用户名: 密码: 验证码:
超声辐照微泡联合脂质体介导双自杀基因转染杀伤MCF-7细胞的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     乳腺癌是女性最常见的恶性肿瘤之一,已严重威胁女性健康。随着对肿瘤发病机制认识的不断深入,以及分子生物学等学科的迅速发展,基因治疗已成为一种全新的肿瘤治疗模式,其中自杀基因治疗作为一种颇具临床应用潜力的治疗策略,是近年来肿瘤基因治疗的研究热点。
     自杀基因疗法主要通过直接杀伤作用和旁观者效应来杀伤肿瘤细胞,但各自杀基因体系又有不同特点,联合应用可取长补短,增强疗效。目前应用最广泛的是单纯疱疹病毒胸苷激酶/更昔洛韦(HSV-TK/GCV)和胞嘧啶脱氨基酶/5-氟胞嘧啶(CD/5-Fc)两大自杀基因体系,且两者有很强的互补性,联合应用不仅可以提高疗效、扩大肿瘤治疗谱,还能抑制继发性耐药的产生。
     基因治疗的靶向性是关系到治疗安全性的重要问题,自杀基因只能在肿瘤组织表达而不在正常组织表达,在自杀基因前端连接上肿瘤组织特异性启动子就能达到这一目的。研究表明,血管内皮细胞生长因子受体(KDR)高表达于肿瘤血管内皮细胞及多种肿瘤细胞,而在正常组织不表达或表达甚微。因此,以KDR启动子(KDRp)驱动自杀基因,可使自杀基因在肿瘤血管内皮细胞及肿瘤细胞特异性表达,达到双重靶向治疗作用。
     近年来,由于病毒载体存在的安全性问题,载体研究主要转向于非病毒载体。脂质体是最常用的非病毒载体,安全、操作简便,但是转染效率较低。微泡造影剂是一种新型的基因载体,在超声波的辐照下不仅能将裸质粒导入靶细胞,还能提高脂质体等载体的转染效率,被认为是今后非病毒载体发展的重要方向。
     目的:
     1.构建含KDRp及双自杀基因CD/TK的肿瘤特异性质粒载体pEGFP-KDRp-CD/TK。
     2.超声辐照微泡联合脂质体转染pEGFP-KDRp-CD/TK质粒于乳腺癌MCF-7细胞,观察转染效率及给予前药后对MCF-7细胞的体外杀伤作用。
     方法:
     1.采用PCR扩增出KDRp、CD及TK基因片段,对各PCR产物进行TA克隆,构建成重组T质粒T-KDRp、T-CD、T-TK,再逐个将重组T质粒上的目的基因亚克隆至表达载体pEGFP-C2质粒上。对PCR结果凝胶电泳检测,对各重组质粒进行酶切电泳检测及测序鉴定。
     2.采用本实验组最优化超声及微泡参数。将培养的MCF-7细胞分为5组:①裸质粒组;②脂质体组;③超声辐照微泡组;④超声辐照脂质体组;⑤超声辐照微泡联合脂质体组,转染pEGFP-KDRp-CD/TK质粒于MCF-7细胞,荧光显微镜下观察GFP表达情况,流式细胞仪定性检测转染效率。用超声辐照微泡联合脂质体法转染MCF-7细胞后(未转染的MCF-7细胞作为对照组),给予前药0.1mg/ml GCV或(和)2mg/ml 5-FC, MTT检测自杀基因体系对MCF-7细胞的体外杀伤作用。
     结果:
     1.PCR扩增出的KDRp、CD、TK基因片段凝胶电泳条带大小与设计相符;各重组T质粒酶切电泳条带大小与设计相符,测序结果与GenBank比对一致;重组质粒pEGFP-KDRP-CD/TK测序,各基因片段序列与前期测序结果一致;其中KDRp为563bp,CD为1284bp,TK为1132bp。
     2.荧光显微镜下观察超声辐照微泡联合脂质体组的GFP表达最多、最强。流式细胞仪检测结果显示超声辐照微泡联合脂质体组的转染率最高(39.59±1.19)%,与其他各组比较差异有统计学意义(P<0.05);超声辐照脂质体组(27.72±1.21)%次之,与脂质体组(22.96±0.93)%比较差异有统计学意义(P<0.05),超声辐照微泡组(21.84±1.04)%和脂质体组比较,差异无统计学意义(P>0.05)。裸质粒组的转染率最低(0.78±0.03)%(P<0.001)。
     3.MTT检测结果显示转染组MCF-7细胞的抑制率明显高于未转染组(P<0.001);转染组的MCF-7细胞在联合用药时的抑制率为(90.77±2.68)%,明显高于单一用药组,差异有统计学意义(P<0.05)。且CDI值<1,提示双自杀基因系统有协同作用。
     4.转染组各前药组细胞抑制率均显著高于超声辐照微泡联合脂质体对MCF-7细胞的转染率(39.59±1.19)%(P<0.05),表现出显著的旁观者效应。
     结论:
     1.成功构建了由KDRp驱动的CD/TK双自杀基因重组质粒载体pEGFP-KDRp-CD/TK。
     2.超声辐照微泡联合脂质体能明显提高基因转染效率,其转染率明显高于超声辐照脂质体组、超声辐照微泡组及单纯脂质体组。
     3.CD/5-Fc和TK/GCV双自杀基因体系间存在协同效应,转染双自杀基因后的MCF-7细胞,联合用药比单一用药有更显著的治疗效果。
     4.旁观者效应在一定程度上弥补了载体系统转染效率不高的缺陷,增加了超声辐照微泡联合脂质体转染法在自杀基因治疗应用中的可行性。
     5.超声辐照微泡联合脂质体法转染双自杀基因体系是较理想的乳腺癌基因治疗策略。
Background:
     Breast cancer is one of the most common malignant tumor, threatening the health of women. With the knowledge improvement of tumorous pathogenesis, and the rapid development of molecular biology, gene therapy represents a novel treatment model in cancer therapy. And the suicide gene therapy as a potential strategy for clinical application, is the hotspot of tumor gene therapy in recent years.
