用户名: 密码: 验证码:
低维CdS、ZnS和ZnO等纳米材料的固相合成及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属氧化物和硫化物等纳米材料具有独特的物理、化学性质,探索其制备过程、反应机制,对深入研究其尺寸及物性关联、最终设计功能材料具有重要意义。传统合成往往是在溶液或气相中进行,由于诸多缺点受到限制。
     本文从简单合成、绿色高效要求出发,选择金属氧化物和硫化物等低维纳米材料为研究对象,以固相反应为基础,通过改变反应温度、加热方式等因素,用低温固相、熔盐和添加剂与微波辅助等方法进行了合成研究,详细探索了合成反应机理,对产物结构、形貌和光、电等性能进行了表征测试。
     在系统研究不同反应温度、不同添加剂条件下低温固相反应合成硫化镉纳米粒子的基础上,发现粒子尺寸、产物晶型和紫外-可见吸收性能的变化,推测了硫化镉纳米粒子的尺寸和晶型控制机理;研究了对苯二甲酸存在条件下合成硫化镉纳米粒子的反应,发现对苯二甲酸以特殊复合物的形式有效地阻止了产物粒子的长大;以氯化胆碱为熔盐通过特殊的低温反应获得了六方CdS纳米粒子;研究了微波辅助合成CdS纳米粒子的反应,发现微波辐射时间和方式影响着粒子的尺寸和晶型。针对不同合成反应的比较,发现低温固相反应合成硫化镉纳米粒子在合成方面存在较大优势。在系统研究不同反应温度、不同反应时间、不同添加剂条件下低温固相反应合成硫化锌纳米粒子的基础上,发现粒子尺寸和产物紫外-可见吸收性能的变化,发现十二烷基胺以不同的反应方式在较高温度下保持着粒子的较小粒径,推测了其粒子的尺寸控制机理;研究了NaCl存在下熔盐合成六棱柱状ZnS纳米材料的形貌与紫外-可见吸收性能和发光性能,发现原始反应物、不同熔盐、添加剂等因素均控制着产物的形貌。针对不同合成反应的比较,发现对于不同形貌和性能的硫化锌纳米粒子可选择合适的合成方法。
     在变换熔盐种类及原始反应物的条件下,研究了熔盐合成不同形貌ZnO纳米材料的反应,发现产物的形貌对熔盐和反应物的依赖性;研究了熔盐来源对ZnO纳米粒子尺寸的影响,发现外加熔盐为粒子的长大提供了合适的环境;研究了ZnO一维纳米材料的微波辐射和添加剂PEG400的辅助合成反应,发现微波辐射有利于纳米棒的形成,添加剂PEG400可以控制产物某些晶面的生长,从而获得不同形貌和发光性能的产物。
     在NaCl-KCl混合熔盐存在条件下,研究了合成Co_3O_4纳米棒的反应,结果表明熔盐阴离子Cl-促进了纳米棒的生成,发现不同尺寸的钴粒子前驱体、不同熔盐控制着不同形貌产物的生成;通过不同添加剂、不同熔盐的共同作用又得到了具有较好电容性能的Co_3O_4纳米粒子。两种方法具有不同的优点,为不同形貌四氧化三钴纳米材料的合成提供了不同选择。
     研究了微波辐射和添加剂辅助合成金属镍和氧化镍的反应,发现反应温度、加热时间、前驱体与添加剂的混合方式等因素影响着最终产物的类型和尺寸,产物具有较好的循环伏安特性和充放电性能。
     在上面研究基础上,对合成产物的种类进行扩展。研究了金属Ag单质和金属配位化合物PbC_2O_4的简单快速合成;研究了微波辐射时间和方式对产物金属铜形成过程的影响,以及产物的紫外-可见光吸收性能。
     针对金属氧化物和金属硫化物等纳米材料的这些研究是对固相反应的较为深入地发展,可以为不同形貌及性能纳米材料的获得和大批量生产及应用提供一定的参考,具有较重要的学术价值和广阔的应用前景。
Nanostructured metal oxides and sulfides have exhibited unique physical chemical properties. Preparing and investigating their general formation mechanism may be a solution to the precise control of their sizes and properties. Conventional synthesis is always performed in solution or gas, and it is being excluded due to many problems more and more.
     In this dissertation, according to command of energy-economical and green effective production, different sulfides and oxides have been synthesized and characterized by low-temperature solid-state, molten salt and microwave solid-state in the presence of addition, respectively. Their formation mechanism has been explored, and their optical and electrical properties have been also characterized.
     CdS nanomaterials had been synthesized by low-temperature solid-state reaction in the condition of different reaction temperature, different time and different additions, and UV-vis properties depend on diameter and crystal pattern of products. Crystal pattern and diameter of CdS nanoparticles can be controlled by different additions and reaction temperature, and their formation mechanic has been explored; Diameter of CdS nanoparticles can also control by adding template terephthalic acid in the reaction; Hexagonal CdS nanoparticles are synthesized by using choline chloride as molten salt under low reaction temperature; CdS nanoparticles had also been synthesized by microwave-assisted solid-state reaction, and radiation time and radiation pattern have some effect on diameter and crystal pattern of products; On the contrast, CdS nanoparticles synthesized by low-temperature solid-state reaction got best qulity.
     Diameter of ZnS nanoparticles is affected by reaction temperature, reaction time and additions, and ZnS nanoparticles with small diameter can be obtained by using dodecylamine as addition; ZnS hexagonal prism can be synthesized simply by using NaCl as molten salt, and the effects of reactants, molten-salts and additions on product morphologies have been studied; On the contrast, different methods can be chosed to obtain ZnS with different morphologies and different properties.
     In the condition of changing molten salts and reactants, ZnO with different morphologies can be obtained, and product morphologies depend on molten-salt and reactants; The effect of molten-satle on ZnO nanoparticles had studied, and results show that additional molten-satle provided a favorable environment for growth of ZnO particles; In the presence of PEG400, ZnO nanorods had been synthesized, and studies show that microwave radiation can lead to fast synthesis of ZnO nanorods and PEG400 can confine the growth rate in some directions. Thus, ZnO products with different morphologies and different properties had been obtained.
