用户名: 密码: 验证码:
脂质体模拟乳杆菌细胞膜筛选冻干保护剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳酸菌细胞冻干保护剂研究涉及冻干损伤机理、冻干保护机理及冻干保护剂筛选等内容。目前,冻干保护剂筛选中依旧采用细胞活菌数作为主要指标,通过评价不同介质在冷冻干燥下保护细胞的效果来确定最优组合的保护体系。因而,乳酸菌细胞保护剂筛选是一项费时耗力、工作量很大的工作。本项研究利用脂质体来模拟乳酸菌细胞膜,首先在脂质体模拟细胞膜中包封β-半乳糖苷酶,以膜渗透率为研究指标,以β-半乳糖苷酶为检测对象,创建了一种用脂质体模型筛选冻干保护剂的新方法,从而确定适宜的保护介质参数;然后以瑞士乳杆菌9(Lactobacillus helveticus 9)来评价该模型在快速筛选乳杆菌冷冻干燥保护剂中的效果。主要研究结果如下:
     1、β-半乳糖苷酶脂质体模型的构建与相关影响因素研究
     对影响酶脂质体制备的相关因素的研究表明,逆向蒸发法适宜制备β-半乳糖苷酶脂质体,具体操作方法如下:即原材料选用大豆卵磷脂和十八胺,摩尔比10:1,共144μmol;选用乙醚为有机溶剂;超声破碎仪匀化粒径,超声功率240W,超声时间5minx2:包封β-半乳糖苷酶量为5ml稀释5倍后的市售酶液。制得β-半乳糖苷酶脂质体平均粒径为110nm,分散系数为0.265,Zeta电位为-37.1mV,表明构建的空白脂质体悬液分布均匀且稳定,能够有效包封入β-半乳糖苷酶。
     2、脂质体模型筛选冻干保护剂,观察保护剂在冻干下对脂质体包封率的影响
     (1)将β-半乳糖苷酶脂质体置于冷冻干燥过程中,通过加入海藻糖、透明质酸(HA)以及两者复配的保护剂溶液,以p-半乳糖苷酶渗透率为评价指标结果表明,不同保护剂对β-半乳糖苷酶脂质体的乳糖酶包封率有显著影响,保护效果依次为海藻糖和透明质酸复配溶液、透明质酸和海藻糖,表明复配保护剂能最好地降低脂质体膜的冻干损伤。
     (2)研究了冻干过程中β-半乳糖苷酶脂质体包封率随三种保护剂不同浓度的变化情况。当海藻糖的浓度低于20mmg/100mL时,随着浓度的升高,包封率增加。当海藻糖浓度高于20mg/100mL时,包封率有一定的下降。说明海藻糖的浓度为20mg/100ml对脂质体的保护作用最佳。当透明质酸的浓度在0.1-0.8 mg/100mL之间,随着透明质酸浓度的增加,脂质体包封率逐步增加。说明透明质酸对脂质体的冻干保护作用随着浓度的增加而增强。当复配保护剂中海藻糖浓度为10mmg/100mL、透明质酸浓度为0.2 mg/100mL时,包封率最大。此时,使用的保护剂浓度为单独使用一种保护剂时的一半,表明海藻糖和HA有协同保护作用。
     3、脂质体法筛选的保护剂在瑞士乳杆菌9中的应用
     将脂质体法筛选获得的保护剂应用于瑞士乳杆菌9细胞冷冻干燥实践中,通过比较海藻糖、HA或海藻糖和HA复配三种保护剂存在下细胞膜的渗透率变化曲线可知,通过脂质体法筛选的透明质酸和复配保护剂,在应用于瑞士乳杆菌9时也能有效地减小细胞膜的泄露,降低冷冻干燥对乳杆菌细胞膜的损害。进一步地,比较了当使用脱脂乳作为保护剂时,应用脂质体法筛选的复配保护剂对菌株9冻干存活率和发酵力的影响。结果表明,与脱脂乳相比,选用复配保护剂能够使菌株在冷冻干燥下的存活率提高15%,凝乳时间缩短35%。这说明利用脂质体法筛选冻干保护剂是一种可行的尝试。
     4、冻干保护剂的保护机理探索
     (1)扫描电镜观察冻干乳杆菌菌体细胞的损伤表明,冻干过程破坏细胞膜完整性,导致部分细胞裂解、内容物泄漏。而采用海藻糖和HA复配作为保护剂时,能够有效地保持细胞膜的渗透屏障和结构完整,避免内容物泄漏。
     (2)对菌株9分别采用从37℃降温至4℃C以及16℃进行冷应激诱导3h的代谢产物研究表明,当降温至4℃时,菌株9细胞代谢物中出现了一条分子量7kd的新蛋白质条带,说明经过低温诱导后菌株9合成了一种新的蛋白质,其分子量大小与目前确定的几种冷应激蛋白一致。
     (3)对添加不同保护剂的瑞士乳杆菌9的冻干菌粉进行差式量热仪扫描发现,以海藻糖为保护体系的玻璃化温度(Tg)为125℃,透明质酸为保护剂体系的Tg为140℃,复配保护剂体系的Tg为132℃。经海藻糖和HA复配后,Tg高于海藻糖体系,低于HA体系,DSC曲线变化更平缓,表明复配体系有协同抗冻干逆境作用。
Lyoprotectants, as protective agent, prevent lactic acid bacteria cells subjected to harsh stresses like freezing or freeze-dry from damage or injury. The screening of lyoprotectants are one of key technology in the processing of food-grade starter cultures. However, the selection of lyoprotectants for starter cultures are time-using and labor-consuming. How to find a simple way to obtain lyoprotectants available for improving the survival of bacterial cells has received more attention. The objectives of this study were to:(1) use liposome to simulate bacterial cell membrane as a model and deal with the permeability of membrane-like according to the activity ofβ-galactosidase embedded; (2) investigate the influences of different lyoprotectants onβ-galactosidase activity contained on membrane-like liposomes subjected to freeze-dried environments; (3) rapidly obtain the protective agents which are available for the protection of lactic acid bacteria cells; and (4) apply these lyoprotectants which are screened form membrane-like liposomes technology to promote the survival of Lactobacillus helveticus 9 exposed to freeze-dried stresses. The following are main results.