     Suicide gene system kills tumor cells by direct cytotoxic effect and bystander effect, and every system has its characteristic, therefor combined using of different systems can make up for each other and enhance efficacy. Currently the most widely used systems are herpes simplex virus thymidine kinase/ganciclovir (HSV-TK/GCV) and cytosine deaminas/5-fluorocytosine (CD/5-Fc), and they have highly complementary. Combined using of them has several advantages, such as improving anti-tumor effect, avoiding drug resistance, etc.
     Targeted expression of gene is related to the security of gene therapy, suicide gene should specifically express only in tumor than normal tissue, that could be realized by making use of specific promoter. Most of the studies demonstrated that kinase domain-containing receptor (KDR) over-expresses in the majority of the solid cancer cells and neogenetic vascular endothelial cells of neoplasma but not in normal cells, so that KDR promoter (KDRp) could make genes of interest over-express in tumor cells and its vascular endothelial cells.
     In recent years, the focuse of research shift to non-viral vectors, because of viral vectors'security risks. Liposome is the most common non-viral vector, safe and convenient, but its transfection efficiency is low. Microbubble contrast agent is a novel gene vector, with the ultrasound irradiation it can not only transfect naked plasmid into target cells, but also enhance the transfection efficiency of liposome, considering the important part of non-viral vectors research.
     Objective:
     1.To construct the tumor specific vector containing KDRp and CD/TK suicide genes.
     2.To transfect the pEGFP-KDRp-CD/TK into MCF-7 cells in vitro by ultrasound mediated microbubble destruction combined with liposome, and then investigate the transfection efficiency and the killing effect after given the prodrugs.
     Methods:
     1.Fristly, the KDRp, CD and TK gene fragments were amplified with polymerase chain reaction (PCR) technique. Secondly, every PCR product was cloned to T-vector respectively, establishing recombinant T-plasmid T-KDRp, T-CD, and T-TK. Finally, the target gene fragments of recombinant T-plasmids were subcloned to expression vector pEGFP-C2 gradually. The fragments and plasmid vectors were identified by cataphorerising and sequence analysising.