     Co_3O_4 nanorods had been obtained by employing Co nanoparticles as precursor and using NaCl-KCl molten salt, results show that Cl- leads to formation of Co_3O_4 nanorods, and different precursors and different molten-salts have great effects on products morphologies; Co_3O_4 nanoparticles with a fine electrochemical stability had been synthesized in the presence of addition and molten-salt. Different methods can be chosed to obtain Co_3O_4 with different morphologies.
     Metal Ni and electrode materials NiO have been synthesize through microwave-assisted and addition-assisted reactions, and studies show that reaction temperature, reaction time and mixed state between precursor and addition all had important effects on formation and sizes of the products.
     In addition, metal Ag and metal coordinate compound PbC_2O_4 had been synthesized by low-temperature solid-state reaction. Metal Cu has been also obtained by microwave radiation in the presence of PEG400, and radiation time has an important effect on formation of Cu nanoparticles.
     The studies about metal oxides and sulfides are a new development of solid-state reaction, and it can provide useful reference for synthesis of nanomaterials with different morphologies and different properties, and large-scale produce and application of nanomaterials, and it may have an important research value and wide application future.
引文
[1]王世敏,许祖勋,傅晶.纳米材料制备技术[M].北京:化学工业出版社, 2002, 1~2.
    [2]张志焜,崔作林.纳米技术与纳米材料[M].北京:国防工业出版社, 2000, 9~10.
    [3] Moriceau P, Lebouteiller A, Bordes E, et al. A new concept related to selectivity in mild oxidation catalysis of hydrocarbons: the optical basicity of catalyst oxygen [J]. Phys. Chem. Phys., 1999, 1: 5735~5744.
    [4]徐毓龙, Heiland G.金属氧化物气敏传感器[J].传感技术学报, 1995,4: 59~64.
    [5] Ziese M. Extrinsic magnetotransport phenomena in ferromagnetic oxides [J]. Rep. Prog. Phys., 2002, 65: 143~249.
    [6] Vanmaekelbergh D, Liljeroth P. Electron-conducting quantum dot solids: novel materials based on colloidal semiconductor nanocrystals [J]. Chem. Soc. Rev., 2005, 34: 299~312.
    [7] Rapoport L, Bilik Y, Feldman Y, et al. Hollow nanoparticles of WS2 as potential solid-state lubricants [J]. Nature, 1997, 387: 791~793.
    [8] Chhowalla M, Amaratunga G A J. Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear [J]. Nature, 2000, 407: 164~167.
    [9] Winter M, Besenhard J O, Spahr M E, et al. Insertion electrode materials for rechargeable lithium batteries [J]. Adv. Mater., 1998, 10: 725~763.
    [10] Gratzel M. Mesoscopic solar cells for electricity and hydrogen production from sunlight [J]. Chem. Lett., 2005, 34: 8~13.
    [11]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2001, 4~11.
    [12]盖国生.超微粉体技术[M].北京:化学工业出版社, 2004, 43~45.
    [13]王世敏,许祖勋,傅晶.纳米材料制备技术[M].北京:化学工业出版社, 2002, 29~31
    [14]倪赛力,常永勤,龙毅,等.氧化锌纳米棒场发射性能研究[J].物理学报, 2006, 55(10): 5409~5412.
    [15]黄运华,张跃,白雪冬. ZnO双晶纳米梳[J].物理学报, 2006, 55(3): 1491~1496.
    [16]倪安泽,丛洪涛,成会明.具有四角棒/线结构纳米氧化锌的制备和性能[J].材料研究学报, 2005, 19(2): 113~117.
    [17] Zhang Y, Jia H, Luo X. Synthesis, Microstructure and Growth Mechanism of Dendrite ZnO Nanowires [J]. J. Phys. Chem. B., 2003, 107(33): 8289~8293.
    [18] Jie J S, Wang G Z, Han X H. Synthesis and Characterization of ZnO: In Nanowires with Superlattice Structure [J]. J. Phys. Chem. B., 2004, 108 (44): 17027 ~17031.
    [19] Kar S, Chaudhuri S. Controlled synthesis and photolumi-nescence properties of ZnS nanowires and nanoribbons [J]. J. Phys. Chem. B, 2005, 109(8): 3298-3302.
    [20] Ge J P, Wang J, Zhang H X, et al. Halide-transportchemical vapor deposition of luminescent ZnS: Mn2+ one-dimensional nanostructures [J]. Adv. Funct. Mater., 2005, 15(2): 303-308.
    [21] Jiang Y, Meng X M, Liu J, et al. ZnS nanowires with wurtzite polytype modulated structure [J]. Adv. Mater., 2003, 15(14): 1195~1198.
    [22] Jie J S, ZhangW J, JiangY, et al. Heterocrystal and bi-crystal structures of ZnS nanowires synthesized by plasmaenhanced chemical vapour deposition [J]. Nanotechnology, 2006, 17(12): 2913~2917.
    [23]陆慧,王亮兴,贺黎明.气相合成SnO_2超微粒薄膜研究[J].化学物理学报, 2001, 14(4): 469~473.
    [24] Liu Y, Liu M. Growth of Aligned Square-Shaped SnO_2 Tube Arrays [J]. Adv. Funct. Mater., 2005, 15(1): 57~62.
    [25] Liu Z Q, Zhang D H, Han S, et al. Laser Ablation Synthesis and Electron Transport Studies of Tin Oxide Nanowires [J]. Adv. Mater., 2003, 15(20): 1754~1757.
    [26] Wang F D, Dong A G, Sun J W. Solution-Liquid-Solid Growth of Semiconductor Nanowires [J]. Inorg. Chem., 2006, 45(19): 7511~7521.
    [27]梁凯,王大伟,奚长生.气体传感器材料—In2O3纳米线的制备与表征[J].硅酸盐通报, 2005, 6: 8~10.
    [28] Park S, Lim S, Choi H. Chemical Vapor Deposition of Iron and Iron Oxide Thin Films from Fe(II) Dihydride Complexes[J]. Chem. Mater., 2006, 18(22): 5150~5152.
