    [182]方治国,欧阳志云,胡利锋.北京市三个功能区空气微生物中值直径及粒径分布特征.生态学报,2005,25(12):3220~3224
    [183]任启文.北京市绿地空气微生物浓度的变化特征研究.北京林业大学硕士学位论文,2007:1~78
    [184]褚弘阳,弓弼,马梅.园林树木杀菌作用的研究.西北林学院学报,1995,10(4):64~67
    [185]戚继忠,由士江,王洪俊.园林树木净菌作用及主要影响因子.中国园林,2000b,16(70):74~75
    [186]秦耀民,刘康,王永军等.西安城市绿地生态功能研究.生态学杂志,2006,25 (2) :135~139
    [187]刘云国,马涛,张薇等.植物挥发性物质的抑菌作用.吉首大学学报(自然科学版),2004,25(2):39~42,47
    [188]田玉军,巨天珍,冯克宽等.兰州市功能区大气细菌污染和城市绿地系统杀菌效应分析.中国环境监测,2003,19(3):45~47
    [189]张浩,王祥荣.城市绿地降低空气中含菌量的生态效应研究.环境污染与防治,2002,24(2):101~103
    [190]刘华中.森林浴——最新潮健身法.台北:青春出版社,1984:63~65
    [191] G Smiatek, R Steinbrecher. Temporal and spatial variation of forest VOC emissions in Germany in the decade 1994~2003. Atmospheric Environment, 2006, 40(suppl.1): S166~S177
    [192] G Schaab, B Lacaze, R Lenz et al. Assessment of long-term vegetation changes on potential isoprenoid emission for a Mediterranean-type ecosystem in France. Journal of Geophysical Research, 2000, 105(D23): 28863~28873
    [193] L B Otter, A Guenther, J Greenberg. Seasonal and spatial variations in biogenic hydrocarbon emissions from southern African savannas and woodlands. Atmospheric Environment, 2002, 36(26): 4265~4275
    [194] L B Otter, A Guenther, C Wiedinmyer et al. Spatial and temporal variations in biogenic volatile organic compound emissions for Africa south of the equator. Journal of Geophysical Research, 2003, 108(D13): 8505
    [195] J P Greenberg, A B Guenther, G Petron et al. Biogenic VOC emissions from forested Amazonian landscapes. Global Change Biology, 2004, 10(5): 651~662
    [196] J E Diem, A C Comrie. Integrating remote sensing and local vegetation information for ahigh-resolution biogenic emissions inventory-Application to an urbanized, semi-arid region. Journal of the Air & Waste Management Association, 2000a, 50(11): 1968~1979
    [197] C Geron, A Guenther, J Greenberg et al. Biogenic volatile organic compound emissions from desert vegetation of the southwestern US, 2006a, 40(9): 1645~1660
    [198] D Helmig, A Guenther, P Zimmerman et al. Volatile organic compounds and isoprene oxidationproducts at a temperate deciduous forest site. Journal of Geophysical Research, 1998, 103(17): 22397~22414
    [199] T M Cahill, V Y Seaman, M J Charles et al. Secondary organic aerosols formed from oxidation of biogenic volatile organic compounds in the Sierra Nevada Mountains of California. Journal of Geophysical Research. D, Atmospheres, 2006, 111(D16): D16312-1~D16312-14
    [200] H Hakola, V Tarvainen, T Laurila et al. Seasonal variation of VOC concentrations above a boreal coniferous forest. Atmospheric Environment, 2003, 37(12): 1623~1634
    [201] R Janson, Serves C de, R Romero et al. Emission of isoprene and carbonyl compounds from a boreal forest and wetlandin Sweden. Agricultural and Forest Meteorology, 1999: 98~99, 671~681
    [202] C Geron, A Guenther, J Greenberg. Biogenic volatile organic compound emissions from a lowland tropical wetforest in Costa Rica. Atmospheric Environment, 2002, 36(23): 3793~3802
    [203] W V Kirstine, I E Galbally. A simple model for estimating emissions of volatile organic compounds from grass and cut grass in urban airsheds and its application to two Australian cities. Journal of the Air & Waste Management Association, 2004, 54(10): 1299~1311
    [204] S M Owen, A R MacKenzie, H Stewart et al. Biogenic volatile organic compound (VOC) emission estimates from an urban tree canopy. Ecological Applications, 2003, 13(4): 927~938