     2.The optimized ultrasound and microbubble paramaters were used. MCF-7 cells were dividcd into 5 groups,①naked plasmid group,②liposome group,③ultrasound irradiated microbubble group,④ultrasound irradiated liposome group,⑤ultrasound irradiated microbubble+liposome group. The transfection efficieny of pEGFP-KDRp-CD/TK in MCF-7 cells was detected by fluorescence microscope and flow cytometry. The killing effects of double suicide genes on MCF-7 cells (transfected and untransfected) that treated with 0.1mg/ml GCV,2mg/ml 5-Fc or combination GCV and 5-FC were determined by the method MTT.
     Result:
     1.The gene fragments amplified with PCR were equal to the expection. The sequence of every recombinant plasmid was identical with the array published in GeneBank. And the length of KDRp, CD and TK gene fragments was 563bp,1184bp and 1131bp respectively.
     2.The GFP of fifth group was the most and strongest observed by fluorescence microscope. The results of flow cytometry showed that the transfection efficiency of the fifth group was the highest one (39.59±1.19)% compared with the other groups (P<0.05), the fourth group was the next one (27.72±1.21)%, the third group (21.84±1.04)% was as near as the second group (22.96±0.93)%(P>0.05), and the first group is the lowest one (0.78±0.03)%(P<0.001).
     3.The results of MTT showed that the inhibition ratios of transfected MCF-7 cells were significantly higher than untransfected groups (P< 0.001), the inhibition ratio of transfected MCF-7 cells treated with GCV and 5-Fc was (90.77±2.68)%, obviously higher than the single prodrug group GCV or 5-Fc (P<0.05), furthermore the value of CDI was less than 1, both of these prompt that it has the synergistic killing efficacy between the two suicide gene systems.
     4.Every inhibition ratio of transfected groups was obviously higher than the transfection efficiency of MCF-7 cells (39.59±1.19)%(P<0.05), showing a significant bystander effect.
     Conclusions:
     1.The recombinant plasmid vector pEGFP-KDRp-CD/TK containing KDRp and CD/TK suicide genes was constructed successfully.
     2.Ultrasound mediated microbubble destruction combined with liposome can enhance the efficiency of gene transfection. The transfection efficiency is much higher than ultrasound irradiated liposome group, ultrasound irradiated microbubble group and liposome group.
     3.It has the synergistic efficacy between CD/5-Fc and TK/GCV suicide gene systems. The combination of both prodrugs were more effective than either one on the MCF-7 cells transfected with double suicide genes.
     4.Bystander effect to some extent makes up the weakness of low transfection efficiency, enhancing the feasibility of the transfection method of ultrasound mediated microbubble destruction combined with liposome in suicide gene therapy.
     5.Ultrasound mediated microbubble destruction combined with liposome transfecting double suicide genes is an ideal strategy for breast cancer gene therapy.
引文
[1]何健荣,高曦,任泽舫.全球女性乳腺癌和卵巢癌最新发病分布特征.中国肿瘤,2009,18(3):169-172.
    [2]张思维,雷正龙,李光琳,等.中国肿瘤登记地区2005年发病死亡资料分析.中国肿瘤,2009,18(12):973-979.
    [3]王敏,邹浩元,黄国栋,等.102例中、晚期乳腺癌综合治疗预后因素分析.四川肿瘤防治,1999,12(4):37-38.
    [4]Boyer O, Klatzmann D. Suicide gene-based anti-cancer gene therapy:from the gene to clinical trials. M S-Med Sci,1999,15(5):625-634.
    [5]Niculescu-Duvaz I, Springer CJ. Introduction to the background, principles, and state of the art in suicide gene therapy. Mol Biotechnol,2005,30(1):71-88.
    [6]Greco O, Dachs GU. Gene directed enzyme/prodrug therapy of cancer:historical appraisal and future prospectives. J Cell Physiol,2001,187(1):22-36.
    [7]Shangara Lal, Ulrich M. Lauer, Dietrich Niethammer, et al. Suicide genes:past, present and future perspectives. Immunology Today,2000,21(1):48-54.
    [8]Rogulski KR, Kim JH, Kim SH, et al. Glioma cells transduced with an Escherichia coli CD/HSV-1 TK fusion gene exhibit enhanced metabolic suicide and radiosensitivity. Hum Gene Ther,1997,8(1):73-85.