    [29] Chan H Y H, Takoudis C G, Weaver M J. In-Situ Monitoring of Chemical Vapor Deposition at Ambient Pressure by Surface-Enhanced Raman Spectroscopy: Initial Growth of Tantalum(V) Oxide on Platinum[J]. J. Am. Chem. Soc., 1999, 121(39): 9219~9220.
    [30] Zhou J, Xu N S, Deng S Z, et al. Large-Area Nanowire Arrays of Molybdenum and Molybdenum Oxides: Synthesis and Field Emission Properties [J]. Adv. Mater., 2003, 15(21): 1835~1840.
    [31] Nair J P, Wachtel E, Lubomirsky I, et al. Anomalous Expansion of CeO2 Nanocrystalline Membranes [J]. Adv. Mater., 2003, 15(24): 2077~2081.
    [32] Blackman C S, Parkin I P. Atmospheric Pressure Chemical Vapor Deposition of Crystalline Monoclinic WO3 and WO3-X Thin Films from Reaction of WCl6 with O-Containing Solvents and Their Photochromic and Electrochromic Properties [J]. Chem. Mater., 2005, 17(6): 1583~1590.
    [33] Brescacin E, Basato M, Tondello E. Amorphous WO3 Films via Chemical Vapor Deposition from Metallorganic Precursors Containing Phosphorus Dopant [J]. Chem. Mater., 1999, 11(2):314~323.
    [34]余华梁,黄世震,林伟,等.用气相反应法制备纳米WO_3气敏材料[J].传感技术学报, 2005, 18(2): 325~328.
    [35] Li Y B, Bando Y, Golberg D. Quasi-Aligned Single-Crystalline W_(18)O_(49) Nanotubes and Nanowires [J]. Adv. Mater., 2003, 15(15): 1294~1296.
    [36] Choi H, Park S H. Seedless Growth of Free-Standing Copper Nanowires by Chemical Vapor Deposition [J]. J. Am. Chem. Soc., 2004, 126(20): 6248~6249.
    [37] Malandrino G, Finocchiaro S T. Free-Standing Copper (II) Oxide Nanotube Arrays through an MOCVD Template Process[J]. Chem. Mater., 2004, 16(26): 5559~5561.
    [38] Zhang H, Zhang S Y, Zuo M, et al. Synthesis of ZnS nanowires and assemblies by carbothermal chemical vapor deposition and their photoluminescence[J].Eur J Inorg Chem, 2005, (1): 47~50.
    [39] Lao J Y, Huang J Y, Wang D Z, et al. Hierarchical Oxide Nanostructrues [J]. J. Mater. Chem., 2004, 14(4): 770~773.
    [40] Kumar R V, Diamant Y, Gedanken A. Sonochemical Synthesis and Characterization of Nanometer-Size Transition Metal Oxides from Metal Acetates [J]. Chem. Mater., 2000, 12 (8): 2301~2305.
    [41] Wang X, Li Y. Selected-Control Hydrothermal Synthesis ofα- andβ-MnO2 Single Crystal Nanowires [J]. J. Am. Chem. Soc., 2002, 124(12): 2880~2881.
    [42] Lou X W, Zeng H C. Hydrothermal Synthesis ofα-MoO3 Nanorods via Acidification of Ammonium Heptamolybdate Tetrahydrate [J]. Chem. Mater., 2002, 14(11): 4880~4880.
    [43]王成云,苏庆德,钱逸泰.非水溶剂水热法制备CeO2纳米粉[J].化学研究与应用, 2001, 13(4): 402~405.
    [44] Prakash A, McCormick A V, Zachariah M R. Aero-Sol-Gel Synthesis of Nanoporous Iron-Oxide Particles: A Potential Oxidizer for Nanoenergetic Materials[J]. Chem. Mater., 2004, 16(8): 1466~1471.
    [45] Lakshmi B B, Patrissi C J, Martin C R. Sol-Gel Template Synthesis of Semiconductor Oxide Micro- and Nanostructures[J]. Chem. Mater., 1997, 9(11): 2544~2550.
    [46] Li Q, Newberg J T, Walter E C. Polycrystalline Molybdenum Disulfide (2H-MoS2) Nano- and Microribbons by Electrochemical/Chemical Synthesis [J]. Nano Lett., 2004, 4(2): 277~281.
    [47] Boldyrev V V. Reactivity of Solids: Past, Present and Future [M]. Blackwell Science Ltd, 1996, p269.
    [48]苏勉曾,固体化学导论[M],北京:北京大学出版社, 1987.
    [49]日本化学会编,董万堂,董绍俊译,无机固态反应[M],科学出版社, 1985.
    [50]吕孟凯.固态化学[M],济南山东大学出版社, 1996.
    [51] West A R. Solid State Chemistry and its Applications [M]. New York: John Wiley and Sons, 1984, p1.
    [52] Stein A, Keller S W, Mallouk T E. Turning Down the Heat: Design and Mechanism in Solid-State Synthesis [J]. Science, 1993, 259, 1558~1564.
    [53]雷力旭,忻新泉,室温固相化学反应与固体结构[J].化学通报, 1997, 2, 1~7.
    [54] Disalvo F J. Solid-State Chemistry: A A Rediscovered Chemical Frontier [J]. Science, 1990, 247, 649~655.
    [55] Liu S Z, Lu Y J, Kappes M M, et al. The Structure of the C_(60) Molecule: X-Ray Crystal Structure Determination of a Twin at 110 K [J]. Science, 1991, 254, 408~410.
    [56] Day P. Low-Dimensional Solids [J]. Chem. In Brit., 1983, 19, 306~314.
    [57] Jacobson A J, Cheetham A K, Day P. Solid State Chemistry Compounds [M]. Oxford University Press, New York, 1992, 182~233.
    [58]俞建群,贾殿赠,张慧CdS纳米粉体的合成新方法—一步室温固相化学反应法[J],化学通报, 1998, 2, 35~37.
    [59]贾殿赠,俞建群,夏熙,一步室温固相化学反应法合成CuO纳米粉体[J],科学通报, 1998, 43(2), 172~174.
