用户名: 密码: 验证码:
甲酯化脂氧素A_4对血管性痴呆大鼠认知功能的影响及对ERK/Nrf2和PI3K/Akt信号转导通路的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血管性痴呆(vascular dementia,VD)是指各种脑血管疾病引起的获得性智能损害综合征。目前,VD已成为世界范围内继阿尔茨海默病(Alzheimer’s disease,AD)后的第二大类型痴呆,但迄今为止,VD的发病机制尚不完全明确,因而缺乏有效的治疗药物。近年来研究表明,慢性脑低灌注损伤是VD的主要病因之一,因此探讨慢性脑低灌注致VD的发病机制并寻求有效的防治药物成为现代医学的热点课题之一。
     在慢性脑低灌注损伤导致VD的发病机制中,氧化应激损伤和神经元的凋亡占据着重要的地位,因此拮抗氧化应激损伤,减少神经元凋亡对于VD的防治至关重要。研究表明细胞外信号调节激酶/核因子E2相关因子2信号传导通路(extracellular signal-regulatedkinase/nuclear factor E2-related factor2, ERK/Nrf2)在拮抗脑缺血导致的神经元氧化应激损伤中发挥着重要的作用;磷脂酰肌醇-3-激酶/蛋白激酶B(phosphoinositide-3-kinase/protein kinase B,PI3K/Akt)信号转导通路是一条经典的抗凋亡,促进细胞存活的信号传导通路,我们的课题组在前期研究中已发现PI3K/Akt信号转导通路参与了双侧颈总动脉反复缺血再灌注致VD小鼠的发病机制。
     脂氧素(lipoxins, Lxs)是一类重要的内源性脂质抗炎性介质,其中脂氧素A4(lipoxin A4,LXA4)是其主要的生理形式。LXA4在炎性相关性疾病中得到了充分的关注,但关于LXA4在脑缺血过程中的神经保护作用的研究只是在近数年中才得到重视。研究发现通过侧脑室注射(intracerebroventricular injection, i.c.v.)甲酯化LXA4(LXA4methyl ester, LXA4ME),一种稳定的LXA4合成类似物,能够有效抑制脑局灶性缺血再灌注(cerebral ischemia/reperfusion, I/R)损伤模型或脑局部永久性缺血模型大鼠脑组织中的炎性反应,减少脑梗死体积,改善神经功能评分。除其经典的抗炎作用外,有关LXA4的抗氧化应激损伤作用和抗凋亡作用也引起了越来越多研究者的兴趣。
     但到目前为止,尚无关于在慢性脑低灌注致痴呆模型中,LXA4ME能否抑制海马组织氧化应激损伤,减少海马神经元凋亡,改善痴呆大鼠学习记忆能力方面的文献报道。基于上述研究背景,本研究通过双侧颈动脉永久结扎法(permanent bilateral common carotid arteryocclusion,BCCAO)建立大鼠慢性脑低灌注致VD模型,观察并探讨(1)BCCAO术后连续2周应用LXA4ME(i.c.v.)是否能够改善大鼠的认知功能?该作用是否与激活ERK/Nrf2信号转导通路有关?(2)在大鼠慢性脑低灌注早期应用LXA4ME是否能为VD大鼠提供远期神经保护作用,该作用是否与PI3K/Akt信号转导通路的激活有关?在此基础上,进一步观察VD大鼠海马CA1区突触后致密物(postsynaptic density, PSD)厚度以及PSD-95表达的变化,并观察LXA4ME对其的影响,为探讨LXA4ME发挥神经保护作用,改善认知障碍的作用机制提供更多的理论依据。
     第一部分甲酯化脂氧素A4改善血管性痴呆大鼠认识功能以及对ERK/Nrf2信号转导通路的影响
     目的:通过BCCAO方法建立慢性脑低灌注致VD模型,观察LXA4ME对BCCAO术后2W大鼠学习记忆能力的影响以及LXA4ME对ERK/Nrf2信号转导通路的作用,同时观察LXA4ME对大鼠海马内4-羟基壬烯醛(4-Hydroxynonenal,4-HNE)以及凋亡相关蛋白表达的影响,探讨LXA4ME改善慢性脑低灌注致VD模型大鼠认知功能的作用机制。
     方法:清洁级成年健康雄性Sprague-Dawley(SD)大鼠随机分为四组:假手术组(sham组);模型组(vehicle组);低剂量组(LXA4ME10ng组);高剂量组(LXA4ME100ng组)。在BCCAO术前一周,给予大鼠脑立体定位侧脑室置管。BCCAO术后假手术组和模型组大鼠分别通过微量注射器给予生理盐水5μl/d(i.c.v.), LXA4ME低剂量组和LXA4ME高剂量组大鼠分别注射10ng/5μl LXA4ME和100ng/5μlLXA4ME(i.c.v.),每日一次,连续14天。最后一次给药的次日,所有大鼠进行为期6天的Morris水迷宫实验,测试大鼠空间学习记忆能力。(1)定位航行实验(Place navigation test):主要用于测试大鼠的空间学习能力。实验历时5天。每天训练4次。两次训练间隔1分钟。训练时随机选择一个象限池壁圆弧中点作为入水点,将大鼠面向池壁轻轻放入水中。大鼠在4次试验中分别从四个象限入水,将大鼠在平台停留10s作为寻台成功的标志。水迷宫装置自动记录大鼠从入水到寻台成功的时间,即逃避潜伏期(escape latency)。如120s大鼠仍未找到平台,将大鼠人为引上平台休息10s,将潜伏期记录为120s。(2)空间探索实验(Spatial probe test):用于测试大鼠的空间记忆能力。在定位航行实验结束的第二天,撤除平台,选定与原有平台所在象限相对的象限中点为大鼠入水点,将大鼠面向池壁轻轻放入水中,给予120s自由游泳的时间,记录大鼠在120s内穿过原来平台所在位置的次数以及在平台象限的游泳时间占总时间的百分比,作为反映大鼠空间记忆能力的指标。
     行为学测试结束后,每组随机取6只大鼠,2%戊巴比妥钠(50mg/kg)麻醉后,4%多聚甲醛灌注固定,观察大鼠海马CA1区组织病理学改变和4-HNE表达变化。此外,每组随机取6只大鼠,充分麻醉后,断头取材,分离海马,采用western blot技术观察大鼠海马组织内total ERK(t-ERK)、phospho-ERK (p-ERK)、total Nrf2、nuclear Nrf2、 NAD(P)H苯醌氧化还原酶(NAD(P)H: quinoneoxidoreductase1,NQO1)、Bcl-2、Bax和cleaved caspase-3蛋白表达的变化。
     结果:在定位航行实验的第一天,各组间平均潜伏期差异无统计学意义(P>0.05);第二天,同其他三组相比,假手术组大鼠平均潜伏期明显缩短(P<0.01),而模型组大鼠和LXA4ME10ng组、LXA4ME100ng组大鼠无统计学意义(P>0.05)。在定位航行的第三天,LXA4ME100ng组大鼠平均潜伏期明显低于模型组大鼠(P<0.01),而LXA4ME10ng组大鼠平均潜伏期同模型组大鼠相比,差异无统计学意义(P>0.05)。在随后的两天中,LXA4ME10ng组和LXA4ME100ng组大鼠的平均潜伏期均明显低于模型组大鼠(P<0.01),且同LXA4ME10ng组大鼠相比,LXA4ME100ng组大鼠的平均潜伏期缩短(P<0.01)。
     在空间探索实验中,选用目标象限停留时间百分比和穿越平台次数两个指标进行测定。总的统计分析显示各组间差异具有显著统计学意义(P<0.01)。同假手术组大鼠相比,模型组大鼠在目标象限停留时间以及穿越平台次数显著减少(P<0.01);然而同模型组大鼠相比,经LXA4ME(10ng和100ng)干预后大鼠在目标象限停留时间明显增加(P<0.01),而LXA4ME10ng组和LXA4ME100ng组组间比较无统计学意义(P>0.05);与之相似的是,经LXA4ME(10ng和100ng)干预后大鼠穿越平台次数较模型组大鼠明显增加(P<0.05,P<0.01),且LXA4ME100ng组大鼠穿越平台次数多于LXA4ME10ng组(P<0.01)。
     假手术组大鼠海马CA1区神经元排列紧密,整齐,细胞形态、大小正常,结构完整,胞核形态饱满,核仁清晰可见,没有明显的神经元丢失现象;和对照组相比,模型组大鼠海马CA1神经元缺失较明显,存活神经元数目减少,排列松散,胞体缩小,部分胞体呈多角形或梭形,胞核固缩,部分核仁模糊不清,胞浆浅染;经LXA4ME(尤其是LXA4ME100ng组)处理后大鼠,其海马CA1区神经元丢失减少,细胞排列较为紧密有序,
     BCCAO术后20天,模型组大鼠海马CA1区有广泛的4-HNE免疫阳性表达(0.17±0.02),阳性产物为棕色颗粒,主要定位于神经元的核周体和轴突部分;同模型组相比,经LXA4ME(10ng和100ng)治疗大鼠海马4-HNE的表达显著下降(P<0.01),且LXA4ME100ng组大鼠海马4-HNE的表达(0.08±0.02)低于LXA4ME10ng组(0.11±0.02)(P<0.05)。
     Western blot结果显示,各组间t-ERK1/2蛋白表达水平无明显统计学差异(P>0.05);同假手术组大鼠相比,模型组大鼠海马p-ERK1/2蛋白表达明显降低(P<0.01),而经LXA4ME(10ng和100ng)干预后,这一下降趋势得到了明显的逆转(P<0.05,P<0.01)。同假手术组相比,模型组大鼠海马组织中total Nrf2、 nuclear Nrf2以及NQO1蛋白均明显下调(P<0.01),经LXA4ME (10ng and100ng)治疗后大鼠海马中total Nrf2、nuclear Nrf2以及NQO1蛋白水平较模型组明显升高。LXA4ME10ng组和LXA4ME100ng组大鼠组间total Nrf2蛋白表达水平比较无明显统计学差异(P>0.05),但LXA4ME100ng组大鼠海马p-ERK1/2、nuclear Nrf2以及NQO1蛋白表达水平明显高于LXA4ME10ng组(P<0.01)。
     和假手术组相比,模型组大鼠海马中Bcl-2蛋白表达明显下调而Bax蛋白表达明显增高,因此Bcl-2/Bax比值显著下降(P<0.05, P<0.01,P<0.01);然而,和模型组大鼠相比, LXA4ME (10ng and100ng)显著逆转了大鼠海马中Bcl-2(P<0.01)和Bax蛋白的表达变化(P<0.05,P<0.01),升高了Bcl-2/Bax比值(P<0.01)。且同LXA4ME10ng组相比,LXA4ME100ng组大鼠海马Bcl-2/Bax比值升高更为明显(P<0.01)。
     同假手术组相比,模型组大鼠海马cleaved caspase-3表达水平显著升高(P<0.01),100ng干预剂量的LXA4ME明显下调了cleavedcaspase-3蛋白的表达水平(P<0.01),而LXA4ME10ng组大鼠和模型组大鼠相比,二者cleaved caspase-3蛋白的表达水平无显著统计学差异(P>0.05)。
     结论:本实验通过BCCAO方法成功建立慢性脑低灌注致VD大鼠模型,LXA4ME干预后可明显改善大鼠学习记忆能力,减少海马组织内4-HNE的生成,抑制海马神经元的凋亡,而且此作用可能是通过激活ERK/Nrf2信号转导通路来实现的。
     第二部分甲酯化脂氧素A4对血管性痴呆大鼠的远期神经保护作用及对PI3K/Akt信号转导通路的影响
     目的:观察BCCAO术后早期应用LXA4ME对慢性脑低灌注致VD大鼠是否具有远期神经保护作用,并对其分子生物学机制进行探讨。
     方法:清洁级成年健康雄性SD大鼠随机分为四组:假手术组(sham组);模型组(vehicle组); LXA4ME100ng组;LY294002+LXA4ME100ng组。在BCCAO术前一周,给予大鼠脑立体定位侧脑室置管。BCCAO术后假手术组大鼠和模型组大鼠即给予LY294002溶媒2μl/d(i.c.v.),30min后给予生理盐水5μl/d(i.c.v.);LXA4ME100ng组大鼠BCCAO术后即给予LY294002溶媒2μl/d(i.c.v.),30min后给予LXA4ME100ng/d (i.c.v.);LY294002+LXA4ME100ng组大鼠造模后即给予LY294002溶液2μl/d(i.c.v.),30min后给予LXA4ME100ng/d(i.c.v.);以上给药过程持续两周。