     1. Firstly liposome suspension was successfully prepared. Thenβ-galactosidase was encapsulated to liposome suspension by film dispersion method. Several factors affected the preparation of liposome containing the enzyme. Soy lecithin and octadecylamine as raw materials in molar ratio 10:1, equal to 144μmol, were used to make the liposome. In the preparation of liposome containing the enzyme, ether was selected as the organic solvent, and ultrasonic disrupter with a 240W ultrasonic power and 5minx2 ultrasonic time used to homogenize the particle size.5ml commercialβ-galactosidase, after diluted five times, was encapsulated to form the final membrane-like liposomes. Theβ-galactosidase liposomes obtained had an average particle size of 110nm, with a dispersion coefficient of 0.265 and -37.1mV Zeta potential. Next, trehalose, hyaluronic acid (HA) or their mixture used as 3 protective agents were added to theβ-galactosidase liposomes subjected to the process of freeze- dried. The penetration ofβ-galactosidase was used to evaluate the roles of 3 protective agents in protecting lactase encapsulated in liposomes from inactivity. Among 3 lyoprotectants, the mixture of trehalose and HA had the best protective effect in preventing lactase from damage under harsh stresses, followed by hyaluronic acid and trehalose. Perhaps the mixed protective agent was able to reduce the damage of freeze-dried to membrane-like liposomes.
     2. Three lyoprotectants with various concentrations were added to the membrane-like liposomes containingβ-galactosidase exposed to freeze-dried enviroments. Lactase penetration observed varied according to the concentrations of 3 protective agents. Trehalose less than 20mg/100ml as lyoprotectant improved the efficiency of encapsulatedβ-galactosidase. However, if the concentration of trehalose was higher than 20mg/100ml, the efficiency of lactase encapsulated in membrane-like liposomes declined. Trehalose of 20mg/100m] was suggested to protect membrane-like liposomes from the destroy of freeze-dired. Hyaluronic acid with a concentration of 0.1 to 0.8mg/100ml promoted membrane-like liposomes to encapsulate more lactase. The mixture of trehalose (10mg/100ml) and hyaluronic acid (0.2mg/100ml) as protective agent was observed to have the highest encapsulation efficiency, because only 50% the mixture produced a protection which corresponds to that of trehalose or HA applied alone. Clearly, the combination of trehalose and HA formed a synergistic protection of membrane-like liposomes aginst harsh streeses.