    [60]俞建群,贾殿赠,郑毓峰,等.纳米氧化镍、氧化锌的合成新方法,无机化学学报[J], 1999, 15(1), 95~98.
    [61] Wang W Z, Liu Z H, Zheng C L, et al. Synthesis of CdS nanoparticles by a novel and simple one-step, solid-state reaction in the presence of a nonionic surfactant [J]. Mater. Lett., 2003, 57, 2755~2760.
    [62] Li Q W, Luo G A, Li J, et al. Preparation of ultrafine MnO2 powders by the solid state method reaction of KMnO4 with Mn (II) salts at room temperature[J]. J. Mater. Processing Techno., 2003, 137, 25~29.
    [63]任引哲,齐利民,马季铭.利用室温固态反应制备球散石型CaCO3粒子[J].高等学校化学学报, 2003, 24(8): 1492~1494.
    [64]王艳萍,朱俊武,张莉莉,等.纳米NiO的制备及其谱学特性研究[J].光谱学与光谱分析, 2006, 26(4): 690~693
    [65] Wang W Z, Zhan Y J, Wang G H. One-step, solid-state reaction to the synthesis of copper oxide nanorods in the presence of a suitable surfactant[J]. Chem. Commun., 2001, 727~728.
    [66] Chen Y T, Guo Y, Kong L B, et al. A solid-state reaction for the synthesis of CdS nanowires [J]. Chem. Lett., 2002, 602~603.
    [67] Cao Y L, Jia D Z, Liu L, et al. Rapid Synthesis of Lead Oxide Nanorods by One-step Solid-state Chemical Reaction at Room Temperature[J], Chinese J. Chem., 2004, 22: 1288~1290.
    [68] Jin C F, Yuan X, Ge W W, et al. Synthesis of ZnO nanorods by solid state reaction at room temperature[J]. Nanotechnology, 2003, 14: 667~669.
    [69]曹亚丽,贾殿赠,刘浪,等.草酸钴纳米棒的一步固相化学反应合成及其表征[J].化学学报, 2005, 63(2): 175~178.
    [70]曹亚丽,贾殿赠,刘浪,等.室温固相化学反应法合成Cd(OH)_2纳米棒.高等学校化学学报[J], 2004, 25(9): 1601~1603.
    [71] Zhou T Y, Xin X Q. Room temperature solid-state reaction—a convenient novel route to nanotubes of zinc sulfide[J], Nanotechnology, 2004, 15: 534~536.
    [72]赵吉寿,颜莉,戴建辉,等.磷酸铝的有机铵模板固相合成及离子吸附性[J].应用化学, 2004, 21(2): 203~205.
    [73] Lu H Y, Chu S Y, Tan S S. The characteristics of low-temperature-synthesized ZnS and ZnO nanoparticles [J], J. Cryst. Growth, 2004, 269: 385~391.
    [74] Du Y, Zhang M S, Hong J, et al. Structural and optical properties of nanophase zinc oxide[J]. Appl. Phys. A, 2003, 76: 171~176.
    [75] Chi Y H, Zhuang J, Yu J, et al.γ-Fe_2O_3 nanoparticle prepared by solid-state reaction at low heating and its electromagnetic characters[J]. Chinese J. Inorg. Chem., 2004, 20(4): 479~482.
    [76]姜国华,姜继森.γ-Fe2O3纳米粒子的固相研磨法制备研究[J].高等学校化学学报[J], 2004, 25(3): 405~408.
    [77]庄稼,朱达川,迟燕华,等.固相反应制备纳米CeO_2粉体[J].化学研究与应用, 2004, 16(6): 839~840.
    [78] Chen Y, Zhu J M, Zhu X H, et al. Gas sensing property and microstructure of SnO2 nanocrystalline prepared by solid state reaction—thermal oxidation [J]. Mater. Sci. Engineer. B, 2003, 99: 52~55.
    [79] Wang Z J, Zhang H M, Zhang L G, et al. Low-temperature synthesis of ZnO nanoparticles by solid-state pyrolytic reaction [J]. Nanotechnology, 2003, 14: 11~15.
    [80] Zhang K F, Guo J S, Tao C H, et al. Preparation and characterization of V2O3 nanopowder by solid phase reaction[J]. Chinese J. Inorg. Chem., 2005, 21(7): 1090~1092.
    [81] Liu Q, Ni Y H, Yin G, et al. High yield synthesis of PbS nanocubes using one-step solid-state reaction in the presence of an anionic surfactant [J]. Mater. Chem. Phys., 2005, 89: 379~382.
    [82]蔡宗英,邢献然,邓金侠.熔盐快速合成Pb_(1-X)la_XTiO_3粉体[J],无机化学学报(英文版), 2006, 22(8): 1421~1425.
    [83]郝华,刘韩星,欧阳世翕.熔盐法合成钛酸锶铋[J],硅酸盐学报, 2006, 34(7): 815~817.
    [84] Yoon K H, Chi Y S, Lee D H. Powder Characteristics of Ph(Mg/31Nb_(2/3))O_3 Prepared by Molten salt Synthesis[J]. J. Am. Ceram. Soc., 1993, 76: 1373~1376.
    [85] Arendt R H, Rosolowski Z H, Szymaszek J W. Lead Zirconate Titanate Ceramics from Molten salt Synthesis Powders[J]. Mater. Res. Bull., 1979, 14: 703~709.
    [86]蔡君威,王聪秀.熔盐合称法制备铌铁酸铅粉末[J].化学世界, 1993, 34: 616~618.
    [87]曹健,谢嘉宁,张业凤.熔盐法合成BaFe_(11)Co_(0.5)Ti_(0.5)O_(10)磁性粉体及其性能分析[J].功能材料, 1996, 27(5): 446~448.
    [88] Chin C C, Li C C, Desu S B. Molten salt Synthesis of a Complex Perovskite Pb(Fe_(0.5)Nb_(0.5))O_3 [J]. J. Am. Ceram. Soc., 1991, 74(1): 38~41.