     BCCAO术后29天,所有大鼠进行为期6天的Morris水迷宫实验,测试大鼠空间学习记忆能力。
     行为学测试结束后,每组随机取6只大鼠,2%戊巴比妥钠(50mg/kg)麻醉后,4%多聚甲醛灌注固定,常规石蜡包埋,冠状切片,焦油紫染色,观察大鼠海马CA1区组织病理学改变。此外,每组随机取6只大鼠,充分麻醉后,断头取材,分离海马,采用westernblot技术观察大鼠海马组织中total Akt(t-Akt)、phospho-Akt(p-Akt)、total CREB(t-CREB)、phospho-CREB(p-CREB)、Bcl-2和Bax的蛋白表达。
     结果:在定位航行第一天,各组大鼠平均潜伏期比较无统计学意义(P>0.05);从第二天开始,同假手术组大鼠相比,模型组大鼠平均潜伏期明显延长(P<0.01);而LXA4ME100ng组大鼠平均潜伏期明显短于模型组大鼠(day2:P<0.05;day3-5:P<0.01);和LXA4ME100ng组大鼠相比,LY294002+LXA4ME100ng组大鼠平均潜伏期明显延长(day2:P<0.05;day3-5:P<0.01)。在空间探索实验中,各组大鼠间目标象限停留时间百分比和穿越平台次数的差异具有显著统计学意义(P<0.01)。同假手术组大鼠相比,模型组大鼠在目标象限停留时间以及穿越平台次数明显减少(P<0.01);然而同模型组大鼠相比,经LXA4ME100ng干预后大鼠在目标象限停留时间和穿越平台次数均明显增加(P<0.01);但LY294002+LXA4ME100ng组大鼠在目标象限停留时间和穿越平台次数较LXA4ME100ng组大鼠明显减少(P<0.01)。
     光学显微镜下观察,可见假手术组大鼠海马CA1区神经元排列紧密有序,没有明显的神经元丢失现象,细胞大小、形态正常,结构完整,胞核形态饱满,核仁清晰,胞浆尼氏体丰富;和对照组相比,模型组大鼠海马CA1神经元缺失较明显,存活神经元数目减少,排列松散,胞体、胞核皱缩,部分核仁模糊不清,胞浆浅染;经LXA4ME100ng治疗后大鼠,以上情况得以较明显改善;而LY294002+LXA4ME100ng组大鼠海马CA1区可见部分神经元丢失,细胞皱缩等现象。
     BCCAO术后34天,同对照组相比,模型组大鼠海马Akt蛋白的磷酸化水平明显降低(P<0.01);而在LXA4ME100ng大鼠,该趋势得到了明显的逆转(P<0.01);LY294002+LXA4ME100ng大鼠海马Akt蛋白的磷酸化水平较LXA4ME100ng显著下降(P<0.01)。但各组间t-Akt蛋白表达水平比较无显著统计学差异(P>0.05)。p-CREB在各组间的表达变化趋势同p-Akt相似,t-CREB蛋白表达水平组间比较无显著统计学差异(P>0.05)。
     和假手术组相比,慢性脑低灌注模型组大鼠海马组织中Bcl-2蛋白表达明显减少(P<0.01)而Bax蛋白表达明显增加(P<0.01),Bcl-2/Bax比值显著降低(P<0.01);和模型组大鼠相比,LXA4ME100ng组大鼠海马Bcl-2(P<0.01)和Bax蛋白的表达趋势得以明显逆转(P<0.01),Bcl-2/Bax比值显著升高(P<0.01)。且同LXA4ME100ng组相比,大鼠经LY294002和LXA4ME联合处理后,其海马Bcl-2蛋白表达明显下调(P<0.01)而Bax蛋白表达明显上调(P<0.01),Bcl-2/Bax比值明显降低(P<0.01)。
     结论:慢性脑低灌注损伤早期应用LXA4ME能够发挥远期神经保护作用,减少神经元的凋亡,改善VD大鼠认知功能障碍,该作用可能是通过激活PI3K/Akt信号转导通路来实现的。
     第三部分:甲酯化脂氧素A4对血管性痴呆大鼠突触后致密物的影响
     目的:观察LXA4ME对慢性脑低灌注致VD大鼠海马CA1区神经元PSD厚度及PSD-95表达变化的影响,为LXA4ME的神经保护作用提供更多的理论支持。
     方法:清洁级成年健康雄性SD大鼠随机分为三组:假手术组(sham组);模型组(vehicle组);LXA4ME100ng组。在BCCAO术前一周,给予大鼠脑立体定位侧脑室置管。BCCAO术后,假手术组大鼠和模型组大鼠即给予生理盐水5μl/d(i.c.v.);LXA4ME100ng组大鼠BCCAO术后即给予LXA4ME100ng/d(i.c.v.)。以上给药过程持续两周。
     BCCAO术后34天,每组大鼠各取3只,4%多聚甲醛(含2.5%戊二醛)灌注固定,利用透射电子显微镜观察各组大鼠海马CA1区PSD厚度的变化。此外,每组随机取6只大鼠,采用免疫组化技术观察大鼠海马CA1区PSD-95的表达变化。
     结果:假手术组大鼠海马CA1区突触后致密物厚度为49.65±4.84nm,BCCAO术后34天,模型组大鼠突触后致密物厚度为34.61±5.66nm,较假手术组明显降低(P<0.01);LXA4ME(100ng/d)干预组大鼠海马CA1区突触后致密物厚度为47.53±6.10nm,较模型组显著增加(P<0.01)。
     免疫组化结果显示,假手术组大鼠海马CA1区有广泛的PSD-95免疫阳性表达,阳性细胞密集且规则,免疫染色深,平均光密度值为0.21±0.03;BCCAO术后34天,模型组大鼠海马CA1区PSD-95免疫染色阳性细胞分布稀疏,免疫染色浅,平均光密度值为0.11±0.02,明显低于假手术组(P<0.01);而经LXA4ME(100ng/d)治疗后大鼠其海马CA1区PSD-95的平均光密度值(0.17±0.02)较模型组明显增加(P<0.01)。
     结论:LXA4ME能够促进慢性脑低灌注致VD大鼠海马CA1区的PSD-95的表达,增加PSD厚度,改善突触可塑性,从而改善VD大鼠的认知功能。
Vascular dementia (VD) is an acquired syndrome of cognitiveimpairment which is caused by various kinds of cerebral vascular diseases. Itis incontrovertible that VD is the second most common cause of dementiaafter Alzheimer’s disease (AD) in the world. Up to now, the pathogenesis ofVD is not yet entirely clear and there are no especially effective drugs.Considerable studies characterize chronic cerebral hypoperfusion as acommon pathophysiological status contributing to VD. Thus, exploring themechanism by which chronic cerebral hypoperfusion leads to VD and seekingthe effective drugs for VD have become one of the focuses of currentmedicine.
     Oxidative injury and the apoptosis of neuron play an important role in thepathogenesis of VD induced by chronic cerebral hypoperfusion. So, inhabitingthe oxidative injury induced by chronic cerebral hypoperfusion and reduingthe apoptosis of neuron may be crucial for managing VD. It has beendemonstrated that the activation of extracellular signal-regulatedkinase/nuclear factor E2-related factor2(ERK/Nrf2) signaling pathway isvery important for neurons to resist the oxidative injury induced by cerebralischemia; the phosphatidylinositol-3kinase/Akt (PI3K/Akt) cell signalingpathway is a classic anti-apoptosis pathway, promoting the survival signaltransduction. In previous studies, our research team have explored that theactivation of PI3K/Akt cell signaling pathway can improve cognitive functiondeficits of VD mice induced by cerebral repetitive ischemia/reperfusion.
     Lipoxins (LXs), a class of endogenous anti-inflammatory lipid-basedautacoids, are generated from arachidonic acid via sequential actions oflipoxygenases during the onset of the inflammatory. Lipoxin A4(LXA4) is oneof the main physiologic forms of LXs. LXA4has been widely studied in various diseases related to inflammation. Until recent years, the novelneuroprotection of LXA4for neurons against injury induced by cerebralischemia is being recognized by researchers. several recent studies revealedthat LXA4methyl ester (LXA4ME), a stable synthetic analog of LXA4, whichwas administrated through intracerebroventricular injection (i.c.v.), couldsignificantly reduce infarct volumes by inhibiting inflammatory responses inrat models of cerebral ischemia/reperfusion (I/R) and permanent focalcerebral ischemia. Intriguingly, besides its classic anti-inflammatory effect,considerable attention has been attracted to the novel antioxidant effect ofLXA4in recent years.