    [9]Kan QC, Yu ZJ, Lei YC, et al. Lethiferous effects of a recombinant vector carrying thymidine kinase suicide gene on 2.2.15 cells via a self-modulating mechanism. world j gastroenterol,2003,9(10):2216-2220.
    [10]Yao XJ, Huang ZH, Li Q, et al. Effect of adenovirus-mediated CD/TK double suicide gene system on colorectal cancer growth and cytokines in the tumor microenvironment in mice. Nan Fang Yi Ke Da Xue Xue Bao,2010,30(2):260-262.
    [11]孔恒,黄宗海,李强,等.腺病毒介导的双自杀基因系统对乳腺癌细胞的杀伤作用.南方医科大学学报,2008,28(6):907-910.
    [12]华赞鹏,李宝金,汪勇,等.AFP启动子驱动的yCD/TK双自杀基因靶向杀伤肝癌细胞的体内外研究.中国病理生理杂志,2009,25(6):1111-1116.
    [13]常新忠,王占民,马道新,等.联合应用胸苷激酶基因和胞嘧啶脱氨酶基因对MCF-7细胞的杀伤作用.中华实验外科杂志,2004,21(2):192-194.
    [14]魏冬,韦军民,黄美雄,等.TK/GCV、CD/5-Fc双自杀基因系统治疗结肠癌的实
    验研究.消化外科,2006,5(6):466-470.
    [15]孔恒,黄宗海,于洪波,等.双自杀基因系统对胰腺癌细胞Capan-2的特异性杀伤作用.肿瘤,2007,27(10):768-771.
    [16]Uckert W, Kammertons T, Haack K, et al. Double suicide gene (cytosine deaminase and herpes simplex virus thymidine kinase) but not single gene transfer allows reliable elimination of tumor cells in vivo. Hum Gene Ther,1998, 9(6):855-865.
    [17]Xu B, Liu ZZ, Zhu GY, et al. Efficacy of recombinant adenovirus-mediated double suicide gene therapy in human keloid fibroblasts. Clinical and Experimen-tal Dermatology,2008,33(3):322-328.
    [18]Liu T, Zhang G, Chen YH, et al. Tissue specific expression of suicide genes delivered by nanoparticles inhibits gastric carcinoma growth. Cancer Biol Ther, 2006,5(12):1683-1690.
    [19]Zhang G, Liu T, Chen YH, et al. Tissue specific cytotoxicity of colon cancer cells mediated by nanoparticle-delivered suicide gene in vitro and in vivo. Clin Cancer Res,2009,15(1):201-207.
    [20]郑素军,林汝仙,王升启.血管内皮生长因子受体2及其信号转导作用的研究进展.国外医学药学分册,2004,31(6):337-341.
    [21]苏国强,黄宗海,苏刚,等.KDR启动子驱动的双自杀基因对实体瘤细胞及血管内皮细胞的靶向杀伤作用.中华实验外科杂志,2005,22(6):692-694.
    [22]EI-Aneed A. An overview of current delivery systems in cancer gene therapy. J Control Release,2004,94(1):1-14.
    [23]Lawrie A, Brisken AF, Francis SE, et al. Microbubble-enhanced ultrasound for vascular gene delivery. gene therapy,2000,7(23):2023-2027.
    [24]Ferrara K, Pollard R, Borden M. Ultrasound microbubble contrast agents: Fundamentals and application to gene and drug delivery. Annu Rev Biomed Eng, 2007,9:425-447.
    [25]Hayashi S, Mizuno M, Yoshida J, et al. Effect of sonoporation on cationic liposome-mediated IFN beta gene therapy for metastatic hepatic tumors of murine colon cancer. Cancer gene theray,2009,16(8):638-643.
    [26]汪朝霞,王志刚,许川山,等.脉冲超声辐照微泡增强脂质体介导基因转染的体外实验研究.中华超声影像学杂志,2008,17(11):985-988.
    [27]Yasuda J. TA cloning:a rapid and efficient method for cloning of the PCR products. Tanpakushitsu Kakusan Koso,1996,41(5):518-21.
    [28]Zhou MY, Gomez-Sanchez CE. Universal TA cloning. Curr Issues Mol Biol, 2000,2(1):1-7.
    [29]Chen QJ, Zhou HM, Chen J, et al. Using a modified TA cloning method to create entry clones. Anal. Biochem,2006,358(1):120-125.