    [205] H Saathoff, C Linke, R Wagner et al. Temperature dependence of the yield of secondary organic aerosol from the ozonolysis of a-pinene and limonene. Journal of Aerosol Science, 2004, 1: 151~152
    [206] P Thunis, C Cuvelier. Impact of biogenic emissions on ozone formation in the Mediterranean area -a BEMA modelling study. Atmospheric Environment, 2000, 34(3): 467~481
    [207] Spyros Andronopoulos, Artemis Passamichali, Nikos Gounaris et al. Evolution and transport of pollutants over a mediterranean coastal area; the influence of biogenic volatile orgainc compound emissions on ozone concentrations. Journal of Applied Meteorology, 2000, 39(4): 526~545
    [208] Diamando Vlachogiannis, Spyros Andronopoulos, Artemis Passamichali. A three-dimensional model study of the impact of AVOC and BVOC emissions ozone in an urban area of the eastern spain. Environmental Monitoring and Assessment, 2000, 65(1-2): 41~48
    [209] Arlene M Fiore, Larry W Horowitz, D W Purves et al. Evaluating the contribution of changes in isoprene emissions to surface ozone trends over the eastern United States. Journal of GeophysicalResearch, 2005, 110(D12303): 1~18
    [210] J Penuelas, J Llusia. BVOCs: plant defense against climate warming? Trends in Plant Science, 2003, 8(3): 105~109
    [211] T G Custer, S Kato, R Fall et al. Nevative-ion CIMS: analysis of volatile leaf wound compounds including HCN. International Journal of Mass Spectrometry, 2003, (1-3) : 223~224, 427~446
    [212] C A Zini, K D Zanin, E Christensen et al. Solid-phase microextraction of volatile compounds from the chopped leaves of three species of Eucalyptus. Journal of Agricultural and Food Chemistry, 2003a, 151(9): 2679~2686
    [213] M Centritto, S R Liu, F Loreto. Biogenic emissions of volatile organic compounds by urban forests. Chinese Forestry Science and Technology, 2005, 4(1): 20~26
    [214] D Hitchcock. Trees and air quality: six methods to get sip credit for trees.AICP Houston Advanced Research Center,2004,9
    [215] E G McPherson, J R Simpson. Reducing air pollution through urban forestry. The proceedings of the 48th annual meeting of the California Forest Pest Council, November 18~19,1999 in Sacramento, CA
    [216] A B Guenther, R K Monson, R Fall. Isoprene and monoterpene emission rate variability: observations with eucalyptus and emission rate algorithm development. Journal of Geophysical Research, 1991, 96: 10799~10808
    [217] T D Sharkey, F Loreto. Water stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves. Oecologia, 1993, 95: 328~33
    [218] H Rennenberg, F Loreto, A Polle et al. Physiological responses of forest trees to heat and drought. Plant biology, 2006, 18(5): 556~571
    [219] G Schaab, R Steinbrecher, B Lacaze. Influence of seasonality, canopy light extinction, and terrain on potential isoprenoid emission from a Mediterranean-type ecosystem in France. Journal of Geophysical Research, 2003, 108(D13): 4392
    [220] D Helmig, J Ortega, A Guenther et al. Sesquiterpene emissions from loblolly pine and their potential contribution to biogenic aerosol formation in the Southeastern U.S.. Atmospheric Environment, 2006, 40(22): 4150~4157