     However, no information is available with regard to the possibleprotective effect of LXA4on neuronal injury and cognitive deficits induced bychronic cerebral hypoperfusion. So, in the present study, a widely acceptedmodel of chronic cerebral hypoperfusion induced by permanent bilateralcommon carotid artery occlusion (BCCAO) in rats was used to explore:(1)whether long-term administration of LXA4ME can protect neurons inhippocampus against oxidative injury, reduce neuronal apoptosis andameliorate cognitive deficits induced by chronic cerebral hypoperfusionthrough activating the ERK-Nrf2signaling pathway?(2) whetheradministration of LXA4ME during early phase of chronic cerebralhypoperfusion can provide long-term neuroprotection and improve cognitiveimpairments? And if so, whether the effects of LXA4ME is are associatedwith the activation of PI3K/Akt signaling pathway? Based on the abovestudies, we will further observe the effects of LXA4ME on the thickness ofpostsynaptic density (PSD)and the expression of PSD-95in CA1area ofhippocampus of rats underwent chronic cerebral hypoperfusion, and providemore insights into the neuroprotective mechanisms of LXA4ME.
     Part Ⅰ LXA4ME ameliorates cognitive deficits induced by chroniccerebral hypoperfusion through activating ERK/Nrf2signalingpathway in rats
     Objective: To establish a VD rat model induced by chronic cerebral hypoperfusion through BCCAO and observe the effects of LXA4ME on thecognitive deficits of VD rats. At the same time, we will evaluate the effects ofLXA4ME on the expression of ERK/Nrf2signaling pathway,4-Hydroxynonenal (4-HNE) and apoptosis-associated proteins, and explorethe neuoprotective mechanisms of LXA4ME.
     Methods: Adult male Sprague–Dawley rats weighing250-300g wereprovided by the Laboratory Animal Center of Hebei Medical University.7days before BCCAO surgery, all rats received intracerebroventricular catheterimplantation. Rats were randomly assigned into four groups: Sham(sham-operated) group, vehicle (BCCAO+normal saline) group, LXA4ME10group and LXA4ME100group.10ng or100ng LXA4ME (purchased fromCayman Chemical, Ann Arbor, MI, USA) were dissolved in5μl normalsaline, respectively. Rats in LXA4ME10group and LXA4ME100groupreceived10ng or100ng LXA4ME (i.c.v.) immediately after BCCAO,respectively. Rats in sham group and vehicle group received5μl normal saline(i.c.v.). All rats received LXA4ME dissolved in normal saline or normalsaline according to the aforementioned experimental plan every24h up to14days afterwards.
     The next day after the final injection,all rats were evaluated spatiallearning and memory abilities by the Morris water maze test. Each rat receivedfour trails per day for five consecutive days,with an intertrial interval of60s.In every trail, each rat was gently placed the water at one starting position,facing the wall of water maze. The time to reach the platform (escape latency)was recorded in each trial. The rat was allowed to find the platform within120s. If the rats failed to find the hidden platform within120s, they were gentlyguided to find the platform by the experimenter and allowed to remain on theplatform for10s and their escape latencies were recorded as120s. Theprocedure was repeated for all the four start locations. On day6, the rats weretested on a spatial probe trial in which the platform was removed, and the ratswere placed in a quadrant which is opposite to the target quadrant and allowedto swim freely for120s. The percentage of rats spent in the target quadrant where the platform had been located and the times of rats crossing theplatform were recorded.
     Shortly after the behavioral tests, six rats chosen randomly from eachgroup were anesthetized with pentobarbital sodium (50mg/kg, i.p.) andperfused with normal saline rapidly through the left cardiac ventricle andascending aorta, then followed by4%paraformaldehyde. The brains were thenembedded in paraffin. Coronal brain sections were cut and underwent Nisslstaining with0.5%cresyl fast violet and immunohistochemically stained for4-Hydroxynonenal (4-HNE), respectively. IOD/area value was used toindicate the mean optical density for each slice. Furthermore, six rats fromeach group were randomly chosen to be decapitated under anesthesia, Thehippocampi were quickly dissected and homogenated to detect the proteinexpression of p-ERK、Nrf2、NQO1、Bcl-2、Bax and caspase-3in hippocampusby western blot.
     Results: In the Morris water maze, beginning on day2, rats in vehiclegroup took significantly longer time to find the platform (P<0.01) comparedwith sham group. Rats in LXA4ME100ng group showed shorter meanlatencies compared with vehicle group (P<0.01) on day3. Over the next twodays, rats treated with LXA4ME (10ng and100ng) showed significantshorter escape latencies compared with vehicle group (both P<0.01),meanwhile, administration of LXA4ME100ng resulted in shorter escapelatencies than LXA4ME10ng group (P<0.01). In the probe trial, rats invehicle group stayed in the target quadrant for significantly less time andpossessed fewer times of crossing the platform than sham group (both P<0.01).Compared with vehicle group, rats received LXA4ME (10ng and100ng)evidently increased the ratio of time spent in the target quadrant,(bothP<0.01). Similarly, administration of LXA4ME (10ng and100ng)significantly increased the times of rats crossed the platform relative to thevehicle group (P<0.05,P<0.01,respectively). In detail, rats in LXA4ME100ng group crossed the platform for more times than LXA4ME10ng group(P<0.01).
     The pyramidal neurons in the CA1region of hippocampus in sham groupwere tightly ranked in order, and the neurons were clear and moderate in sizewith normal microstructure. In vehicle group, obvious pathological changeswere exhibited with loosely arranged neurons, neuronal shrinkage, loss andlight color staining. Administration of LXA4ME,especially100ng per day,evidently reversed the morphologic changes.
     Extensively positive staining for4-HNE was seen in the neuronalperikarya and axons of neurons in hippocampus of rats in vehicle group(0.17±0.02). However, compared with vehicle group, the IOD/area value of4-HNE significantly decreased in group treated with LXA4ME (both P<0.01),which was lower in LXA4ME100ng group (0.08±0.02) than LXA4ME10nggroup(0.11±0.02)(P<0.05).
     There was no significant difference in the expression of t-ERK1/2amongall groups (P>0.05). The expression of p-ERK1/2in vehicle group obviouslydecreased compared with sham group (P<0.01). However, this decrease wasremarkably reversed by LXA4ME at doses of10ng and100ng (P<0.05,P<0.01, respectively). Similarly, the expression of total Nrf2, nuclear Nrf2andNQO1in vehicle group were also significantly downregulaed (all P<0.01).Interestingly, LXA4ME (10ng and100ng) significantly elevated theexpression of total Nrf2, nuclear Nrf2and NQO1(P<0.01,P<0.01,P<0.05,respectively). Furthermore, except that no significant difference was found inthe expression of total Nrf2between LXA4ME100ng group and LXA4ME10ng group(P>0.05), there were higher expression of p-ERK1/2, nuclearNrf2and NQO1in LXA4ME100ng group than LXA4ME10ng group(P<0.01).
     Compared with sham group, chronic cerebral hypoperfusion significantlydecreased the expression of Bcl-2and increased the expression of Bax, thusmarkedly reduced the ratio of Bcl-2/Bax (P<0.05, P<0.01, P<0.01,respectively). However, administration of LXA4ME (10ng and100ng)significantly reversed the downregulation of Bcl-2(both P<0.01) and theupregulation of Bax (P<0.05, P<0.01, respectively) and elevated the expression ratio of Bcl-2/Bax (both P<0.01). Moreover, compared with LXA4ME10ng group, treatment with LXA4ME100ng more effectivelyupregulated the ratio of Bcl-2/Bax (P<0.01).
     Cleaved caspase-3protein was significantly upregulated in vehicle groupcompared with sham group (P<0.01). Adminstration of LXA4ME100ng perday significantly downregulated cleaved caspase-3protein expression(P<0.01).
     Conclusion: The present study indicates protective effects of LXA4MEon cognitive impairment induced by chronic cerebral hypoperfusion, andprovides further insight into the antioxidant and anti-apoptotic mechanisms ofLXA4ME. The activation of ERK/Nrf2signaling pathway contributes to theneuroprotection of LXA4ME against chronic cerebral hypoperfusion injury.
     PartⅡLXA4ME provides long-term neuroprotection for VD rats inducedby chronic cerebral hypoperfusion through activating PI3K/Aktsignaling pathway
     Objective: To evaluate the possible long-term neuroprotection of LXA4ME administrated during early phase of chronic cerebral hypoperfusion andfurther explore the underlying mechanisms.
     Methods: Adult male Sprague–Dawley rats weighing250-300g wereprovided by the Laboratory Animal Center of Hebei Medical University.7days before BCCAO surgery, all rats received intracerebroventricular catheterimplantation. Rats were randomly assigned into four groups: Sham group,vehicle group, LXA4ME100group and LXA4ME100+LY294002group. Ratsin Sham group and vehicle group received2μl vehicle of LY294002(i.c.v.)shortly after BCCAO, and which was followed by administration of5μlnormal saline (i.c.v.)30min later; Rats in LXA4ME100group received2μlvehicle of LY294002(i.c.v.)shortly after BCCAO, and which was followedby administration of LXA4ME (100ng in5μl)(i.c.v.)30min later; Rats inLXA4ME100+LY294002group received2μl LY294002(i.c.v.) shortlyafter BCCAO, and which was followed by administration of LXA4ME (100ng in5μl)(i.c.v.)30min later. The aforementioned experimental plan was performed every24h up to14days afterwards.
     At day29following BCCAO, all rats received Morris water maze test toevaluate patial learning and memory abilities.
     Shortly after the Morris water maze test, six rats chosen randomly fromeach group were anesthetized with pentobarbital sodium (50mg/kg, i.p.) andperfused with4%paraformaldehyde. The brains were then embedded inparaffin. Coronal brain sections were cut and underwent Nissl staining with0.5%cresyl fast violet to observe the pathology changes in CA1region ofhippocampus. Moreover, six rats from each group were randomly chosen to bedecapitated under anesthesia. The hippocampi were quickly dissected andhomogenated to detect the protein expression of total Akt (t-Akt),phospho-Akt (p-Akt), total CREB (t-CREB), phospho-CREB (p-CREB),Bcl-2and Bax in hippocampus by western blot.
     Results: In the Morris water maze, all animals showed a progressivedecline in the escape latency with training. Beginning on day2, rats in vehiclegroup took significantly longer time to find the platform (P<0.01) comparedwith sham group. Rats in LXA4ME100ng group showed shorter meanlatencies compared with vehicle group (day2:P<0.05;day3-5:P<0.01).Compared with LXA4ME100ng group, the escape latencies of rats in LXA4ME100+LY294002group significantly increased(day2:P<0.05;day3-5:P<0.01). In the probe trial, rats in vehicle group stayed in the target quadrantfor significantly less time and possessed fewer times of crossing the platformthan sham group (both P<0.01). Compared with vehicle group, rats receivedLXA4ME (100ng/d) evidently increased the ratio of time spent in the targetquadrant and the times of crossing the platform (both P<0.01). However, ratsin LXA4ME100+LY294002group showed significantly decreased ratio oftime and the fewer times of crossing the platform (both P<0.01).