    [89] Wang X, Zhuang J, Li Y D. Pr_6O_(11) single-crystal nanotubes from a molten-salt synthetic method [J]. Eur. J. Inorg. Chem., 2004, 946~948.
    [90] Wang W Z, Xu C K, Wang X S, et al. Preparation of SnO_2 nanorods by annealing SnO_2 powder in NaCl flux [J]. J. Mater. Chem., 2002, 12(6): 1922~1925.
    [91] Jiang Z Y, Xu T, Xie Z X, et al. Molten salt route toward the growth of ZnO nanowires in unusual growth directions [J]. J. Phys. Chem. B, 2005, 109: 23269~23273.
    [92] Shen L M, Guo L C, Bao N Z, et al. Salt-assisted solid-state chemical reaction. Synthesis of ZnO nanocrystals [J]. Chem. Lett., 2003, 32: 826~ 827.
    [93] Wang W Z, Xu C K, Wang G H, et al. Preparation of smooth single-crystal Mn3O4 nanowires [J]. Adv. Mater. 2002, 14(11), 837~840.
    [94] Wang W Z, Liu Y K, Xu C K, et al. Synthesis of NiO nanorods by a novel simple precursor thermal decomposition approach [J]. Chem. Phys. Lett., 2002, 362: 119~122.
    [95] Li L R, Wang W Z. Synthesis and characterization of monoclinic ZrO_2 nanorods by a novel and simple precursor thermal decomposition approach [J]. Solid State Commun., 2003, 127: 639~643.
    [96] Wang J, Yang J K, Bao Y, et al. Preparation of crystalline manganese oxides hollow spheres[J]. Powder Techno., 2004, 145: 172~175.
    [97] Wang J S, Yang J K, Sun J Q, et al. Synthesis of copper oxide nanomaterials and the growth mechanism of copper oxide nanorods[J]. Mater. Design, 2004, 25: 625~629.
    [98] Lan C, Hong K Q, Wang W Z, et al. Synthesis of ZnS nanorods by annealing precursor ZnS nanoparticles in NaCl flux [J]. Solid State Commun., 2003, 125: 455~458.
    [99] Liu Y K, Liu Z H, Wang G H. Synthesis and characterization of ZnO nanorods [J]. J. Cryst. Growth, 2003, 252: 213~318.
    [100] Baghurst D R, Mingos D M P. Design and application of a reflux modification for the synthesis oforganometallic compounds using microwave dielectic loss heating effects [J]. J. Organometallic Chem., 1990, 384: 57~60.
    [101]蒋才武,陈超球.苯氧乙酸铜的微波固相合成及应用[J].广西师范大学学报(自然科学版), 2000 (2): 54~57.
    [102]庞广生,崔得良,等.微波固相法合成层状磷锑酸钾化合物[J].化学学报, 1996, 54: 575~580.
    [103]成宏.微波辐射条件下IIA、IIB族金属脂肪酸盐的固相合成[J].衡阳医学院学报, 1998, 3: 34~36.
    [104]贾殿赠,杨立新等.微波技术在固相配位化学反应中的应用研究(I)—Co(II)、Ni(II)、Cu(II)配合物在微波条件下的固相合成[J].高等学校化学报, 1997, 9: 1432~1435.
    [105]蒋才武,陈超球.微波辐射条件下Cu(II)、Co(II)、Ni(II)、Zn(II)与甘氨酸配合物的固相合成、表征及应用[J].广西师范学报(自然科学版), 2000 (3): 32~37.
    [106]徐如人,庞文琴.无机合成与制备化学[M].高等教育出版社, 2001.
    [107] Ganesh I, Srinivas B, Johnson R, et al. Microwave assisted solid state reaction synthesis of MgAl2O4 spinel powders [J]. J. Eur. Cer. Soc., 2004, 24: 201~207.
    [108] Yang G, Wang G, Hou W H. Microwave solid-state synthesis of LiV_3O_8 as cathode material for lithium batteries [J]. J. Phys. Chem. B, 2005, 109, 11186~11196.
    [109]银董红,秦亮生,刘建福,等.微波固相法制备ZnCl2/MCM-41催化剂及其催化性能[J].物理化学学报, 2004, 20(9): 1150~1154.
    [110]张天胜.表面活性剂应用技术[M].北京:化学工业出版社, 2001, 1.
    [111]于珍祥,马菊英.表面活性剂工业[J].表面活性剂, 1992, 15 (4): 10~14.
    [112]张高勇,王军.表面活性剂的制备及应用[M].北京:中国轻工业出版社, 1997.
    [113]赵国空.表面活性剂物理化学[M].北京:北京大学出版社. 1984, 9, p249.
    [114]郭文利,靳正国.模板组装制备多孔SiO_2及其在纳米材料中的应用[J].天津大学学报, 2000, 33 (4): 534~537.
    [115] Kresge C T, Leonowicz M E, Roth W J, et al. Ordered porous molecular sieves synthesized by a liquid crystal template mechanism [J]. Nature, 1992, 359: 710~712.
    [116] Yang H, Kuperman A, Coombs N, et al. Synthesis of oriented films of mesoporous silica on mica [J]. Nature, 1996, 379: 703~705.
    [117] Beck J S, Vartuli J C, Roth W J, et al. A new family of porousmolecular sieves prepared with liquid crystal templates [J]. J. Am. Chem. Soc., 1992, 114: 10834~10843.
    [118] Branco L C, Rosa J N, Moura Ramos J J, et al. Preparation and characterization of new room temperature ionic liquids [J]. Chem. Eur. J., 2002, 8(16): 3671~3677.
    [119]姚建曦,赵高凌,韩高荣.聚乙烯吡咯烷酮硫脲修饰CdS纳米粒子的制备[J].无机材料学报, 2003, 18(2): 445~450.
    [120]吴伟平,高濂.气-液反应反胶束法制备CdS纳米颗粒[J].无机材料学报, 2003, 18(4): 937~941.
    [121] Murray C B, Norris D J, Bawendi M G. Synthesis and Characterization of Nearly Monodisperse CdE (E=sulfur, selenium, tellurium) Semiconductor Nanocrystallites [J]. J. Am. Chem. Soc., 1993, 115: 8706~8715.