     3. The mixture of trehalose and HA, screened by membrane-like liposomes, was observed to improve the survival of L. helveticus 9 during freeze-dried stresses.12% skim-milk, trehalose and HA as the lyoprotectants of strain 9 were also used as the control, respectively. HA and the mixture protected strain 9 better from the freeze-drying damage due to less leak of bacterial cell membrane. The mixture "lyoprotectant" produced the same protection of lactobacilli strain 9 cells as thatβ-galactosidase encapsulated in membrane-like liposomes. Two lyophilized preparations of strain 9 cells were applied to ferment milk. One was made with skim-milk as lyoprotectant, in short SML preparation. The another was made with the mixture of trehalose and HA as lyoprotectant, in short THAL preparation. Compared to the cells from SML, the survival of strain 9 in THAL was improved by 15%. Involvement of THAL in milk produced a faster coagulation than that of SML did. Time that milk coagulated was shortened by 35% due to the use of THAL preparation.
     4. Scanning electron microscopy was applied to observe the damage of L. helveticus 9 cells subjected to freeze-dried-rehydrated stresses. The process of freeze-dried-rehydration destroy the integrity of cell membrane, causing bacterial cell lysis and leakage of cellular materials. Instead, the cells of strain 9 encapsulated by the mixture of trehalose and HA as a protective agent, although exposed to freeze-dried-rehydrated stresses, maintained cell membrane permeability barrier and structural integrity. Strain 9 cells were cold-induced from 37℃down to 16℃, and then to 4℃for 3h. A new protein band appeared on SDS-PAGE electrophoresis, compared to the control. The molecular weight of the new protein was about 7kd, close to those of Csp proteins found in the cold treatment of bacterial cell. Low temperature from freeze-dried treatment might induce strain 9 to synthesize a new protein that help cells to challenge harsh stress. The lyophilized preparations of strain 9 cells made with 3 protective agents were scanned for their glass transition temperature (Tg). Tg was 125℃for trehalose as lyoprotectant,140℃for HA, and 132℃for the mixture of trehalose and HA, respectively. High Tg showed lyoprotectant to have good protection of bacterial cells. The mixture of trehalose and HA provided a protection of L. helveticus 9 cells against the destroy of lyophilized treatment.
     In conclusions, the present data proved that use of membrane-like liposomes to screen lyoprotectants should be a good attempt in the manufacture of starter cultures.
引文
陈声明,吕琴,汪志平等.冷冻干燥条件下酿酒酵母细胞脂肪酸组成变化的研究[J].微生物学报,1997(1):47-52.
    付西光,董英,马海乐,食品真空冷冻干燥研究[J].江苏理工大学学报(自然科学版,2001,22(4):19-23.
    郭秀霞.冻干人用狂犬病脂质体疫苗的研究[D].吉林:吉林大学,2009:
    韩德权,杨丽娟,孙庆申等.响应面法优化植物乳杆菌冻干保护剂[J].食品科学,2010,30(5):219-224.
    华泽钊.低温生物医学技术[M].北京:北京科学出出版社,1994.149-211.
    黄丽金,陆兆新,袁勇军.酸奶菌种冷冻干燥保护剂的筛选研究[J].食品科学,2005,26(12):103-107.
    雷雨婷,张英华,霍贵成.保加利亚乳杆菌的冷适应性与冷应激蛋白的研究[J].东北农业大学学报,2008,39(5):101-105.
    李燕,马兰萍.维生素E、维生素C及其脂溶性衍生物在人工双层膜中的抗氧化作用[J].2009,36(8):198-203.
    李华,骆艳娥,刘延琳.真空冷冻干燥微生物的进展[J].微生物通报,2002(3):78-81.
    梁平,张旋,吴琳等.人参皂苷Rgl脂质体的制备及稳定性研究[J].昆明医学院学报,2009,30(1):6-9.