     In sham group, the neurons in the CA1region of hippocampus weretightly ranked in order, and the neurons were clear and moderate in size withnormal microstructure. In vehicle group, obvious pathological changes wereexhibited with loosely arranged neurons, neuronal shrinkage, loss and light color staining. Administration of LXA4ME (100ng/d), evidently reversed themorphologic changes. However, there are obvious phenomena of neuron lossand shrinkage of neurons.
     At day34following BCCAO, the expression of p-Akt in vehicle groupobviously decreased compared with sham group (P<0.01); The decrease wasremarkably reversed by LXA4ME (100ng/d)(P<0.01); However, theexpression of p-Akt in LXA4ME100+LY294002group obviously decreased(P<0.01). There was no significant difference in the expression of t-Aktamong all groups (P>0.05). The expression of p-CREB showed a tendencysimilar to p-Akt. There was no significant difference in the expression of t-CREB among all groups (P>0.05).
     Compared with sham group, at day34following BCCAO, chroniccerebral hypoperfusion significantly decreased the expression of Bcl-2andincreased the expression of Bax, thus markedly reduced the ratio of Bcl-2/Bax(all P<0.01). Administration of LXA4ME (100ng/d) significantly reversedthe downregulation of Bcl-2(P<0.01) and the upregulation of Bax (P<0.01)and increased the expression ratio of Bcl-2/Bax (P<0.01). Interestingly, thecombined use of LY294002and LXA4ME (100ng/d) blocked the increase ofBcl-2(P<0.01) and the decrease of Bax (P<0.01) induced by LXA4ME only,and decreased the ratio of Bcl-2/Bax (P<0.01).
     Conclusion: Administration of LXA4ME during early phase of chroniccerebral hypoperfusion can provide long-term neuroprotection, inhabit theapoptosis of neurons, and improve cognitive impairments induced by chroniccerebral hypoperfusion. The activation of PI3K/Akt signaling pathway may beinvolved in the long-term neuroprotection of LXA4ME.
     PartⅢ Effects of LXA4ME on postsynaptic density of rats with VD
     Objective: To observe the effects of LXA4ME on the thickness of PSDand the expression of PSD-95in CA1region of rats underwent chroniccerebral hypoperfusion, and provide more insights into the neuroprotectivemechanisms of LXA4ME.
     Methods: Adult male Sprague–Dawley rats weighing250-300g were provided by the Laboratory Animal Center of Hebei Medical University.7days before BCCAO surgery, all rats received intracerebroventricular catheterimplantation. Rats were randomly assigned into three groups: Sham group,vehicle group, LXA4ME100group.100ng LXA4ME was dissolved in5μlnormal saline. Rats in LXA4ME100group received100ng LXA4ME (i.c.v.)immediately after BCCAO. Rats in sham group and vehicle group received5μl normal saline (i.c.v.). All rats received LXA4ME dissolved in normalsaline or normal saline according to the aforementioned experimental planevery24h up to14days afterwards.
     At day34following BCCAO, three rats chosen randomly from eachgroup were anesthetized with pentobarbital sodium (50mg/kg, i.p.) andperfused with4%paraformaldehyde. The thickness of PSD in CA1area ofhippocampus was observed through the electron microscopy. Furthermore,another six rats chosen randomly from each group were fully anesthetized andperfused with4%paraformaldehyde through the left cardiac ventricle. Thebrains were then embedded in paraffin. Coronal brain sections were cut andimmunohistochemically stained for PSD-95. IOD/area value was used toindicate the mean optical density for each slice.
     Results: At day34following BCCAO, the thickness of PSD in CA1areaof hippocampus in vehicle group was34.61±5.66nm,which was significantlyless than that of sham group (49.65±4.84nm)(P<0.01); Meanwhile, thethickness of PSD of LXA4ME100group was47.53±6.10nm,which wasevidently more than that of vehicle group (P<0.01).
     Immunohistochemical results showed that extensively positive stainingfor PSD-95was seen in the cytoplasm of neurons in hippocampus CA1regionof rats in sham group. The IOD/area value of PSD-95markedly decreased invehicle group compared with sham group (P<0.01). However, compared withsham group, administration of LXA4ME (100ng/d) significantly increased thepositive expression of PSD-95(P<0.01).
     Conclusion: Administration of LXA4ME can promote the expression ofPSD-95and increase the thickness of PSD, which contribute to the neuroprotective effects of LXA4ME.
引文
1Rockwood K, Wentzel C, Hachinski V, et al. Prevalence and outcomesof vascular cognitive impairment. Vascular Cognitive ImpairmentInvestigators of the Canadian Study of Health and Aging. Neurology,2000,54:447~451
    2Roman GC. Vascular dementia revisited: diagnosis, pathogenesis,treatment, and prevention. Med Clin North Am,2002,86:477~499
    3Stewart JT. Psychiatric and behavioral manifestations of vasculardementia. Am J Geriatr Cardiol,2007,16:165~170
    4de la Torre JC. Vascular basis of Alzheimer's pathogenesis. Ann N YAcad Sci,2002,977:196~215
    5Roman GC. Vascular dementia prevention: a risk factor analysis.Cerebrovasc Dis,2005,20Suppl2:91~100
    6Chong ZZ, Li F, Maiese K. Oxidative stress in the brain: novel cellulartargets that govern survival during neurodegenerative disease. ProgNeurobiol,2005,75:207~246
    7de la Torre JC, Aliev G. Inhibition of vascular nitric oxide after ratchronic brain hypoperfusion: spatial memory and immunocytochemicalchanges. J Cereb Blood Flow Metab,2005,25:663~672
    8Kasparova S, Brezova V, Valko M, et al. Study of the oxidative stress in arat model of chronic brain hypoperfusion. Neurochem Int,2005,46:601~611
    9Romano M. Lipid mediators: lipoxin and aspirin-triggered15-epi-lipoxins. Inflamm Allergy Drug Targets,2006,5:81~90
    10Serhan CN. Lipoxins and aspirin-triggered15-epi-lipoxin biosynthesis:an update and role in anti-inflammation and pro-resolution.Prostaglandins Other Lipid Mediat,2002,68-69:433~455
    11Levy BD. Lipoxins and lipoxin analogs in asthma. Prostaglandins LeukotEssent Fatty Acids,2005,73:231~237
    12Sun T, Yu E, Yu L, et al. LipoxinA(4) induced antinociception anddecreased expression of NF-kappaB and pro-inflammatory cytokinesafter chronic dorsal root ganglia compression in rats. Eur J Pain,2012,16:18~27
    13Svensson CI, Zattoni M, Serhan CN. Lipoxins and aspirin-triggeredlipoxin inhibit inflammatory pain processing. J Exp Med,2007,204:245~252
    14Leonard MO, Hannan K, Burne MJ, Lappin DW, et al.15-Epi-16-(para-fluorophenoxy)-lipoxin A(4)-methyl ester, a syntheticanalogue of15-epi-lipoxin A(4), is protective in experimental ischemicacute renal failure. J Am Soc Nephrol,2002,13:1657~1662
    15Fiore S, Antico G, Aloman M, et al. Lipoxin A4biology in the humansynovium. Role of the ALX signaling pathways in modulation ofinflammatory arthritis. Prostaglandins Leukot Essent Fatty Acids,2005,73:189~196
    16Baker N, O'Meara SJ, Scannell M, et al. Lipoxin A4: anti-inflammatoryand anti-angiogenic impact on endothelial cells. J Immunol,2009,182:3819~3826
    17Brady HR, Serhan CN. Lipoxins: putative braking signals in host defense,inflammation and hypersensitivity. Curr Opin Nephrol Hypertens,1996,5:20~27
    18Filep JG, Khreiss T, Jozsef L. Lipoxins and aspirin-triggered lipoxins inneutrophil adhesion and signal transduction. Prostaglandins LeukotEssent Fatty Acids,2005,73:257~262
    19Wu Y, Wang YP, Guo P, et al. A lipoxin A4analog amelioratesblood-brain barrier dysfunction and reduces MMP-9expression in a ratmodel of focal cerebral ischemia-reperfusion injury. J Mol Neurosci,2012b,46:483~491
    20Wu Y, Ye XH, Guo PP, et al. Neuroprotective effect of lipoxin A4methyl ester in a rat model of permanent focal cerebral ischemia. J MolNeurosci,2010,42:226~234
    21Ye XH, Wu Y, Guo PP, et al. Lipoxin A4analogue protects brain andreduces inflammation in a rat model of focal cerebral ischemiareperfusion. Brain Res,2010,1323:174~183
    22Nascimento-Silva V, Arruda MA, Barja-Fidalgo C, et al.Aspirin-triggered lipoxin A4blocks reactive oxygen species generationin endothelial cells: a novel antioxidative mechanism. Thromb Haemost,2007,97:88~98
    23Zhou XY, Wu P, Zhang L, et al. Effects of lipoxin A(4) onlipopolysaccharide induced proliferation and reactive oxygen speciesproduction in RAW264.7macrophages through modulation of G-CSFsecretion. Inflamm Res,2007,56:324~333
    24Zhang L, Wan J, Li H, et al. Protective effects of BML-111, a lipoxinA(4) receptor agonist, on carbon tetrachloride-induced liver injury inmice. Hepatol Res,2007,37:948~956
    25Prieto P, Cuenca J, Traves PG, et al. Lipoxin A4impairment of apoptoticsignaling in macrophages: implication of the PI3K/Akt and theERK/Nrf-2defense pathways. Cell Death Differ,2010,17:1179~1188
    26Tanito M, Agbaga MP, Anderson RE. Upregulation of thioredoxin systemvia Nrf2-antioxidant responsive element pathway in adaptive-retinalneuroprotection in vivo and in vitro. Free Radic Biol Med,2007,42:1838~1850
    27Zhu H, Itoh K, Yamamoto M, et al. Role of Nrf2signaling in regulationof antioxidants and phase2enzymes in cardiac fibroblasts: protectionagainst reactive oxygen and nitrogen species-induced cell injury. FEBSLett,2005,579:3029~3036
    28Leong PK, Chiu PY, Chen N, et al. Schisandrin B elicits a glutathioneantioxidant response and protects against apoptosis via theredox-sensitive ERK/Nrf2pathway in AML12hepatocytes. Free RadicRes,2011,45:483~495
    29Sun Z, Huang Z, Zhang DD. Phosphorylation of Nrf2at multiple sites byMAP kinases has a limited contribution in modulating theNrf2-dependent antioxidant response. PLoS One,2009,4:e6588
    30Zipper LM, Mulcahy RT. Erk activation is required for Nrf2nuclearlocalization during pyrrolidine dithiocarbamate induction of glutamatecysteine ligase modulatory gene expression in HepG2cells. Toxicol Sci,2003,73:124~134
    31Farkas E, Luiten PG, Bari F. Permanent, bilateral common carotid arteryocclusion in the rat: a model for chronic cerebral hypoperfusion-relatedneurodegenerative diseases. Brain Res Rev,2007,54:162~180
    32Sarti C, Pantoni L, Bartolini L, et al. Persistent impairment of gaitperformances and working memory after bilateral common carotid arteryocclusion in the adult Wistar rat. Behav Brain Res,2002,136:13~20
    33Zhang G, Zhao Z, Gao L, et al. Gypenoside attenuates white matterlesions induced by chronic cerebral hypoperfusion in rats. PharmacolBiochem Behav,2011,99:42~51
    34Lee JH, Park SY, Shin YW,et al. Concurrent administration of cilostazolwith donepezil effectively improves cognitive dysfunction with increasedneuroprotection after chronic cerebral hypoperfusion in rats. Brain Res,2007,1185:246~255
    35Watanabe T, Zhang N, Liu M, et al. Cilostazol protects against brainwhite matter damage and cognitive impairment in a rat model of chroniccerebral hypoperfusion. Stroke,2006,37:1539~1545.