    [30]Mullen CA, Coale MM, Lowe R, et al. Tumors expressing the cytosine deaminase suicide gene can be eliminated in vivo with 5-fluorocytosine and induce protective immunity to wild type tumor. Cancer Res,1994,54(6):1503-1506.
    [31]Mullen CA, Anderson L, Woods K, et al. Ganciclovir chemoablation of herpes thymidine kinase suicide gene-modified tumors produces tumor necrosis and induces systemic immune responses. Hum Gene Ther,1998,9(14):2019-2030.
    [32]Boucher PD, Im MM, Freytag SO, et al. A novel mechanism of synergistic cytotoxicity with 5-fluorocytosine and ganciclovir in double suicide gene therapy. Cancer Res,2006,66(6):3230-3237.
    [33]Fischer U, Steffens S, Frank S, et al. Mechanisms of thymidine kinase/ ganciclovir and cytosine deaminase/5-fluorocytosine suicide gene therapy-induced cell death in glioma cells Oncogene,2005,24(7):1231-1243.
    [34]Cortes ML, Garcia-Escudero V, Hughes M, et al. Cyanide bystander effect of the linamarase/linamarin killer-suicide gene therapy system. J Gene Med,2002,4(4): 407-414.
    [35]陈珊,金伟,闵平,等.血管内皮生长因子家族及其受体与肿瘤血管生成研究进展.生命科学,2004,16(1):19-23.
    [36]Chen Y, Luo H, Li Y. Relationship between VEGF/VEGFR and malignant tumor in hematological system. Clin Chem,2009,55(6):A115-A115.
    [37]Yi KS, Chung JH, Park KH, et al. Expression system for enhanced green fluorescence protein conjugated recombinant antibody fragment. Hybridoma and Hybridomics,2004,23(5):279-286.
    [38]高川,王惠芳,张靖.脂质体介导转染法的原理与应用.生命的化学,2002,22(1):73-75.
    [39]钱亚芳,谷满仓.阳离子脂质体在基因转染载体中的研究进展.中国药师,2008,11(9):1041-1042.
    [40]周晓彤,沈振亚,于曙东.三种阳离子转染试剂对小鼠血管瘤内皮细胞转染效率及细胞毒性的影响.江苏医药,2008,34(3):254-256.
    [41]Koch S, Pohl P, Cobet U, et al. Ultrasound enhancement of liposeme-mediated
    cell transfection is caused by cavitation effects. Ultrasound Med Biol,2000,26(5): 897-903.
    [42]Porter TR,Iversen PL, Li S, et al. Interaction of diagnostic ultrasound with synthetic oligonucleotide-labeled perfluorocarbon-exposed sonicated dextrose albumin microbubbles. J Ultrasound Med,1996,15(8):577-584.
    [43]Kotaro N, Mnoru D, Toru T. Sustained transgene expression in intervertebral disc cell in vivo mediated by microbubble-enhanced ultrasound gene therapy. Spine, 2006,31(13):1415-1419.
    [44]Dijkmans PA, Juffermans LJ, Musters RJ, et al. Microbubbles and ultrasound: from diagnosis to therapy. Eur J Echocardiogr,2004,5(4):245-256.
    [45]Lawrie A,Brisken AF, Francis SE, et al. Ultrasound enhances reporter gene expression after transfection of vascular cells in vitro. Circulation,1999,99(20): 2617-2620.
    [46]Feril LB Jr, Ogawa R, Kobayashi H, et al. Ultrasound enhances liposome-mediated gene transfection Ultrasonics Sonochemistry,2005,12(6):489-493.
    [47]王瓞,林其谁.阳离子脂质体介导基因转染的最优化条件.生命的化学,1997,17(1):32-33.
    [48]毛晓春,李贵刚,张虹.脂质体介导外源基因体外转染兔角膜内皮细胞条件的优化.国际眼科杂志,2008,8(7):1353-1355.
    [49]张时君,李凤华,杜晶.超声辐照SonoVue增强脂质体介导pEGFP-N1转染乳腺癌细胞.中国医学影像技术,2009,25(8):1343-1346.