    廖玲.引起细胞凋亡的瑞士乳杆菌9的高密度培养研究[D].北京:北京林业大学,2009:
    凌代文,东秀珠.乳酸细菌分类鉴定及实验方法[M].
    刘丽凤,孟祥晨.冷冻干燥对婴儿双歧杆菌损伤作用的研究[J].食品科学,2009,30(1):104-107.
    刘振民,骆承库.乳酸菌冷冻损伤研究[J].食品发酵工业,2002(28):18-21.
    娄力行.甜菊糖及其衍生物的研究进展[J].中国糖料,2008(2):70-72.
    罗冬英,尹传武.乳酸菌制剂对人体保健功能的机理探讨[J].鄂州大学学报,2002,9(4):53-54.
    罗云敬,沈含熙,刘海涛,孔德明.脂质体模拟生物膜研究药物吸收[J].高等学校化学学报。1998,19(11):1730-1734.
    卢行安等.乳酸菌冷冻干燥工艺的研究进展[J].中国微生态学杂志,2001,13(1):58-61.
    吕嘉枥,秦俊哲.嗜酸乳杆菌粉末发酵剂的研制[J].中国乳品业,2002,30(5):44-46.
    吕加平,骆承库.乳酸菌发酵剂冻干保护剂筛选及应用的研究[J].东北农业大学学报,1998,29(4):371-379.
    蒲丽丽,刘宁,张英华,霍贵成等.乳酸菌冻干保护剂及保护机理的研究进展[J].现代食品科技.2005,21(1)147-150.
    乔发东,南庆贤,兰风英.浓缩乳酸菌发酵剂冷冻十燥介质的选择[J].中国乳品工业,1996,26(4):13-15.
    山丽杰,田洪涛等.浓缩型乳酸菌发酵剂制备中几个技术关键问题的探讨[J].中国乳品工业,2002,30(5):66-69.
    孙欣欣,金楠.脂质体研究进展[J].医学研究杂志,2009,38(12):20-22.
    苏晓明,费瑜,苏东影.葡激酶纳米脂质体的制备及靶向溶栓的实验研究[J].中国老年学杂志,2008,28(12):2429-2430.
    孙欣欣,金楠.脂质体研究进展[J].医学前沿,2009,38(12):20-22.
    王瑞莲,刘成梅,刘伟.脂质体在食品工业中的应用前景[J].江西食品工业,2007(2):44-45.
    王东.纳米脂质体超临界二氧化碳制备技术研究.北京林业大学[J],硕士论文,2009.6.
    王健,李明轩.冷冻干燥对提高脂质体稳定性的研究概况[J].中国医药工业杂志,2005,36(9):576-580.
    吴克刚.玻璃态微胶囊化技术.食品科学,2002,23(8):324-327.
    奚震,刘然.直投式乳酸菌发酵剂的制备.食品研究与开发[J],2003,24(6):25-26.
    夏书芹,许时婴.辅酶Q10纳米脂质体的制备[J].食品工业科技,2006,27(2):164-167.
    邢蕾,吴晖,刘冬梅,石英.干酪乳杆菌鼠李糖亚种冻干保护剂的研究[J].中国乳品工业,2009,37(11):15-17.
    熊泽,仇敏,邵伟,喻萍.瑞士乳杆菌冻干发酵剂制备中保护剂的选择[J].冷饮与速冻食品工业,2006.12(3):20-22.
    杨基础等.海藻糖对固定化酶的保护作用[J].化工学报,2000,51(2):193-197
    袁亚宏,岳田利,高振鹏等.冻干高活力乳酸菌粉保护剂的研究[J].西北农林科技大学学报,2003,(31):82-84.
    于波涛,张志荣.穿心莲内酯脂质体的制备及体外释放特性[J].中国医药工业杂志,2009,40(2):114-116.
    张宏梅,徐明,崔佰吉等.pH梯度法制备重酒石酸长春瑞滨脂质体[J].吉林医药学院学报,2008,29(6):320-322.
    张伟光,梁继宏,肖英慧等.大豆磷脂阿奇霉索脂质体的制备及渗漏率研究[J].食品工业科技,2009,30(2):99-101.
    张文强,黄岳山,支晓兴.透明质酸在临床医学中的应用[J].中国组织工程研究与临床康复,2008,12(23):4515-4518.