    [122] Yan L, Xu D S, Zhang Q M, et al. Preparation of Cadmium Sulfide Nanowire Arrays in Anodic Aluminum Oxide Templates [J]. Chem. Mater., 1999, 11: 3433~3435.
    [123] Ludolph B, Malik M A, Obrien P, et al. Novel single molecule precursor routes for the direct synthesis of highly monodispersed quantum dots of cadmium or zinc sulfide or selenide [J]. Chem. Commun., 1998, 17: 1849~1850.
    [124] Caponetti E, Pedone L, Chillura Martino D, et al. Synthesis, size control, and passivation of US nanoparticles in water/AOT/n-heptane microemulsions [J]. Mater. Sci. Engineer C, 2003, 23(4): 531~539.
    [125] Taghavinia N, Iraji-zad A, Mohammad Mahdavi S, et al. Photo-induced CdS nanoparticles growth [J]. Phys. E, 2005, 30(1-2):114~119.
    [126] Calandra P, Longo A, Liveri V T. Synthesis of ultra-small ZnS nanoparticles by solid-solid reaction in the confined space of AOT reversed micelles [J]. J. Phys. Chem. B, 2003, 107(1): 25~30.
    [127]大连理工大学无机化学教研室,无机化学[M],高等教育出版社, 1978.
    [128]周益明,忻新泉.低热固相合成化学[J].无机化学学报, 1999, 15(3): 273~292.
    [129] Abbott A, Capper G, Davies D L, et al. Novel Solvent Properties of choline Chloride/Urea Mixture [J]. Chem. Commun., 2003: 70~71.
    [130] Kaito C, Saito Y, Fujita K. Studies on the structure and morphology of ultrafine particles of metallic sulfides [J]. J. Cryst. Growth, 1989, 94(4): 967~977.
    [131]钟国清,曾仁权,微波辐射固相法合成缩二脲铜配合物[J].无机化学学报, 2002, 18(8): 849~853.
    [132] Sun X L, Zhang G L, Tang G Q, et al. The Site Symmetry of Eu3+ in ZnS: Eu Nanoparticle [J]. Chinese Chem. Lett., 1999, 10 (9): 807 ~ 810.
    [133] Curie D, Prener J S. Physics and chemistry ofⅡ-Ⅵcompound [M]. Netherlands, 1967.
    [134] Leverenz H W. An introduction to luminescence of solids [M]. NewYork: Wiley, 1950.
    [135] Ren S Y, Hu W M, Dow J D. Gap vibration modes of mass defects in the cubic compound semiconductor ZnS [J]. J. Luminescence, 1990, 45 (1- 6): 159 ~ 161.
    [136] Chen J F, Li Y L, Wang Y H, et al. Preparation and characterization of zinc sulfide nanoparticles under high-gravity environment [J]. Mater. Res. Bull., 2004, 39: 185 ~ 194.
    [137] Khiew P S, Radiman S, Huang N M, et al. Preparation and characterization of ZnS nanoparticles synthesized from chitosan laurate micellar solution [J]. Mater. Lett., 2005, 59: 989 ~ 993.
    [138] Yang P, Lu M, Xu D, et al. Synthesis and photoluminescence characteristics of doped ZnS nanoparticles [J]. Appl. Phys. A, 2001, 73(4): 455 ~ 458.
    [139] Mu J, Gu D, Xu Z. Synthesis and stabilization of ZnS nanoparticles embedded in silica nanospheres [J]. Appl. Phys. A, 2005, 80(7): 1425 ~ 1429.
    [140] Ekoko B G, Zhou R M, Xin L H, et al. Synthesis of nanocrystalline zinc sulfide in a non-aqueous system by gamma-irradiation [J]. J. Radioanalytical Nuclear Chem., 2005, 265 (1): 3 ~ 6.
    [141] Wang W Z, Liu Y K, Zhan Y J, et al. A novel and simple one-step solid-state reaction for the synthesis of PbS nanoparticles in the presence of a suitable surfactant [J]. Mater. Res. Bull., 2001, 36: 1977 ~ 1984.
    [142] Dhas N A, Zaban A, Gedanken A. Surface synthesis of zinc sulfide nanoparticles on silica microspheres: Sonochemical preparation, characterization, and optical properties [J]. Chem. Mater., 1999, 11 (3): 806 ~ 813.
    [143] Chen W, Wang Z G, Lin Z J, et al. Absorption and luminescence of the surface states in ZnS nanoparticles [J]. J. Appl. Phys., 1997, 82: 3111 ~ 3115.
    [144] Hebalkar N, Lobo A, Sainkar S R, et al. Properties of zinc sulphide nanoparticles stabilized in silica [J]. J. Mater. Sci., 2001, 36(18): 4377~4384.
    [145] Dimitrova V, Tate J. Synthesis and characterization of some ZnS-based thin film phosphors for electroluminescent device applications [J]. Thin Solid Films, 2000, 365(1), 134~138.
    [146] Li Y, Li X, Yang C, et al. Ligand-Controlling Synthesis and Ordered Assembly of ZnS Nanorods and Nanodots [J]. J. Phys. Chem. B, 2004, 108(41), 16002~16011.
    [147] Wang Z R, Cheng W.矿物学[M].上海科学技术出版社, 1965, p181.
    [148] Li W J, Shi E W, Chen Z Z, et al. Growth habit of polar crystals [J]. Chin. Sci. Bull., 2000, 45(18): 1662~1666.
    [149] Yang R S, Wang Z L. Interpenetrative and Transverse Growth Process of Self-catalyzed ZnO Nanorods [J]. Solid State Comm., 2005, 134: 741~745.
    [150] Gao X D, Li X M, Yu W D. Synthesis and Characterization of Flowerlike ZnO Nanostructures via an Ethylenediamine-meditated Solution Route [J]. J. Solid State Chem., 2005, 178: 1139~1144.
    [151] Li J Y, Chen X L, Li H, et al. Fabrication of zinc oxide nanorods [J]. J. Crystal Growth, 2001, 233: 5~7.