    [221] G Seufort, D Kotzias, C Sparta. Volatile organics in Mediterranean shrubs and their potential role in a changing environment. In: Moreno J, Oechel J, Oechel W. Global Change andMediterranean-type Ecosytstems. Berlin: Springer-Verlag , 1995, 343~370
    [222] R Baraldi, F Rapparini, W C Oechel et al. Monoterpene emission responses to elevated CO2 in a Mediterranean-type ecosystem. New Phytologist, 2004, 161(1): 17~21
    [223] G A Sanadze. Light-dependent excretion of molecular isoprene by leaves. Progess of Photosynthesis Research, 1969, 2: 701~706
    [224] N R Todd, J P Mark, L G Kevin et a1. Increased CO2 uncoupies growth from isoprene emission in an agriforest ecosystem. Nature, 2003, 421: 256~259
    [225] Juergen Kreuzwieser, Heinz Rennenberg, Rainer Steinbrecher. Impact of short-term and long-term elevated CO2 on emission of carbonyls from adult Quercus petraea and Carpinus betulus trees. Environmental Pollution, 2006, 142(2) : 246~253
    [226] C M Richer, A Wild. Phenolic compounds in needles of Norway spruce trees in relation to novel forest declineⅠ.Studies on trees from a site in the Northern black forest. Biochem Physiol Pflanzen, 1992, 188: 305~320
    [227] S Michael, M Celine, J Richard et al. Isoprenoid emission of Quercus spp.(Q.suber and Q.ilex) in interspecific genetic introgression. New Phytol, 2004, 163(3): 573~584
    [228] C J Heyworth. The effect of elevated CO2 concentration and nutrient supply on carbon-based plant secondary metabolites in Pinus sylvestris. Oecologia, 1998, 115: 344~350
    [229] J E Diem. Comparisons of weekday-weekend ozone: importance of biogenic volatile organic compound emissions in the semi-arid southwest USA. Atmospheric Environment, 2000b, 34(20): 3445~3451
    [230] J Llusia, J Penuelas, B S Gimeno. Seasonal and species-specific response of VOC emissions by Mediterranean woody plant to elevated ozone concentrations. Atmospheric Environment, 2002, 36(24): 3931~3938
    [231] A M Manninen, T Holopainen, P L Saarenmaa et al. The role of low-level ozone exposure and mycorrhizas in chemical quality and insect herbivore performance on scots pine seedlings. Global Change Biology, 2000, 6(1): 111~121
    [232] C Geron, S Owen, A Guenther. Volatile organic compounds from vegetation in southern Yunnan Province, China: Emission rates and some potential regional implications. Atmospheric Environment, 2006b, 40(10): 1759~1773
    [233] X Y Liu, R Pawliszyn, L M Wang et al. On-site monitoring of biogenic emissions from Eucalyptusdunnii leaves using membrane extraction with sorbent interface combined with a portable gas chromatograph system. The Analyst, 2004, 129(1): 55~62
    [234] C A Zini, E B Jr Ledford, J Fachel et al. Correlations between pulp properties of Eucalyptus Clones and leaf volatiles using automated solid-phase microextraction. Journal of Agricultural and Food Chemistry, 2003b, 51(27): 7848~7853
    [235] W Grabmer, J Kreuzwieser, A Wisthaler et al. VOC emissions from Norway spruce (Picea abies L. [Karst]) twigs in the field- Results of a dynamic enclosure study. Atmospheric Environment, 2006, 40(suppl.1): S128~S137
    [236] N Yassaa, A Cecinato, B Y Meklati. Evaluation of monoterpenic biogenic volatile organic compounds in ambient air around Eucalyptus globulus, Pinus halepensis and Cedrus atlantica trees growing in Algiers city area by chiral and achiral capillary gas chromatography. Atmospheric Environment, 2000, 34(17): 2809~2816