    张英华,霍贵成.冷冻干燥造成乳酸菌损伤的研究.食品与发酵工业[J],2007,33(1):142-146.
    张英华,雷雨婷,霍贵成.乳酸乳球菌中冷休克蛋白基因的高效表达及其抗冻保护作用[J].微生物学报,2008,48(9):1203-1207.
    张泽生,王婧宜,王馨等.保加利亚乳杆菌冷冻干燥保护剂的筛选[J].食品工业,2011,(6):48-50.
    赵华梅,王曼霞,牟志春,蔡发.乳糖酶制剂活力测定方法的研究[J].食品科技,2010,35(4):240-246.
    周晴中,何艳梅,林垚.模拟生物膜的聚合单层、双层和脂质体[J].大学化学,1994,9(1):25-30.
    朱东升,马鎏鎏,李青青等.嗜酸乳杆菌冷冻干燥过程中保护剂的筛选及液氮预冻[J].食品科学,2010,31(01):198-200.
    朱琳,刘宁,张英华,霍贵成.乳酸菌细胞膜的冻干损伤及保护[J].现代食品科技,21(4):103-106.
    Anne E, Priest P. Sucrose concentratidns in the growth medium influence the membrane lipids of Streptococcus mutans [J]. Letters in Applied Microbiology,1986,2:69-70
    Antoni G L. Trehalose, a cryoprotectnat of lactobacillus bulgaricus [J]. Cry biology,1989,26:149-153
    Brennan M, Wanismail B, Johnson M C,etal. Cellular damage in dried Lactobacillus acidophilus [J]. J Food Prot,1986,49:47-53.
    Brandi A, Spurio R, Gualerzi C O. Massive presence of the Esc-herichia coli 'major cold-shock protein' CspA under non-stress conditions [J]. EMBO J,1999,18:1653-1659.
    Carvalhoas, Silvaj, Hop, et al. Effect of various growth media upon survival during storage of freeze-dried Enterococcus faecalis and Enterococcusdurans [J]. Applied Microbiology,2003,94: 947-952.
    Castro H P, Texeira P M, Kirby R. Evidence of membrane damage in Lactobacillus Bulgaricus following freeze drying [J]. Applied Microbiology,,1997,82:87-94.
    Carakostas M C, Curry L L, Boileau A C, etal. Overview:The history, technical function and safety of rebaudioside A, a naturally occurring steviol glycoside, for use in food and beverages [J]. Food and chemical Toxicology,2008(46):1-10
    Crowe L M,Crowe J H,Rudolph A,et al.Preservation of freeze-dried liposomes by trehalose [J].Arch Biochem Biophys,1985,242(1):240-247.
    E.P.W.Kets etal. Citrate increases glass transition temperature of vitrified sucrose preparations [J]. Cryobiology,2004,48:46-54
    Ermolenko D N, Makhatadze G I. Bacterial cold-shock proteins [J]. Cell Mol Life Sci,2002,59: 1902-1913.
    Gomez Zavaglia A, Tymczyszyne, De Antoing,et al.Action of trahalose on the preservation of Lactobacillus delbruecki ssp.Bulgaricus by heat and osmotic dehydration [J]. Applied Microbiology, 2003,95:1315-1320.
    Graaciela FDV, Comparative study of the efficiency of some additives in Protecting laetic acid bacteria against freeze-drying [J]. Cryobiology,1983,20:560-566
    Graciela F D V. Rehydration conditions and viability of freeze dried lactic acid bacteria[J]. Cryobiology,1985,22:574-577
    Gilbert C, Blanc B, Frot-Coutaz J, Portalier R., Atlan D. Comparison of cell surface proteinase activities within the Lactobacillus genus [J].Journal of Dairy Research,1997,64:561-571.
    Hesseltine C, Baradle J, Benjamin C. Further investigations on the preservation of molds [J]. Mycologia, 1960,52:762-777
    Jiang Weining, Hou Yan, Inouye M. CspA, the major coldshock protein of Escherichia coli is an RNA chaperone [J]. The Ame-rican Society for Biochemistry and Molecular Biology,1997,272(1):196-202.
    Jones P G,Van Bogelem R A, Neidhardt F C. Induction of proteins in response to low temperature in Escherichia coli [J]. J Bacteriol,1987,169(5):2092-2095.