    [50]Kostarelos K, Miller AD. Synthetic, self-assembly ABCD nanoparticles; a structural paradigm for viable synthetic non-viral vectors. Chem Soc Rev,2005, 34(11):970-994.
    [51]Colin M, Maurice M, Trugnan G, et al. Brahimi-Horn MC Cell delivery, intracellular trafficking and expression of an integrin-mediated gene transfer vector in tracheal epithelial cells. Gene Ther,2000,7(2):139-152.
    [52]江晓曦,郑文岭,崔东,等.DNA的核定位机制.广东医学,2003,24(12):372-1374.
    [53]Mesnil M, Yamasaki H. Bystander effect in suicide gene therapy of cancers. Biog. Amines,1999,15(1):39-52.
    [54]Asklund T, Appelskog IB, Ammerpohl O, et al. Gap junction-mediated bystander effect in primary cultures of human malignant gliomas with recombinant expression of the HSVtk gene. Exp Cell Res,2003,284(2):185-195.
    [55]Finocchiaro LM, Bumaschny VF, Karara AL, et al. Herpes simplex virus thymidine kinase/ganciclovir system in multicellular tumor spheroids. Cancer Gene Ther,2004,11(5):333-345.
    [56]Su Z, Emdad L, Sauane M, et al. Unique aspects of mda-7/IL-24 antitumor bystander activity:establishing a role for secretion of MDA-7/IL-24 protein by normal cells. Oncogene,2005,24(51):7552-7566.
    [57]Agard C, Ligeza C, Dupas B. et al. Immune-dependent distant bystander effect after adenovirus-mediated suicide gene transfer in a rat model of liver colorectal metastasis. Cancer Gene Ther,2001,8(2):126-136.
    [1]刘丽萍,王智彪.SonoVueTM-——一种新型超声对比剂的研究进展.国外医学生物医学工程分册,2005,28(1):40-42.
    [2]Wei K, Skyba DM, Firschke C, et al. Interactions between microbubbles and ultrasound:in vitro and in vivo observations. J Am Coll Cardiol,1997,29(5): 1081-1088.
    [3]Miller DL, Pislaru SV, Greenleaf JE. Sonoporation:mechanical DNA delivery by ultrasonic cavitation. Somat Cell MolGenet,2002,27(126):115-134.
    [4]Skyba DM, Price RJ, Linka AZ, et al. Direct In Vivo Visualization of Intravascular Destruction of Microbubbles by Ultrasound and its Local Effects on Tissue. Circulation,1998,98(4):290-293.
    [5]冉海涛,任红,王志刚,等.超声波空化效应对体外培养细胞细胞膜作用的实验研究.中华超声影像学杂志,2003,12(8):499-501.
    [6]Ferrara K, Pollard R, Borden M. Ultrasound microbubble contrast agents: Fundamentals and application to gene and drug delivery. Annual Review of Biomedical Engineering,2004,9:415-447.
    [7]Mayer CR, Geis NA, Katus HA, et al. Ultrasound targeted microbubble destruction for drug and gene delivery. Expert Opinion on Drug Delivery,2008, 5(10):1121-1138.
    [8]Dijkmans PA, Juffermans LJ, Musters RJ, et al. Microbubbles and ultrasound: from diagnosis to therapy. Eur J Echocardiogr,2004,5(4):245-256.
    [9]Lindner JR, Firschke C, Wei K, et al. Myocardial perfusion characteristics and hemodynamic profile of MRX-115, a venous echocardiographic contrast agent, during acute myocardial infarction. Am Soc Echocardiogr,1998,11(1):36-46.
    [10]修建成.微泡空化对大鼠微血管组织结构的影响及其意义:[博士学位论文].广州:第一军医大学,2004.
    [11]黄武锋,修建成,周碧影,等.微泡空化效应对大鼠骨骼肌微循环的影响.南方医科大学学报,2006,26(12):1690-1693.
    [12]Chappell JC, Klibanov AL, Price RJ. Ultrasound-microbubble-induced neovascularization in mouse skeletal muscle. Ultrasound Med Biol,2005,31(10): 1411-1422.
    [13]张群霞,王志刚,冉海涛,等.超声破坏微泡促进骨骼肌血管新生的实验研究.中国超声医学杂志,2005,21(3):172-174.