    36McCracken E, Valeriani V, Simpson C, et al. The lipid peroxidationby-product4-hydroxynonenal is toxic to axons and oligodendrocytes. JCereb Blood Flow Metab,2000,20:1529~1536
    37Esterbauer H,Schanr RJ,Zollner H.Chemistry and bioehemistry of4-hydroxynonenal,malonaldehyde and related aldehydes. Free RadicBiol Med,1991,11:81~128
    38Ohnishi T, Hoshi H, Nagamachi S, Jinnouchi S, Flores LG,2nd, FutamiS, et al. High-resolution SPECT to assess hippocampal perfusion inneuropsychiatric diseases. J Nucl Med.1995;36:1163-1169
    39McNamara RK, Skelton RW. The neuropharmacological andneurochemical basis of place learning in the Morris water maze. BrainRes Brain Res Rev,1993,18:33~49
    40Jung, KA, Kwak, MK. The Nrf2system as a potential target for thedevelopment of indirect antioxidants. Molecules,2010,15:7266~7291
    41Kensler TW, Wakabayashi N, Biswal S. Cell survival responses toenvironmental stresses via the Keap1-Nrf2-ARE pathway. Annu RevPharmacol Toxicol,2007,47:89~116
    42Alfieri A, Srivastava S, Siow RC, et al. Targeting the Nrf2-Keap1antioxidant defence pathway for neurovascular protection in stroke. JPhysiol,2011,589:4125~4136
    43Du Y, Zhang X, Ji H, et al. Probucol and atorvastatin in combinationprotect rat brains in MCAO model: upregulating Peroxiredoxin2, Foxo3aand Nrf2expression. Neurosci Lett,2012,509:110~115
    44Peng B, Zhao P, Lu YP, et al. Z-ligustilide activates the Nrf2/HO-1pathway and protects against cerebral ischemia-reperfusion injury in vivoand in vitro. Brain Res,2013,1520:168~177
    45Godman CA, Chheda KP, Hightower LE, et al. Hyperbaric oxygeninduces a cytoprotective and angiogenic response in humanmicrovascular endothelial cells. Cell Stress Chaperones,2010,15:431-442
    46Zhai X, Chen X, Shi J, et al. Lactulose ameliorates cerebralischemia-reperfusion injury in ratsby inducing hydrogen by activatingNrf2expression. Free Radic Biol Med,2013,65:731~741
    47Martin KR, Barrett JC. Reactive oxygen species as double-edged swordsin cellular processes: low-dose cell signaling versus high-dose toxicity.Hum Exp Toxicol,2002,21:71~75
    48Chen XQ, Wu SH, Zhou Y, et al. Lipoxin A4-induced heme oxygenase-1protects cardiomyocytes against hypoxia/reoxygenation injury via p38MAPK activation and Nrf2/ARE complex. PLoS One,2013,8:e67120
    49Lin F, Yu X, Zhang X, et al. A synthetic analog of lipoxin A4partiallyalleviates dexamethasone-induced fetal growth restriction in rats.Placenta,2013,34:941~948
    50Wu L, Liu ZJ, Miao S, et al. Lipoxin A4ameliorates cerebralischaemia/reperfusion injury through upregulation of nuclear factorerythroid2-related factor2. Neurol Res,2013,35:968~975
    51Barone FC, Feuerstein GZ. Inflammatory mediators and stroke: newopportunities for novel therapeutics. J Cereb Blood Flow Metab,1999,19:819~834
    52Hai J, Yu F, Lin Q, Su SH. The changes of signal transduction pathwaysin hippocampal regions and postsynaptic densities after chronic cerebralhypoperfusion in rats. Brain Res,2012,1429:9~17
    53Li W, Huang R, Shetty RA, et al. Transient focal cerebral ischemiainduces long-term cognitive function deficit in an experimental ischemicstroke model. Neurobiol Dis,2013,59:18~25
    54Yamamoto Y, Shioda N, Han F, et al. Nobiletin improves brainischemia-induced learning and memory deficits through stimulation ofCaMKII and CREB phosphorylation. Brain Res,2009,1295:218~229
    55Kenchegowda S, Bazan NG, Bazan HE. EGF stimulates lipoxin A4synthesis and modulates repair in corneal epithelial cells through ERKand p38activation. Invest Ophthalmol Vis Sci,2011,52:2240~2249
    56Simoes RL, Niconi-de-Almeida Y, da-Fe AR, et al. A synthetic analog of15-epi-lipoxin A4inhibits human monocyte apoptosis: involvement ofERK-2and PI3-kinase. Prostaglandins Other Lipid Mediat,2010,91:10~17
    57Wu L, Miao S, Zou LB, et al. Lipoxin A4inhibits5-lipoxygenasetranslocation and leukotrienes biosynthesis to exert a neuroprotectiveeffect in cerebral ischemia/reperfusion injury. J Mol Neurosci,2012,48:185~200
    58Wang HQ, Xu YX, Zhu CQ. Upregulation of heme oxygenase-1byacteoside through ERK and PI3K/Akt pathway confer neuroprotectionagainst beta-amyloid-induced neurotoxicity. Neurotox Res,2012,21:368~378
    59Zhao W, Xu S, Peng Y, et al. Potassium2-(1-hydroxypentyl)-benzoateimproves learning and memory deficits in chronic cerebral hypoperfusedrats. Neurosci Lett,2013,541:155~160
    60Bennett SA, Tenniswood M, Chen JH, et al. Chronic cerebralhypoperfusion elicits neuronal apoptosis and behavioral impairment.Neuroreport,1998,9:161~166
    61Maurer M, Tsai M, Metz M, et al. A role for Bax in the regulation ofapoptosis in mouse mast cells. J Invest Dermatol,2000,114:1205~1206
    62Chauhan D, Hideshima T, Rosen S, et al. Apaf-1/cytochromec-independent and Smac-dependent induction of apoptosis in multiplemyeloma (MM) cells. J Biol Chem,2001,276:24453~24456
    63Zhang X, Graham SH, Kochanek PM, et al. Caspase-8expression andproteolysis in human brain after severe head injury. FASEB J,2003,17:1367~1369
    64Yin XM, Oltvai ZN, Korsmeyer SJ. BH1and BH2domains of Bcl-2arerequired for inhibition of apoptosis and heterodimerization with Bax.Nature,1994,369:321~323
    65Gross A, McDonnell JM, Korsmeyer SJ. Bcl-2family members and themitochondria in apoptosis. Genes Dev,1999,13:1899~1911
    66Jeong JJ, Ha YM, Jin YC, et al. Rutin from Lonicera japonica inhibitsmyocardial ischemia/reperfusion-induced apoptosis in vivo and protectsH9c2cells against hydrogen peroxide-mediated injury via ERK1/2andPI3K/Akt signals in vitro. Food Chem Toxicol,2009,47:1569~1576
    67Liu S, Pereira NA, Teo JJ, et al. Mitochondrially targeted Bcl-2andBcl-X(L) chimeras elicit different apoptotic responses. Mol Cells,2007,24:378~387
    68Ravishankar S, Ashraf QM, Fritz K, et al. Expression of Bax and Bcl-2proteins during hypoxia in cerebral cortical neuronal nuclei of newbornpiglets: effect of administration of magnesium sulfate. Brain Res,2001,901:23~29
    69Nagata S. Apoptosis by death factor. Cell,1997,88:355~365
    1Kulik G, Klippel A, Weber MJ. Antiapoptotic signalling by the insulin-likegrowth factor I receptor, phosphatidylinositol3-kinase, and Akt. Mol CellBiol,1997,17:1595~1606
    2Vaillant AR, Mazzoni I, Tudan C, et al. Depolarization and neurotrophinsconverge on the phosphatidylinositol3-kinase-Akt pathway tosynergistically regulate neuronal survival. J Cell Biol,1999,146:955~966
    3Zhao H, Sapolsky RM, Steinberg GK. Phosphoinositide-3-kinase/Aktsurvival signal pathways are implicated in neuronal survival after stroke.Mol Neurobiol,2006,34:249~270
    4Noshita N, Lewen A, Sugawara T, et al. Evidence of phosphorylation ofAkt and neuronal survival after transient focal cerebral ischemia in mice. JCereb Blood Flow Metab,2001,21:1442~1450
    5Hanada M, Feng J, Hemmings BA. Structure, regulation and function ofPKB/AKT-a major therapeutic target. Biochim Biophys Acta,2004,1697:3~16
    6Bourtchuladze R, Frenguelli B, Blendy J, et al. Deficient long-termmemory in mice with a targeted mutation of the cAMP-responsiveelement-binding protein. Cell,1994,79:59~68
    7Josselyn SA, Shi C, Carlezon WA Jr, et al. Long-term memory isfacilitated by cAMP response element-binding protein overexpression inthe amygdale. J Neurosci,2001,21:2404~2412
    8Min D, Mao X, Wu K, et al. Donepezil attenuates hippocampal neuronaldamage and cognitive deficits after global cerebral ischemia in gerbils.Neuorosci Lett,2012,510:29~33
    9Kitagawa K. CREB and cAMP response element-mediated geneexpression in the ischemic brain. FEBS J,2007,274:3210~3217
    10Han BH, D’Costa A, Back SA, et al. BDNF blocks caspase-3activation inneonatal hypoxia-ischemia. Neurobiol Dis,2000,7:38~53.
    11Martinou JC, Dubois-Dauphin M, Staple JK, et al. Overexpression of AKTin transgenic mice protects neurons from naturally occurring cell death andexperimental ischemia. Neuron,1994,13:1017~1030
    12Katada T, Kurosu H, Okada T, et al. Synergistic activation of a family ofphosphoinositide3-kinase via G-protein coupled and tyrosinekinase-related receptors. Chem Phys Lipids,1999,98:79~86
    13Dudek H, Datta SR, Franke TF, et al. Regulation of neuronal survival bythe serine-threonine protein kinase Akt. Science,1997,275:661~665.