    [152] Dai Y, Zhang Y, Bai Y Q, et al. Bicrystalline zinc oxide nanowires [J]. Chem. Phys. Lett., 2003, 375: 96~101.
    [153] Liu B, Zeng H C. Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm [J]. J. Am. Chem. Soc., 2003, 125: 4430~4431.
    [154] Yang P D, Yan H Q, Mao S, et al. Controlled Growth of ZnO Nanowires and Their Optical Properties [J]. Adv. Funct. Mater., 2002, 12: 323~331.
    [155] Wang Y W, Zhang L D, Wang G Z. Catalytic Growth of Semiconductor Zinc Oxide Nanowires and Their Photoluminescence Properties [J]. J. Crys. Growth, 2002, 234(1): 171~175.
    [156] Yin H Y, Xu Z D, Wang Q S. Study of Assembling ZnO Nanorods into Chrysanthemum-like Crystals [J]. Mater. Chem. Phys., 2005, 91: 130~133.
    [157] Trentler T J, Hickman K M, Goel S C, et al. Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth [J]. Science, 1995, 270: 1791~1794.
    [158] Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth [J]. Appl. Phys. Lett., 1964, 4: 89~90.
    [159] Duan X F, Lieber C M. General synthesis of compound semiconductor nanowires [J]. Adv. Mater., 2000, 12(4): 298~302.
    [160] Duan X F, Huang Y, Cui Y, et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices [J]. Nature, 2001, 409(6816): 66~69.
    [161] Wong E M, Searson P C. ZnO quantum particle thin films fabricated by electrophoretic deposition [J]. Appl. Phys. Lett., 1999, 74(20): 2939~2941.
    [162] Monticone S, Tufen R, Kanaev A V. Complex nature of the visible fluorescence of colloidal ZnO nanoparticles [J]. J. Phys. Chem. B, 1998, 102, 2854~2862.
    [163] Yao B D, Shi H Z, Bi H J, et al. Optical properties of ZnO loaded in mesoporous silica [J]. J. Phys: Condens. Mater., 2000, 12: 6265~6270.
    [164] Li Y, Cheng G S, Zhang L D. Fabrication of highly ordered ZnO nanowire arrays in anodic alumina membranes [J]. J. Mater. Res., 2000, 15(11): 2305~2308.
    [165] Hu J Q, Wong N B, Lee C S, et al. Synthesis of uniform hexagonal prismatic ZnO whiskers [J]. Chem. Mater., 2002, 14(3): 1216~1219.
    [166] Li F, Xu J Q, Yu X H, et al. One-step solid-state reaction synthesis and gas sensing property of tin oxide nanoparticles [J]. Sensors Actuators B, 2002, 81(2-3): 165~169.
    [167] Dobryszycki J, Biallozor S. On some organic inhibitors of zinc corrosion in alkaline media [J]. Corros. Sci., 2001, 43 (7): 1309~1319.
    [168] Li Z Q, Xiong Y J, Xie Y. Selected-control synthesis of ZnO nanowires and nanorods via aPEG-assisted route [J]. Inorg. Chem., 2003, 42(24): 8105~8109.
    [169] Wong E M, Searson P C, ZnO quantum particle thin films fabricated by electrophoretic deposition [J]. Appl. Phys. Lett., 1999, 74 (20): 2939~2941.
    [170] Vanheusden K, Warren W L, Seager C H, et al. Mechanisms behind green photoluminescence in ZnO phosophor powders [J]. J. Appl. Phys., 1996, 79: 7983~7990.
    [171] Li Y, Cheng G S, Zhang L D. Fabrication of highly ordered ZnO nanowire arrays in anodic alumina membranes [J]. J. Mater. Res., 2000, 15 (11): 2305~2308.
    [172] Hu J Q, Wong N B, Lee C S, et al. Synthesis of uniform hexagonal prismatic ZnO whiskers [J]. Chem. Mater., 2002, 14(3): 1216~1219.
    [173] Liu X H, Yang J, Wang L, et al. An improvement on sol-gel method for preparing ultrafine and crystallized titania powder [J]. Mater. Sci. Eng. A, 2000, 289(1-2): 241~245.
    [174] Mocuta C, Barbier A, Renaud G. CoO (111) Surface Study by Surface X-ray Diffraction [J]. Appl. Surf. Sci., 2000, 162: 56~61.
    [175] El-Shobaky G A, Ghozza A M. Effect of ZnO Doping on Surface and Catalytic Properties of NiO and Co_3O_4 Solids [J]. Mater. Lett., 2004, 58: 699~705.
    [176]陈友存,张元广. Co3O4纳米棒的溶剂热合成及形成机理分析[J].化学物理学报, 2004, 17(4): 481~484.
    [177] Li Y G, Tan B, Wu Y Y. Freestanding Mesoporous Quasi-Single-Crystalline Co3O4 Nanowire Arrays [J]. J. Am. Chem. Soc., 2006, 128: 14258~14259.
    [178] Wang Z H, Chen X Y , Zhang M. Synthesis of Co_3O_4 nanorod bunches from a single Precursor Co(CO_3)_(0.35)Cl_(0.20)(OH)_(1.10) [J]. Solid State Sci., 2005, 7: 13~15.
    [179] Li B X, Xie Yi, Wu C Z. Selective Synthesis of Cobalt Hydroxide Carbonate 3D Architectures and their Thermal Conversion to Cobalt Spinel 3D Superstructures [J]. Mater. Chem. Phys., 2006, 99: 479~486.
    [180] Filankembo A, Giorgio S, Lisiecki I, et al. Is the Anion the Major Parameter in the Shape Control of Nanocrystals? [J]. J. Phys. Chem. B, 2003, 107(30): 7492~7500.
    [181] Li S Y, Lee C Y, Tseng T Y. Copper-catalyzed ZnO nanowires on silicon (100) grown by Vapor-Liquid-Solid Process [J]. J. Cryst. Growth, 2003, 247: 357~362.