    [14]Lindner JR, Song J, Christiansen J, et al. Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin. Circulation,2001, 104(17):2107-2112.
    [15]Lindner JR, Coggins MP, Kaul S, et al. Microbubble persistence in the microcirculation during ischemia/reperfusion and inflammation is caused by integrin-and complement-mediated adherence to activated leukocytes. Circulation,2000,101(6):668-675.
    [16]Dayton PA, Ferrara KW. Targeted imaging using ultrasound. J Magn Reson Imaging,2002,16(4):362-377.
    [17]陈少敏,宾建平.靶向超声微泡构建的策略和选择.心血管病学进展,2008,29(3):393-396.
    [18]Avivi Levi S, Gedanken A. The preparation of avidin microspheres using the sonochemical method and the interaction of the microspheres with biotin. Ultrason Sonochem,2005,12(5):405-409.
    [19]Klibanov AL, Hughes MS, Marsh JN, et al. Targeting of ultrasound contrast material. An in vitro feasibility study. Acta Radiol Supp,1997,412(Suppl 1): 113-120.
    [20]Porter TR, Iversen PL, Li S, et al. Interaction of diagnostic ultrasound with
    synthetic oligonucleotide-labeled perfluorocarbon-exposed sonicated dextrose albumin microbubbles. J Ultrasound Med,1996,15(8):577-584.
    [21]Greenleaf WJ, Bolander ME, Sarkar G, et al. Artificial cavitation nuclei significantly enhance acoustically induced cell transfection. Ultrasound Med Bio, 1998,24(4):587-595.
    [22]Lawrie A, Brisken AF, Francis SE, et al. Microbubble-enhanced ultrasound for vascular gene delivery Nonviral Transfer Technology. Gene Therapy,2000, 7(23):2023-2027.
    [23]Koch S, Pohl P, Cobet U, et al. Ultrasound enhancement of liposeme-mediated cell transfection is caused by cavitation effects. Ultrasound Med Biol,2000,26(5): 897-903.
    [24]Ren JL, Wang ZG, Zhang Y, et al. Transfection Efficiency of TDL Compound in HUVEC Enhanced by Ultrasound-Targeted Microbubble Destruction Ultrasound Med Biol,2008,13(11):1857-1867.
    [25]陈智毅,谢明星,王新房,等.超声靶向微泡破裂联合PEI增强小鼠EGFP基因心肌转染.中国医学影像技术,2009,25(1):25-28.
    [26]Zheng XZ, Wu Y, Li HL, et al. Comparative analysis of the effects of ultrasound-targeted microbubble destruction on recombinant adeno-associated virus-and plasmid-mediated transgene expression in human retinal pigment epithelium cells. Molecular Medicine Reports,2009,2(6):937-942.
    [27]Unger EC, Hersh E, Vannan M, et al. Gene delivery using ultrasound contrast agents. Echocardiography,2001,18(4):355-361.
    [28]程文,张青萍,贡雪灏,等.超声引导下瘤体内注入超声造影剂和p53基因治疗大鼠肝癌的初步研究.中华超声影像学杂志,2004,13(7):543-546.
    [29]程文,张青萍,贡雪灏,等.外周静脉注入超声造影剂介导p53基因治疗大鼠肝癌的实验研究.中国超声医学杂志,2003,19(8):561-564.
    [30]Lentacker I, De Smedt SC, Sanders NN. Drug loaded microbubble design for ultrasound triggered delivery. Soft Matter,2010,5(11):2161-2170.
    [31]杨春江,王志刚,李兴升,等.载药脂质微气泡的制备及其应用.中华超声影像学杂志,2006,15(7):535-538.
    [32]Bohmer MR, Klibanov AL, Tiemann K, et al. Ultrasound triggered image-guided drug delivery. European Journal of Radiology,2009,20(7):242-253.
    [33]李思杳,钟孝桂.超声介入无水酒精瘤内注射治疗肝癌48例.肿瘤防治研究,2006,33(10):769-770.
    [34]Hayashida K, Ooi J, Omagari K, et al. Percutaneous ethanol injection therapy by ethanol mixed with CO2 microbubble for hepatocellular carcinoma. Nippon Shokakibyo Gakkai Zasshi,1997,94(11):730-738.