    14Crowder RJ, Freeman RS. Phosphatidylinositol3-kinase and Akt proteinkinase are necessary and sufficient for the survival of nerve growthfactor-dependent sympathetic neurons. J Neurosci,1998,18:2933~2943
    15Du K, Montminy M. CREB is a regulatory target for the protein kinaseAkt/PKB. J Biol Chem,1998,273:32377~32379
    16Pugazhenthi S, Nesterova A, Sable C, et al. Akt/protein kinase Bupregulates Akt expression through cAMP-response element-bindingprotein. J Biol Chem,2000,275:10761~10766
    17Kitagawa H, Warita H, Sasaki C, et al. Immunoreactive Akt,PI3K andERK protein kinase expression in ischemic rat brain. Neurosci Lett,1999,274:45~48
    18Simao F, Matte A, Pagnussat AS, et al. Resveratrol prevents CA1neuronsagainst ischemic injury by parallel modulation of both GSK-3β and CREBthrough PI3K/Akt pathways. Eur J Neurosci,2012,36:2899~2905
    19Yuan Y,Guo Q,Ye Z,et al. Ischemic postconditioning protects brainfrom ischemia/reperfusion injury by attenuating endoplasmic reticulumstress-induced apoptosis through PI3K-Akt pathway.Brain Res,2011,1367:85~93
    20Peng B,Guo QL,He ZJ. Remote ischemic postconditioning protects thebrain from global cerebral ischemia/reperfusion injury by up-regulatingendothelial nitric oxide synthase through the PI3K/Akt pathway.BrainRes,2012,1445:92~102
    21Chen SF, Tsai HJ, Hung TH, et al. Salidroside Improves Behavioral andHistological Outcomes and Reduces Apoptosis via PI3K/Akt Signalingafter Experimental Traumatic Brain Injury. PLoS One,2012,7:e45763
    22Zhi WH, Zeng YY, Lu ZH, et al. Simvastatin Exerts Antiamnesic Effect inAb25-35-Injected Mice. CNS Neurosci Ther,2014,20:218~226
    23Shang YC, Chong ZZ, Wang S, et al. Prevention of β-amyloiddegeneration of microglia by erythropoietin depends on Wnt1, the PI3-K/mTOR pathway, Bad, and Bcl-xL. Aging (Albany NY),2012,4:187~201
    24Lee ST, Chu K, Park JE, et al. Erythropoietin improves memory functionwith reducing endothelial dysfunction and amyloid-beta burden inAlzheimer's disease models. J Neurochem,2012,120:115~124
    25Echeverria V, Zeitlin R, Burgess S, et al. Cotinine reduces amyloid-betaaggregation and improves memory in Alzheimer's mice. J Alzheimers Dis,2011,24:817~835
    26Wu Y, Wang YP, Guo P, et al. A lipoxin A4analog ameliorates blood-brainbarrier dysfunction and reduces MMP-9expression in a rat model of focalcerebral ischemia-reperfusion injury. J Mol Neurosci.2012b,46:483~491.
    27Wu Y, Ye XH, Guo PP, et al. Neuroprotective effect of lipoxin A4methylester in a rat model of permanent focal cerebral ischemia. J Mol Neurosci.2010,42:226~234
    28Ye XH, Wu Y, Guo PP, et al. Lipoxin A4analogue protects brain andreduces inflammation in a rat model of focal cerebral ischemia reperfusion.Brain Res.2010,1323:174~83
    29Shelton JG, Steelman LS, White ER, et al. Synergy between PI3K/Akt andRaf/MEK/ERK pathways in IGF-1R mediated cell cycle progression andprevention of apoptosis in hematopoietic cells. Cell Cycle,2004,3:372~379
    30Steelman LS, Pohnert SC, Shelton JG, et al. JAK/STAT, Raf/MEK/ERK,PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis.Leukemia,2004,18:189~218
    31Prieto P, Cuenca J, Traves PG, et al. Lipoxin A4impairment of apoptoticsignaling in macrophages: implication of the PI3K/Akt and the ERK/Nrf-2defense pathways. Cell Death Differ.2010,17:1179~1188
    32Ueno Y, Zhang N, Miyamoto N, et al. Edaravone attenuates white matterlesions through endothelial protection in a rat chronic hypoperfusionmodel. Neuroscience,2009,162:317~327
    33Gonzalez-Robayna IJ, Falender AE, Ochsner S, et al. Follicle-stimulatingHormone(FSH) stimulates phosphorylation and activation of proteinkinase B (PKB/Akt) and serum and Glucocorticoid-induced kinase(Sgk):evidence for A kinase independent signaling by FSH in granulosacells. Mol Endocrinol,2000,14:1283~1300
    34Wu DM, Lu J, Zhang YQ, et al. Ursolic acid improves domoicacid-induced cognitive deficits in mice. Toxicol Appl Pharmacol,2013,271:127~136
    35Lu J, Wu DM, Zheng YL, et al. Purple Sweet Potato Color AlleviatesD-galactose-induced Brain Aging in Old Mice by Promoting Survival ofNeurons via PI3K Pathway and Inhibiting Cytochrome C-mediatedApoptosis. Brain Pathol,2010,20:598~612
    36Zhan L, Wang T, Li W, et al. Activation of Akt/FoxO signaling pathwaycontributes to induction of neuroprotection against transient globalcerebral ischemia by hypoxic pre-conditioning in adult rats. J Neurochem,2010,114:897~908
    37Yano S, Morioka M, Fukunaga K, et al. Activation of Akt/protein kinase Bcontributes to induction of ischemic tolerance in the CA1subfield of gerbilhippocampus. J Cereb Blood Flow Metab,2001,21:351~360
    38Zhang F, Yin W, Chen J. Apoptosis in cerebral ischemia: executional andregulatory signaling mechanisms. Neurol Res,2004,26:835~845
    39Jackson TC, Rani A, Kumar A, et al. Regional hippocampal differences inAKT survival signaling across the lifespan: implications for CA1vulnerability with aging. Cell Death Differ,2009,16:439~448
    40Parcellier A, Tintignac LA,Zhuravleva E,et al. PKB and the mitochondria:AKTing on apoptosis. Cell Signal.2008,20:21~30.
    41Song G,Ouyang G,Bao S. The activation of Akt/PKB signaling pathwayand cell survival. J Cell Mol Med,2005,9:59~71
    42Yang L,Sun M,Sun XM,et al. Akt attenuation of the serine proteaseactivity of HtrA2/Omi through phosphorylation of serine212. J Biol Chem,2007,282:10981~10987
    43Basu S,Totty NF,Irwin MS,et al. Akt phosphorylates the Yes-associatedprotein, YAP, to induce interaction with14-3-3and attenuation ofp73-mediated apoptosis. Mol Cel,2003,11:11~23.
    44Simoes RL, Niconi-de-Almeida Y, da-Fe AR, et al. A synthetic analog of15-epi-lipoxin A4inhibits human monocyte apoptosis: involvement ofERK-2and PI3-kinase. Prostaglandins Other Lipid Mediat.2010,91:10~17
    45Khau T, Langenbach SY, Schuliga M, et al. Annexin-1signalsmitogen-stimulated breast tumor cell proliferation by activation of theformyl peptide receptors (FPRs)1and2. FASEB J,2011,25:483~496
    46Yang Y, Cheng Y, Lian QQ, et al. Contribution of CFTR to alveolar fluidclearance by LXA4via PI3K/Akt pathway in LPS-induced acute lunginjury. Mediators Inflamm,2013:862628
    47Borgeson E, Docherty NG, Murphy M, et al. Lipoxin A4andbenzo-lipoxin A4attenuate experimental renal fibrosis. FASEB J,2011,25:2967~2979
    48Wu SH, Zhang YM, Tao HX, et al. Lipoxin A(4) inhibits transition ofepithelial to mesenchymal cells in proximal tubules. Am J Nephrol,2010,32:122~136
    49Gong X, Ma M, Fan X, et al. Down-regulation of IGF-1/IGF-1R inhippocampus of rats with vascular dementia. Neurosci Lett,2012,513:20~24
    50Walton MR, Dragunow I. Is CREB a key to neuronal survival? TrendsNeurosci,2000,23:48~53
    51Mayr B, Montminy M. Transcriptional regulation by thephosphorylation-dependent factor CREB.Nat Rev Mol Cell Biol,2001,2:599~609
    52Lonze BE, Ginty DD. Function and regulation of CREB familytranscription factors in nervous system. Neuron,2002,35:605~623
    53Benito E, Barco A. CREB’s control of intrinsic and synaptic plasticity:implications for CREB-dependent memory models. Trends Neurosci,2010,33:230~240
    54Han JH, Kushner SA, Yiu AP, et al. Neuronal competition and selectionduring memory formation. Science,2007,316:457~460
    55Carlezon WA Jr, Duman RS, Nestler EJ. The many faces of CREB. TrendsNeurosci,2005,28:436~445
    56Silva AJ, Kogan JH, Frankland PW, et al. CREB and memory. Annu RevNeurosci,1998,21:127~148
    57Xu B, Li XX, He GR, et al. Luteolin promotes long-term potentiation andimproves cognitive functions in chronic cerebral hypoperfused rats. Eur JPharmacol,2010,627:99~105
    58Vecsey CG, Hawk JD, Lattal KM,et al. Histone deacetylase inhibitorsenhance memory and synaptic plasticity via CREB: CBP-dependenttranscriptional activation. J Neurosci,2007,27:6128~6140
    59Paul C, Stratil C, Hofmann F, et al. cGMP-dependent protein kinase type Ipromotes CREB/CRE-mediated gene expression in neurons of the lateralamygdale. Neurosci Lett,2010,473:82~86
    60Wu H, Zhou Y, Xiong ZQ. Transducer of regulated CREB and late phaselong-term synaptic potentiation. FEBS J,2007,274:3218~3223
    61Yin JC, Wallach JS, Del Vecchio M, et al. Induction of a dominantnegative CREB transgene specifically blocks long-term memory inDrosoohila. Cell,1994,79:49~58
    62Zhang L, Zhao H, Zhang X, et al. Nobiletin protects against cerebralischemia via activating the p-Akt,p-CREB, BDNF and Bcl-2pathway andameliorating BBB permeabilityin rat. Brain Res Bull,2013,96:45~53
    63Watanabe T, Zhang N, Liu M, et al. Cilostazol Protects Against BrainWhite Matter Damage and Cognitive Impairment in a Rat Model ofChronic Cerebral Hypoperfusion. Stroke,2006,37:1535~1545
    64Wilson BE, Mochon E, Boxer LM. Induction of Bcl-2expression byphosphorylated CREB proteins during B-cell activation and rescue fromapoptosis. Mol Cell Biol,1996,16:5546~5556
    65Tanner EA, Blute TA, Brachmann CB, et al. Bcl-2proteins and autophagyregulate mitochondrial dynamics during programmed cell death in theDrosophila ovary. Development,2011,138:327~338