    J.M.H.Kremer, M.W.J.v.d. Esker,C etal. Vesicles of Variable Diameter Prepared by a Modified Injection. Biochemistry.1977,16(17):3932-3935
    Kilara A. Eeffet of cryoprotection agents on freeze-drying and storage of lactic culture[J]. DairyPorg,1986,11
    Leonie J.M. Linders et al.Effect of added carbohydrates on membrane phase behavior and survival of dried lactobacillus plantarum [J]. Cryobiology,1997,35:31-40
    Louis K. Enhancing the viability of Lactobacillus plantarum inoculum by immobilizing the cells in calcium-alginate beads incorporating cryoprotectants [J]. Applied and Environment Microbiology,1990, 3112-3116
    Linders L J,Wolkers W F,Hoekstra F A,etal. Effect of added carbohydrates on membrane Phase behavior and survival of dried Lactobacillus plantarum [J]. Cryobiology,1997,35:31-40
    Lorrene, Howard, Dennis. A comparison of beta-galactosidase specific activities in strains of Streptococcus thermophilus [J]. Journal of dairy science,1986,69:2583-2588
    Lopez-dieza E C, Boneb B. The interaction of trypsin with trehalose:an investigation of protein preservation mechanisms [J]. BiochimBiophys, Acta,2004,1673(6):139-148.
    Monnet C,Beal C, Corrieu G. Improvement of the resistance of Lactobacillus delbruecki ssp. Bulgaricus to freeze by nature selection [J]..Journal of Dairy Science,2003,86:3048-3053.
    Morichi T. In mechanism and Pervention of cellular injury in lactic acid baeteria subjected to freezing and drying [J]. IDF annual Session, international Dairy Federation.Brussels
    Porubcn R S.Sellars R C.Micorbial Tcehnology. NewYork:Academic Press,1979:59-92
    Maury m, Murphy K, Kumar s, et al. Spray-dry ing of proteins:effects of sorbitol and trehalose on aggregation and FT-IR amide I spec-trum of an immunoglobulin G [J].Eur J Pharm Biopharm,2005,59:251-261.
    Nelson J D, Farris R L. Sodium hyaluronate and polyvinyl alcohol artificial tear preparations. A comparison in patients with keratoconjunctivitis sicca [J]. Arch Ophthalmol.1988;106(4):484-487.
    Pascale Serror.Stress responses in lactic acid bacteria [J].Antonie Van Leeuwenhoek,2002, (82):187-216.
    Ringsdorf H.Sehlarb B,Venzmer J. Angew.Int. (Ed. Engl.),1988;27:113
    Samuel B.Leslie et al.Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying [J]. Applied and Environmental Microbiology.1995,61(10):3592-3597
    SpechmanC A, Sandine W E. Lyophilized lactic acid starter culture concentrates:Preparation and use in inoculation of vat milk for cheddar and cottage cheese [J]. Jounral of DairySeience,57(2):165-173
    Sasaki M, Bosman B W,Tan P S. Comparison of proteolytic activities in various Lactobacilli [J]. Journal of Dairy Research,1995,62:601-610.
    Tamime AY,Robinson R K. Yoghurt Seience and Technology 2nd edition[M]. NewYork:Wood head Publishing Ltd,1997
    Teixeira P C, Castro M H. Survival of Lactobacillus delbrueckii ssp.Bulgaricus following spray-drying [J]. Journal of Dairy Science,1994,(78):1025-1031
    Vandeguch Stress Responses in Lactic acid bacteria Te M,Serror P,Chervaux C, etal. [J].
    Valdez G F, Giori G S. Portective effect of adonitol onlactic acid baeteria subjected to freeze-drying [J]. APPlied Enviornmental Microbiology.1983,45(1):302-304
    Valdez D. Effect of freezing and thawing on the viability and uptake of amino acid by L.bulgaricus [J]. Cryobiology,1993:329-334
    Van de, G. M., P. Serror, C. Chervaux, T. Smokvina, S. D. Ehrlich, and E. Maguin. Stress responses in lactic acid bacteria [J]. Antonie van Leeuwenhoek,2002,82:187-216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700