    [35]Trubestein G, Engel C, Etzel F. Thrombolysis by ultrasound. Clin Sci Mol Med, 1976,51:697-698.
    [36]Everbach EC, Makin IR, Franic CW, et al. Effect of acoustic cavitation on platelets in the presence of an echo-contrast agent. Ultrasound Med Biol,1998, 24(21):129-136.
    [37]Rosenschein U, Furman V, Kerner E, et al. Ultrasound imaging-guided noninvasive ultrasound thrombolysis-Preclinical Circulation,2000,102(2):238-245.
    [38]Unger EC, Porter T, Culp W, et al. Therapeutic applications of lipid-coated microbubbles. Advanced Drug Delivery Reviews,2004,56(9):1291-1314.
    [39]Everbach EC, Francis CW. Cavitational mechanisms in ultrasound-accelerated thrombolysis at 1 MHz. Ultrasound Med Biol,2000,26(7):1153-1160.
    [40]Unger EC, Matsunaga TO, McCreery T, et al. Therapeutic applications of microbubbles. Eur J Radiol,2002,42(2):160-168.
    [41]夏红梅,高云华,刘政,等.血栓靶向脂膜超声造影剂的制备与初步评价.中国医学影像技术,2008,24(2):176-179.
    [42]韩伟,李玲,穆玉明.尿激酶RGDS靶向溶栓造影剂的制备及鉴定.中国医学影像技术,2009,25(6):925-928.
    [43]Wu F, Wang ZB, Jin CB, et al. Circulating tumor cells in patients with solid malignancy treated by high-intiensity focused ultrasound. Ultrasound Med Biol, 2004,30(4):511-517.
    [44]Wang Z, Bai J, Li F, et al. Study of a "biological focal region" of high-intensity focused ultrasound. Ultrasound Med Biol,2003,29(5):749-754.
    [45]Yuh EL, Shulman SG, Mehta SA, et al. Delivery of systemic chemotherapeutic agent to tumors by using focused ultrasound:study in a murine model. Radiology, 2005,234(2):431-437.
    [46]刘春梅,陈锦云,柯丹,等.脉冲高强度聚焦超声联合微泡非热损伤兔肝VX2移植瘤的病理观察.中国超声医学杂志,2007,23(11):806-809.
    [47]Melodelima D, Chapelon JY, Theillere Y, et al. Combination of thermal and cavitation effects to generate deep lesions with an endocavitary applicator using a plane transducer:ex vivo studies. Ultrasound Med Biol,2004,30(1):103-111.
    [48]沙卫红,李瑜元,聂玉强,等.高强度聚焦超声联用超声造影剂对治疗兔肝焦域效应的影响.中华超声影像学杂志,2004,13(4):299-302.
    [49]Chen S, Kroll MH, Shohet RV, et al. Bioeffects of myocardial contrast microbubble destruction by echocardiography. Echocardiography,2002,19(6): 495-500.
    [50]吴巍,宁新宝,姜藻,等.低功率超声辐射LEVOVIST试剂致家兔肝脏微血管栓塞的研究.东南大学学报(自然科学版),2003,33(3):300-302.
    [51]张航,姜藻,吴巍,等.超声辐射微泡剂致肿瘤血管栓塞的实验研究.东南大学学报(医学版),2004,23(3):195-198.
    [52]李秋颖,刘政,刘德英,等.微泡联合纤维蛋白原诱导超声栓塞肠系膜微血管的实验研究.临床超声医学杂志,2006,8(8):449-451.
    [53]姜藻,吴巍.超声辐射微泡剂诱导肿瘤血管栓塞的初步临床研究.现代医学,2005,33(3):171-173.
    [54]Kullervo Hynynen, Nathan McDannold, Nickolai A, et al. Local and reversible blood-brain barrier disruption by noninvasiv focused ultrasound at frequencies suitable for trans-skull sonications. Neuroimage,2005,24(1):12-20.
    [55]童林艳,胡长林,王志刚,等.电镜硝酸镧示踪超声微泡造影剂开放血脑屏障.中国超声医学杂志,2007,23(4):241-243.
    [56]ter Haar GR. Ultrasonic contrast agents:safety considerations reviewed. Eur J Radiol,2002,41(3):217-221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700