    66Cory S, Adams JM. The Bcl2family: regulators of the cellularlife-or-death switch. Nat Rev Cancer,2002,2:647~656
    67Tanaka, K. Alteration of second messengers during acute cerebral ischemiaadenylate cyclase, cyclic AMP-dependentprotein kinase, and cyclic AMPresponse element binding protein. Prog in Neurobiol,2001,65:173~207
    68Royer C, Lucas TF, Lazari MF, et al.17Beta-estradiol signaling andregulation of proliferation and apoptosis of rat Sertoli cells. Bio Reprod,2012, vol.86:108~115
    69Zhu H, Zhang J, Sun H, et al. An enriched environment reverses thesynaptic plasticity deficit induced by chronic cerebral hypoperfusion.Neurosci Lett,2011,502:71~75
    70Cai QY, Chen XS, Zhan XL, et al. Protective effects of catalpol onoligodendrocyte death and myelin breakdown in a rat model of chroniccerebral hypoperfusion. Neurosci Lett,2011,497:22~26
    71Li XY,Zhan XR, Liu XM, et al. CREB is a regulatory target for theprotein kinase Akt/PKB in the differentiation of pancreatic ductal cells intoislet beta-cells mediated by hepatocyte growth factor. Biochem BiophysRes Commun,2011,404:711~716
    72Mehrhof FB, Muller FU, Bergmann MW, et al. In cardiomyocyte hypoxia,insulin-like growth factor-I-induced antiapoptotic signaling requiresphosphatidylinositol-3-OH-kinase-dependent and mitogen-activatedprotein kinase-dependent activation of the transcription factor cAMPresponse element-binding protein. Circulation,2001,104:2088~2094
    73Meng FJ, Jiao SM, Yu B. Picroside II protects cardiomyocytes fromhypoxia/reoxygenation-induced apoptosis by activating the PI3K/Akt andCREB pathways.Int J Mol Med,2012,30:263~270
    74Cross DA, Alessi DR, Cohen P, et al. Inhibition of glycogen synthasekinase-3by insulin mediated by protein kinase B. Nature,1995,378:785~789
    75Fiol CJ, Williams JS, Chou CH, et al. A secondary phosphorylation ofCREB341at Ser129is required for the cAMP-mediated control of geneexpression. A role for glycogen synthase kinase-3in the control of geneexpression. J Biol Chem,1994,269:32187~32193
    76Grimes CA, Jope RS. CREB DNA binding activity is inhibited byglycogen synthase kinase-3b and facilitated by lithium. J Neurochem,2001,78:1219~1232
    77Johannessen M, Delghandi MP, Moens U. What turns CREB on? CellSignal,2004,16:1211~1227
    78Enslen H, Sun P, Brickey D, et al.Characterization ofCa2t/calmodulin-dependent protein kinase IV. Role in transcriptionalregulation. J Biol Chem,1994,269:15520~15527
    79Manier DH, Shelton RC, Sulser F. Cross-talk between PKA and PKC inhuman fibroblasts: What are the pharmacotherapeutic implications? JAffect Disord,2001,65:275~279
    80Xing J, Kornhauser JM, Xia Z, et al. Nerve growth factor activatesextracellular signal regulated kinase and p38mitogen-activated proteinkinase pathways to stimulate CREB serine133phosphorylation. Mol CellBiol,1998,18:1946~1955
    1Kong FJ, Xu L, He D, et al. Effets of gestational isoflurane exposure onpostnatal memory and learning in rats. Eur J Pharmacol,2011,670:168~174
    2Yang J, Liu Q, Zhang L, et al. Lanthanum chloride impairs memory,decreases pCaMKⅣ, p-MAPK and p-CREB expression of hippocampusin rats. Toxicol Lett,2009,190:208~214
    3Lynch M, Sayin U, Golarai G, et al. NMDA receptor-dependent plasticityofgranule cell spiking in the dentate gyrus of normaland epileptic rats.Neurophysiol,2000,84:2868~2879
    4蒲昭霞,赵聪敏,鲁利群.丰富环境对缺氧缺血性脑损伤大鼠海马突触超结构及突触素表达的影响.第三军医大学学报,2006,28:816-818
    5章子贵,陆汉新,李振武,等.小鼠记忆保持能力与海马CA3区突触界面结构的相关性.神经科学,1995,2:136~140
    6Vecsey CG, Hawk JD, Lattal KM,et al. Histone deacetylase inhibitorsenhance memory and synaptic plasticity via CREB: CBP-dependenttranscriptional activation. J Neurosci,2007,27:6128~6140
    7Paul C, Stratil C, Hofmann F, et al. cGMP-dependent protein kinase type Ipromotes CREB/CRE-mediated gene expression in neurons of the lateralamygdale. Neurosci Lett,2010,473:82~86
    8Wu H, Zhou Y, Xiong ZQ. Transducer of regulated CREB and late phaselong-term synaptic potentiation. FEBS J,2007,274:3218~3223
    9Berke JD, Hyman SE. Addiction, dopamine, and the molecularmechanisms of memory. Neuron,2000,25:515~532
    10Kelley AE. Memory and addiction: shared neural circuitry and molecularmechanisms. Neuron,2004,44:161~179
    11Guldner FH, Ingham CA.Increase in postsynaptic density material in optictarget neurons of the rat suprachiasmatic nucleus after bilateral enucleation.Neuroscience letters,1980,17:27~31
    12Winter E. Effects of an extract of Ginkgo biloba on learning and memoryin mice. Pharmacol Biochem Behav,1991,38:109~114
    13Kandel ER, Schwartz JH, Jessell TM. Principles of neuronal science.2000,Fourth edition. New York: McGraw-Hill
    14Cotman CW, Banker G, Churchil L, et al. Isolation of postsynapticdensities from rat brain. J Cell Biol,1974,63:441~455
    15Ziff EB. Enlightening the postsynaptic density. Neuron,1997;19:1163~1174
    16Wyszynski M, Lin J, Rao A, et al. Competitive binding of alpha-actininand calmedulin to the NMDA receptor. Nature,1997,385:439~442
    17Kennedy MB. The postsynaptic density. Curr Opin Neurobiol,1993,3:732~737
    18Sheng M. Molecular organization of the postsynaptic specialization. ProcNatl Acad Sci USA,2001,98:7058~7061
    19Ostwald K, Hagberg H, Andine P, et al. Upregulation of calpain activity inneonatal rat brain after hypoxic-ischemia. Brain Res,1993,630:289~294
    20Hu BR, Park M, Martone ME, et al. Assembly of proteins to postsynapticdensities after transient cerebral ischemia. J Neurosci,1998,18:625~633.
    21Wyneken U, Marengo JJ, Villanueva S, et al. Epilepsy-induced changes insignaling systems of human and rat postsynaptic densities. Epilepsia,200344:243~246
    22Carlise HJ, Kennedy MB. Spine architecture and synaptic plasticity.Trends Neurosci,2005,28:182~187
    23Wittenberg GM, Sullivan MR, Tsien JZ. Synaptic reentry reinforcementbased network model for long term memory consolidation. Hippocampus,2002,12:637~647
    24赵小贞,王玮,康仲涵,等,血管性痴呆大鼠海马突触结构参数的变化.解剖学杂志,2002,25:30~34
    25Wang X, Xing A, Xu C, et al. Cerebrovascular hypoperfusion inducesspatial memory impairment, synaptic changes, and amyloid-βoligomerization in Rats. J Alzheimers Dis,2010,21:813~822
    26El-Husseini AE, Schnell E, Chetkovich, DM, et al. PSD-95involvement inmaturation of excitatory synapses. Science,2000,290:1364~1368
    27Stein V, House, DR, Bredt, DS, et al. Postsynaptic density-95mimics andoccludes hippocampal long-term potentiation and enhances long-termdepression. J Neurosci,2003,23:5503~5506
    28Migaud, M, Charlesworth, P, Dempster, M, et al. Enhanced long-termpotentiation and impaired learning in mice with mutant postsynapticdensity-95protein. Nature,1998,396:433~439
    29Ehrlich I, Malinow R. Postsynaptic density95controls AMPA receptorincorporation during long-term potentiation and experience-drivensynaptic plasticity. J Neurosci,2004,24:916~927
    30Akama KT, McEwen BS. Estrogen stimulates postsynaptic density-95rapid protein synthesis via the Akt/protein kinase B pathway. J Neurosci,2003,23:2333~2339
    31Lee CC, Huang CC, Wu MY, et al. Insulin stimulates postsynapticdensity-95protein translation via the phosphoinositide3-kinase-Akt-mammalian target of rapamycin signaling pathway. J BiolChem,2005,280:18543~18550
    32潘发福,梁明春,刘卉芳,等.雷公藤内酯醇对慢性脑缺血模型大鼠海马突触素和突触后致密物95的影响.中国老年学杂志,32:2964~2967
    1Romano M. Lipid mediators: lipoxin and aspirin-triggered15-epi-lipoxins. Inflamm Allergy Drug Targets,2006,5:81~90
    2Stewart JT. Psychiatric and behavioral manifestations of vasculardementia. Am J Geriatr Cardiol,2007,16:165~170
    3Levy BD. Lipoxins and lipoxin analogs in asthma. Prostaglandins LeukotEssent Fatty Acids,2005,73:231-237
    4Sun T, Yu E, Yu L, et al. LipoxinA(4) induced antinociception anddecreased expression of NF-kappaB and pro-inflammatory cytokinesafter chronic dorsal root ganglia compression in rats. Eur J Pain,2012,16:18~27
    5Leonard MO, Hannan K, Burne MJ, et al.15-Epi-16-(para-fluorophenoxy)-lipoxin A(4)-methyl ester, a syntheticanalogue of15-epi-lipoxin A(4), is protective in experimental ischemicacute renal failure. J Am Soc Nephrol,2002,13:1657~1662
    6Fiore S, Antico G, Aloman M, et al. Lipoxin A4biology in the humansynovium. Role of the ALX signaling pathways in modulation ofinflammatory arthritis. Prostaglandins Leukot Essent Fatty Acids,2005,73:189~196
    7Brady HR, Serhan CN. Lipoxins: putative braking signals in host defense,inflammation and hypersensitivity. Curr Opin Nephrol Hypertens,1996,5:20~27
    8Filep JG, Khreiss T, Jozsef L. Lipoxins and aspirin-triggered lipoxins inneutrophil adhesion and signal transduction. Prostaglandins LeukotEssent Fatty Acids,2005,73:257-262
    9Neumann H, Kotter MR, Franklin RJ. Debris clearance by microglia: anessential link between degeneration and regeneration. Brain,2009,132:288~295
    10Kreutzberg GW. Microglia: a sensor for pathological events in the CNS.Trends Neurosci,1996,19:312~318
    11Ransohoff RM, Perry VH. Microglial physiology: unique stimuli,specialized responses. Annu Rev Immunol,2009,27:119~145