    [237] D R Hartel. Trees & Air Pollution. Southern center for urban forestry research and information, USDA Forest Service, 2003, 10
    [238]金荷仙.梅、桂花文化与花香之物质基础及其对人体健康的影响.北京林业大学博士学位论文,2003,1~224
    [239]马瑞君,王明理,朱学泰.黄帚橐吾挥发物的化感作用及其主要成分分析.应用生态学报,2005,16(10):1826~1929
    [240]潘宁,严仲铠,牛志多.中国东北松属植物叶中精油的气-质谱分析.中国中药杂志,1992,17(3):166~168,192
    [241]王鸿斌,张真,孔祥波.油松萜烯类挥发物释放规律与红脂大小蠹危害的关系.北京林业大学学报,2005,27(2):75~80
    [242]孙启祥,彭镇华,张齐生.自然状态下杉木木材挥发物成分及其对人体身心健康的影响.安徽农业大学学报,2004,31(2):158~163
    [243]吴敏. 5种杉科植物不同部位的精气成分.中南林学院学报,2006,26(3):82~86
    [244]粟娟,王新明,梁杰明.珠海市10种绿化树种“芬多精”成分分析.中国城市森林建设理论与实践.北京:中国林业出版社,2006:139~143
    [245]吴际友,程勇,程政红等.城市园林树种释放低分子化合物成分分析.中国城市森林建设理论与实践.北京:中国林业出版社,2006:160~164
    [246]张庆费,庞名瑜.上海常见绿化植物气体挥发物的保健功能分析.中国城市森林建设理论与实践.北京:中国林业出版社,2006:134~138
    [247]倪士峰.药用植物挥发物指纹图谱研究.浙江大学博士学位论文,2003,1~112
    [248]侯冬岩,回瑞华,杨梅.酸枣仁中挥发性化学成分分析.分析试验室,2003 ,22(3):84~86
    [249]李惠成,田碹.毛黄栌枝叶挥发性化学成分研究.河南师范大学学报(自然科学版),2006,34(4):113~117
    [250] B Demirci, F Demirci, K H C Baser. Composition of the essential oil of cotinus coggygria Scop from Turkey.Flavour and Fragrance Journal, 2003, 18(1): 43~44
    [251]蒋继宏,李晓储,高甜惠等.几种柏科植物挥发物质及抗肿瘤活性研究.中国城市森林建设理论与实践.北京:中国林业出版社,2006,150~155
    [252]洪蓉.北京植物园有机挥发物的构成及其保健作用.北京林业大学硕士学位论文,2002,1~59
    [253]高岩.北京市绿化树木挥发性有机物释放动态及其对人体健康的影响.北京林业大学博士学位论文,2005,1~148
    [254]胡立香.白皮松林挥发物及其时空动态变化.中国林业科学研究院硕士学位论文,2007:1~83
    [255] D W Purves, J P Caspersen, P R Moorcroft et al. Human-induced changes in US biogenic volatile organic compound emissions: evidence from long-term forest inventory data. Global Change Biology, 2004, 10: 1737~1755
    [256]郑华,金幼菊,周金星等.活体珍珠梅挥发物释放的季节性及其对人体脑波影响的初探.林业科学研究,2003 ,16(3):328~334
    [257]刘爱如,田樱.山东地区侧柏叶止血和抑菌作用比较.山东中医学院学报,1995,19(1):47~49
    [258]洪蓉,金幼菊.日本芳香生理心理学研究进展.世界林业研究,2001,14(3):61~66
    [259] R G Donovan, H E Stewart, S M Owen. Development and application of an urban tree air quality score for photochemical pollution episodes using the Birmingham, United Kingdom, area as a case study. Environmental Science & Technology, 2005, 39(17): 6730~6738
    [260]石强,余树全.生态旅游地的保健功能及其在生态保健园中的应用.浙江林学院学报,2002b,19(4):403~407
    [261]严山,周良,刘新慧.国家森林公园生态评价方法研究.环境导报,1998(3):35~37
    [262]石强,吴章文,贺庆棠.旅游开发利用对张家界森林公园大气质量影响的综合评价.北京林业大学学报,2002c,24(4):25~28
    [263]吴楚材,黄艺,刘云国等.张家界国家森林公园环境质量评价.中国园林,1994,10(3):32~38
    [264]黄晓鸾,王书耕.城市生存环境绿色量值群的研究(3)——国内外园林绿地功能量化的研究.中国园林,1998b,14(57):57~59
    [265] D Rydberg, J Falck. Urban forestry in Sweden from a silvicultural perspective: a review. Landscape and Urban Planning, 2003, 47:1~18
    [266] G W Grey. URBAN FORESTRY. The United States of America, 1986: 1~299
    [267] P A MacCarthy, A M Shah. Impaired endothelium-dependent regulation of ventricular relaxation in pressure-overload cardiac hypertrophy. Circulation, 2000, 101: 1854~1860
    [268] B D Domenica Altavilla, G Squadrito, G M Campo et al. Cardioprotection by the phytoestrogen genistein in experimental myocardial ischaemia-reperfusion injury. British Journal of Pharmacology, 1999, 128: 1683~1690
    [269] T Takeuchi, E Harada. Age-related changes in sleep-wake rhythm in dog. Behavioural Brain Research, 2002, 136: 193~199
    [270] R Boushel, J A L Calbet, G Radegran et al. Parasympathetic neural activity accounts for the lowering of exercise heart rate at high altitude. Circulation, 2001, 104: 1785~1791
    [271] J J Hamann, J B Buckwalter, Z Valic et al. Sympathetic restraint of muscle blood flow at the onset of dynamic exercise. Journal of Applied Physiology, 2002, 92: 2452~2456