    [182] Li S H, Zhu X F, Zhao Y P. Carbon-Assisted Growth of SiOx Nanowires [J]. J. Phys. Chem. B, 2004, 108 (44): 17032~17041.
    [183] Finsy R. On the Critical Radius in Ostwald Ripening [J]. Langmuir, 2004, 20(7): 2975~2976.
    [184] De S Y, Deriemaeker L, Finsy R. A Simple Computer Simulation of Ostwald Ripening [J]. Langmuir, 1997, 13(26): 6884~6888.
    [185] Weiss J, Herrmann N, McClements D J. Ostwald Ripening of Hydrocarbon Emulsion Droplets in Surfactant Solutions [J]. Langmuir, 1999, 15(20): 6652~6657.
    [186] Pejova B, Kocareva T, Najdoski M, et al. A solution growth route to nanocrystalline nickel oxide thin films [J]. Appl. Surf. Sci., 2000, 165(4): 271~278.
    [187] Yan H W, Blanford C F, Holl B T, et al. General synthesis of periodic macroporous solids by templated salt precipitation and chemical conversion [J]. Chem. Mater., 2000, 12: 1134~1141.
    [188] Stopic S, Ilic I, Uskokovic D. Structural and morphological transformations during NiO and Ni particles generation from chloride precursor by ultrasonic spray pyrolysis [J]. Mater. Lett., 1995, 24 (6): 369~376.
    [189] Lian J S, Zhang X Y, Zhang H P, et al. Synthesis of nanocrystalline NiO/doped CeO2 compound powders through combustion of citrate/nitrate gel [J]. Mater. Lett., 2004, 58(7-8): 1183~1188.
    [190] Liu X M, Fu S Y. High-yield synthesis of dendritic Ni nanostructures by hydrothermal reduction [J]. J. Crystal. Growth, 2007, 306: 428~432.
    [191] Wang Y D, Ma C L, Sun X D, et al. Preparation of nanocrystalline metal oxide powders with the surfactant-mediated method [J]. Inorg. Chem. Commun., 2002, 5(10): 751-755.
    [192] Chen W, Sun S G. Spectral analysis in nanometer material science [J]. Spectroscopy and Spectral Analysis, 2002, 22 (3): 504~510.
    [193] Park Y R, Kim K J. Sol-gel preparation and optical characterization of NiO and Ni-1-xZnxO thin films [J]. J. Cryst. Growth, 2003, 258(3-4): 380~384.
    [194] Liu C L, Zhong J H, Zhang Z K. Effect of surface decoration on the spectral characteristics of alpha-Fe2O3 ultrafine particles[J]. Spectroscopy and Spectral Analysis, 2003, 23(1): 154~156.
    [195] Nam K W, Kim K B. A study of the preparation of NiOx electrode via electrochemical route for supercapacitor applications and their charge storage mechanism [J]. J. Electrochem. Soc., 2002, 149(3): A346~A354.
    [196] Nam K W, Yoon W S, Kim K B. X-ray absorption spectroscopy studies of nickel oxide thin film electrodes for supercapacitors [J]. Electrochim. Acta., 2002, 47(19): 3201~3209.
    [197] Zhu Y J, Qian Y T, Zhang M W, et al. Preparation of nanocrystalline silver powders byγ-ray radiation combined with hydrothermal treatment [J]. Mater. Lett., 1993, 17(5): 314~318.
    [198] Fievet F, Lagier T P, Blin B, et al. Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles [J]. Solid State Ionics, 1989, 32/33: 198~203.
    [199]彭子飞,汪国忠,张立德,等.用银氨配离子还原法制备纳米银[J].材料研究学报, 1997, 11(1): 104~106.
    [200] Lewis L N. Chemical Catalysis by Colloids and Clusters [J]. Chem. Reviews, 1993, 93(8): 2693 ~ 2730.
    [201]王彦妮,张志琨,崔作林.纳米粒子在乙炔聚合反应中的催化作用[J].催化学报, 1995, 16 (4): 304 ~307.
    [202] Tarasov S, Kolubaev A, Belyaev S, et al. Study of friction reduction by nanocopper additives to motor oil [J]. Wear, 2002, 252(1-2): 63 ~ 69.
    [203]黄钧声,任山,谢成文.化学还原法制备纳米铜粉的研究[J].材料科学与工程, 2003, 21 (1): 57 ~ 59.
    [204]刘华蓉,张志成,钱逸泰等.γ-射线辐照法制备纳米Cu-Pd合金粉末的影响因素[J].无机化学学报, 1999, 15 (3): 488 ~ 492.
    [205]王世敏,许祖勋,傅晶.纳米材料制备技术[M].北京:化学工业出版社, 2002: 12 ~17.
    [206]张虹,白书欣,赵恂,等.化学还原法制备纳米铜粉[J].机械工程材料, 1998, 22 (3): 33 ~ 34.
    [207]肖寒,王瑞,余磊,等.还原法制备纳米级铜粉[J].贵州师范大学学报, 2003, 21 (1): 4 ~ 6.
    [208]张志梅,韩喜江,孙森鑫.纳米级铜粉的制备[J].精细化工, 2000, 18 (2): 69 ~ 71.
    [209]赵斌,刘志杰,蔡梦军,等.超细铜粉的水合肼还原法制备及其稳定性研究[J].华东理工大学学报, 1997, 23 (3): 372 ~ 376.
    [210]林荣会,方亮,郗英欣,等.化学还原法制备纳米铜[J].化学学报, 2004, 62 (23): 2365 ~ 2368.
    [211]宋世谟,王正烈,李文斌.物理化学[M].高等教育出版社, 1979.
    [212] Filankembo A, Pileni M P. Shape Control of Copper Nanocrystals [J]. Applied Surface Science, 2000, 164(1-4): 260 ~ 267.
    [213] Lisiecki I, Pileni M P. Synthesis of Copper Metallic Clusters using Reverse Micelles as Microreactors [J]. Journal of the American Chemical Society, 1993 (115): 3887 ~ 3890.
    [214] Kingston H M, Jassie L B,郭振库译.分析化学中的微波制样技术、原理及应用[M].北京:高等教育出版社, 1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700