    12Hanisch UK, Kettenmann H. Microglia: active sensor and versatileeffector cells in the normal and pathologic brain. Nat Neurosci,2007,10:1387~1394
    13Graeber MB. Changing face of microglia. Science,2010,330:783~788
    14Lucin KM, Wyss-Coray T. Immune activation in brain aging andneurodegeneration: too much or too little? Neuron,2009,64:110~122
    15Czirr E, Wyss-Coray T. The immunology of neurodegeneration. J ClinInvest,2012,122:1156~1163
    16Prinz M, Priller J, Sisodia SS, et al. Heterogeneity of CNS myeloid cellsand their roles in neurodegeneration. Nat Neurosci,2011,14:1227~1235
    17Farooqui AA. Lipidmediators in the neural cellnucleus: their metabolism,signaling, and association with neurological disorders. Neuroscientist,2009,15:392~407
    18Farooqui AA, Horrocks LA, Farooqui T. Modulation of inflammation inbrain: amatter of fat. J Neurochem,2007,101:577~599
    19Farkas E, Institóris A, Domoki F, et al. Diazoxide anddimethylsulphoxide prevent cerebral hypoperfusion related learningdysfunction and brain damage after carotid artery occlusion. Brain Res,2004,1008:252~260
    20Lenzlinger, PM, Hans, VH, Joller-Jemelka, et al. Markers forcell-mediated immune response are elevated in cerebrospinal fluid andserum after severe traumatic brain injury in humans. J Neurotrauma,2001,18:479~489
    21Durukan A, Tatlisumak T. Acute ischemic stroke: overview of majorexperimental rodent models, pathophysiology, and therapy of focalcerebral ischemia. Pharmacol Biochem Behav,2007,87:179~197
    22Amantea D, Nappi G, Bernardi G, et al. Post-ischemic brain damage:pathophysiology and role of inflammatory mediators. FEBS J,2009,276:13~26
    23Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke. JNeuroimmunol,2007,184:53~68
    24Ye RD, Boulay F, Wang JM, et al. International Union of Basic andClinical Pharmacology, LXXIII: nomenclature for the formyl peptidereceptor(FPR) family. Pharmacol Rev,2009,61:119~161
    25Serhan CN. Resolution phase of inflammation: novel endogenousanti-inflammatory and proresolving lipid mediators and pathways. AnnuRev Immunol,2007,25:101~137
    26Svensson CI, Zattoni M, Serhan CN. Lipoxins and aspirin-triggeredlipoxin inhibit inflammatory pain processing. J Exp Med,2007,204:245~25227Sodin-Semrl S, Spagnolo A, Mikus R, et al. Opposing regulation ofinterleukin-8and NF-kappaB responses by lipoxin A4and serum amyloidA via the common lipoxin A receptor. Int J Immunopathol,2004,17:145~156
    28. Wada K, Arita M, Nakajima A, et al. Leukotriene B4and lipoxin A4areregulatory signals for neural stem cell proliferation and differentiation.FASEB J,2006,20:1785~1792
    29. Yao C, Yang D, Wan Z, et al. Aspirin-triggered lipoxin A4attenuateslipopolysaccharide induced inflammatory response in primary astrocytes.Int Immunopharmacol,2014,18:85~89
    30. Takahashi RN, Pamplona FA. Lipoxin A4exerts neuroprotective effectsmediated by the endocannab inoid system in mice. EurNeuropsychopharm,2009,19: S299~S300
    31. Rojo LE, Fernandez JA, Maccioni AA, et al. Neuroinflammation:implications for the pathogenesis and molecular diagnosis of Alzheimer’sdisease. Arch Med Res,2008,39:1~16
    32. Kitazawa M, Oddo S, Yamasaki TR, et al. Lipopolysaccharide-inducedinflammation exacerbates tau pathology by a cyclin-dependent kinase5-mediated pathway in a transgenic model of Alzheimer’s disease. JNeurosci,2005,25:8843~8853
    33. Granic I, Dolga AM, Nijholt IM, et al. Inflammation and NF-kappaB inAlzheimer’s disease and diabetes. J Alzheimers Dis,2009,16:809~821.
    34. Heneka MT, Sastre M, Dumitrescu-Ozimek L, et al. Focal glialactivation coincides with increased BACE1activation and precedesamyloid plaque deposition in APP[V717I] transgenic mice. JNeuroinflammation,2005,2:22~29
    35. Li Y, Liu L,Barger SW, et al. Interleukin-1mediates pathological effectsof microglia on tau phosphorylation and on synaptophysin synthesis incortical neurons through a p38-MAPK pathway. J Neurosci,2003,23:1605~1611
    36. Griffin WS, Liu L, Li Y, et al. Interleukin-1mediates Alzheimer andLewy body pathologies. J Neuroinflammation,2006,3:5~11
    37. Sheng JG, Zhu SG, Jones RA, et al. Interleukin-1promotes expressionand phosphorylation of neurofilament and tau proteins in vivo. ExpNeurol,2000,163:388~391
    38. Wu J, Wang A, Min Z, Xiong Y, et al. Lipoxin A4inhibits the productionof proinflammatory cytokines induced by beta-amyloid in vitro and invivo. Biochem Biophys Res Commun2011,408:382~387
    39. Medeiros R, Kitazawa M, Passos GF, et al. Aspirin-triggered lipoxin A4stimulates alternative activation of microglia and reduces AlzheimerDisease-like pathology in mice. Am J Pathol,2013,182:1780~1789
    40. Wang X, Zhu M, Hjorth E, et al. Resolution of inflammation is altered inAlzheimer’s disease. Alzheimers Dement,2014, S1552-5260:30~32
    41. Wu Y, Ye XH, Guo PP, et al. Neuroprotective Effect of Lipoxin A4Methyl Ester in a Rat Model of Permanent Focal Cerebral Ischemia. JMol Neurosci,2010,42:226~234
    42. Sobrado M, Pereira MP, Ballesteros I, et al. Synthesis of lipoxinA4by5-lipoxygenase mediates PPAR gamma-dependent, neuroprotectiveeffects of rosiglitazone in experimental stroke. JNeurosci2009,29:3875~3884
    43. Ye XH, Wu Y, Guo PP, et al. Lipoxin A4analogue protects brain andreduces inflammation in a rat model of focal cerebral ischemiareperfusion. Brain Res,2010,1323:174~183
    44. Wu Y, Wang YP, Guo P, et al. A lipoxin A4analog amelioratesblood-brain barrier dysfunction and reduces MMP-9expression in a ratmodel of focal cerebral ischemia-reperfusion injury. J Mol Neurosci,2012,46(3):483~491
    45. Wu L, Miao S, Zou LB, et al. Lipoxin A4inhibits5lipoxygenasetranslocation and leukotrienes biosynthesis to exert a neuroprotectiveeffect incerebral ischemia/reperfusion injury. J Mol Neurosci,2012,48:185~200
    46. Winter CD, Iannotti F, Pringle AK, et al. A microdialysismethod for therecovery of IL-1beta, IL-6and nerve growth factor from human brain invivo. J Neurosci Methods,2002,119:45~50
    47. Chao CC, Hu S, Ehrlich L, et al. Interleukin-1and tumor necrosisfactor-alpha synergistically mediate neurotoxicity: involvement of nitricoxide and of N-methyl-D-aspartate receptors. Brain Behav Immun,1995,9:355~365
    48. Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke. JNeuroimmunol,2007,184:53~68
    49. Shohami E, Gallily R, Mechoulam R, et al. Cytokine production in thebrain following closed head injury: dexanabinol (HU-211) is a novelTNF-alpha inhibitor and an effective neuroprotectant. J Neuroimmunol,1997,72:169~177
    50. Jones NC, Prior MJ, Burden-TehE, et al. Antagonism of the interleukin-1receptor following traumatic brain injury in the mouse reduces thenumber of nitric oxide synthase-2-positive cells and improves anatomicaland functional outcomes. Eur J Neurosci,2005,22:72~78
    51. Luo CL, Li QQ, Chen XP, et al. Lipoxin A4attenuates brain damage anddownregulates the production of pro-inflammatory cytokines andphosphorylated mitogen-activated protein kinases in a mouse model oftraumatic brain injury. Brain Res,2013,1502:1~10
    52. Svensson CI, Sch fers M, Jones TL, et al. Spinal blockade of TNFblocks spinal nerve ligation-induced increases in spinal P-p38. NeurosciLett,2005,379:209~13
    53. Sun T, Yu E, Yu L, et al. LipoxinA4induced antinociception anddecreased expression of NF-kB and pro-inflammatory cytokines afterchronic dorsal root ganglia compression in rats. Eur J Pain,2012,16:18~27
    54. Nascimento-Silva V, Arruda MA, Barja-Fidalgo C, et al.Aspirin-triggered lipoxin A4blocks reactive oxygen species generationin endothelial cells: a novel antioxidative mechanism. Thromb Haemost.2007,97:88~98
    55. Zhou XY, Wu P, Zhang L, et al. Effects of lipoxin A(4) onlipopolysaccharide induced proliferation and reactive oxygen speciesproduction in RAW264.7macrophages through modulation of G-CSFsecretion. Inflamm Res.2007,56:324~33
    56. Zhang L, Wan J, Li H, et al. Protective effects of BML-111, a lipoxinA(4) receptor agonist, on carbon tetrachloride-induced liver injury inmice. Hepatol Res.2007,37:948~56
    57. Prieto P, Cuenca J, Traves PG, et al. Lipoxin A4impairment of apoptoticsignaling in macrophages: implication of the PI3K/Akt and theERK/Nrf-2defense pathways. Cell Death Differ.2010,17:1179~88
    58. Tanito M, Agbaga MP, Anderson RE. Upregulation of thioredoxin systemvia Nrf2-antioxidant responsive element pathway in adaptive-retinalneuroprotection in vivo and in vitro. Free Radic Biol Med.2007,42:1838~1850
    59. Zhu H, Itoh K, Yamamoto M, et al. Role of Nrf2signaling in regulationof antioxidants and phase2enzymes in cardiac fibroblasts: protectionagainst reactive oxygen and nitrogen species-induced cell injury. FEBSLett.2005,579:3029~3036
    60. Wu L, Liu ZJ, Miao S, et al. Lipoxin A4ameliorates cerebralischaemia/reperfusion injury through upregulation of nuclear factorerythroid2-related factor2. Neurol Res.2013,35:968~75

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700