    [272]李萍.森林环境健康因子的研究综述.中国城市林业,2004,2(6):45~49
    [273]但新球.森林公园的疗养保健功能及在规划中的应用.中南林业调查规划,1994(47):54~57
    [274] L E Jackson. The relationship of urban design to human health and condition. Landscape and Urban Planning, 2003, 64: 191~200
    [275] C Konijnendijk, J Schipperijn. Neighbour Woods for Better Cities: Tools for developing multifunctional community woodlands in Europe. Landscape and Planning , 2005, 1~36
    [276] Christina Germann-Chiari1, Klaus Seeland. Are urban green spaces optimally distributed to act as places for social integration? Results of a geographical information system (GIS) approach for urban forestry research. Forest Policy and Economics, 2004, 6: 3~13
    [277] Patrik Grahn, Ulrika A Stigsdotter. Landscape planning and stress. Urban Forestry and Urban Greening, 2003, 2: 1~18
    [278] F E Kuo, W C Sullivan. Aggression and violence in the inner city. Effects of environment viamental fatigue. Environment and Behavior, 2001, 33(4): 543~571
    [279] R W Coles, S C Bussey. Urban forest landscapes in the UK progressing the social agenda. Landscape and Urban Planning, 2000, 52, 181~188
    [280] R Kaplan. Some psychological benefits of gardening. Environment Behavior, 1973, 5: 145~152
    [281] H Frumkin. Beyond toxicity: human health and the natural environment. Am. J.Pren. Med, 2001, 20(3): 234~240
    [282] Naky Khuran. Is there a role for trees in crime preventation? .ARBORIST?NEWS,2006, 8: 26~28(www.isa-arbor.com)
    [283] K L Wolf. Urban nature benefits: Psycho-social dimensions of people and plants. Human dimensions of the urban forest. Center for Urban Horticulture, 1998a
    [284] Ulrika A Stigsdotter. Landscape architecture and health-evidence-based health-promoting design and planning. Doctor′s dissertarion, 2005, ISSN 1652-6880, ISBN 91-576-6954-6: 1~37
    [285] K L Wolf. Introduction to urban and community forestry programs in the United States. Landscape Planning and Horticulture, 2003, 4(3): 19~28
    [286] K L Wolf. Nature experiences: Reading and references on human benefits. human dimensions of the urban forest. Center for Urban Horticulture, 1998b
    [287] R S Ulrich. View from a window may influence recovery from surgery. Science, 1984, 224, 420~421
    [288] N M Wells. At home with nature: effect of“greeness”on children’s cognitive functioning. Environment. Behavior, 2000, 32 (6): 775~795
    [289]杨尚英.秦岭北坡森林公园空气负离子资源的开发利用.资源开发与市场,2005,21(5):458~459
    [290]郭二果,王成,彭镇华等.半干旱地区城市单位附属绿地绿化树种的选择—以神东矿区为例.林业科学,2007,43(7):35~43
    [291]张翔.浅析相关因子对空气负离子水平的影响.湖南环境生物职业技术学院学报,2004,10(4):346~351
    [292]邵海荣,贺庆棠.森林与空气负离子.世界林业研究,2000,13(5):19~23
    [293]姚小红,何末奎,周中平.北京城市大气中NO、CO、O3的变化规律研究.环境科学,1999,20(1):23~26
    [294]刘华亭.森林浴—绿的健康法.台北:台湾大学出版社,1984,46~54
    [295] [日]只木良也,吉良龙夫编.唐广仪等译.人与森林——森林调节环境的作用.北京:中国林业出版社,1992,205~241
    [296]中国医药公司上海化学试剂采购供应站.试剂手册(第二版).上海:上海科学技术出版社,1985
    [297]徐波,季浏,祝蓓里等.运用POMS指数评价我国城市成年居民心境状态的研究.体育科学,2003,23(4):28~32
    [298]祝蓓里.POMS量表及简式中国常模简介.天津体育学院学报,1995,(1):35~37
    [299]张秀阁,闫克乐,王力.腹式呼吸对皮肤温度影响的初步探讨.心理科学,2003,26(5):941~942
    [300]严新忠,杨静,郭略.人体血氧饱和度监测方法的研究.医疗装备,2005,18(12):1~4
    [301]庄达民.人体的生理特性与生理指标.家电科技,2005,(1):71~74
    [302]邓树勋,洪泰田,曹志发.运动生理学.北京:高等教育出版社,1999
    [303]王文义.重庆大气微生物污染动态变化规律.重庆环境科学,1994,16(1):40~43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700