用户名: 密码: 验证码:
铁螯合剂对血管性痴呆小鼠模型的保护作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     血管性痴呆(vascular dementia,VaD)是各种脑血管病引起的获得性智能损害和认知障碍的综合征,为一种慢性进行性疾病。在导致痴呆的众多病因中,VaD是仅次于Alzheimer病(Alzheimer's disease, AD)的第二大病因。随着全球人口的老龄化和脑血管病发病率的增高,VaD的发病率也逐年增高,严重危害着人类健康,并给社会和家庭造成沉重的经济压力。就临床实际意义而言,VaD是目前唯一可以预防的痴呆类型,可能较AD更有预防和治疗价值,早期合理防治VD可以减轻社会和家庭的沉重负担。正因如此,近年来VaD逐渐成为人们关注的热点。
     VaD的发病机制可能与以下几个因素有关:中枢胆碱能系统功能障碍、氧自由基生成增加、中枢RNA和蛋白质合成减少、局部炎症反应及机体免疫异常等。由于发病机制的多样化,现有治疗手段或药物(如胆碱酯酶抑制剂、N-甲基-D-天冬氨酸(N-methyl-D-aspartate, NMD A)受体拮抗药等)均不能完全控制血管性痴呆的所有症状或者延缓甚至逆转其进程。
     最近的研究表明,金属离子尤其是铁离子与神经退行性疾病的发生关系密切[4]。已有动物实验表明,脑组织中铁离子过负荷,与阿尔茨海默病(AD)、帕金森病(PD)等的发病直接相关。用铁离子螯合剂来治疗神经退行性疾病的动物模型,取得了比较乐观的效果。
     越来越多的证据表明AD与VaD经常相互伴随发病,两者在病因学、危险因素、发病机制、病理学、症状学和疾病转归等方面都有显著的重叠。然而铁离子在血管性痴呆中的作用却并无深入探究。
     目的
     本研究旨在运用两血管法制备血管性痴呆小鼠模型,观察不同时间点小鼠行为学及脑损伤的关系。并利用铁螯合剂——甲磺酸去铁胺对动物模型进行干预,观察其是否对血管性痴呆模型具有保护或治疗效应并初步探讨其可能的作用机制。
     第一部分血管性痴呆小鼠模型的建立和评价
     方法:采用二血管法即双侧颈总动脉完全阻断1小时后再灌注的方法造模,并于造模后第3天开始Morris水迷宫训练,第3、7、14、21天测悬尾实验静止不动时间,第7、14、21天测定位航行实验上台潜伏期和空间探索实验跨越平台次数,第21天测Open filed实验休息时间。第21天观察小鼠脑组织病理改变(HE染色、尼氏染色)。
     结果:小鼠缺血再灌注组与假手术组相比,悬尾实验静止不动时间、水迷宫定位航行实验上台潜伏期明显延长,空间探索实验跨越平台次数明显减少,差异均有统计学意义(P<0.05);但旷场实验休息时间,两组间差异无明显统计学意义(P>0.05)模型组不同时间点之间比较,随着再灌注时间的延长,悬尾静止不动时间逐渐延长,定位航行上台潜伏期逐渐缩短,具有统计学意义(P<0.05);但空间探索跨越平台次数的增多未见统计学意义(P>0.05)。病理HE染色示模型组较假手术组海马区细胞层次不清、胞体变小。Nissl染色示模型组较假手术组海马神经元形态不规则,着色不均匀,尼氏小体含量明显减少。
     结论:二血管法制备的血管性痴呆小鼠模型,成模率高,稳定性好。
     第二部分铁螯合剂对血管性痴呆小鼠模型的作用
     方法:将在我校实验动物中心购得的雄性ICR小鼠160只随机分为4组:假手术组、血管性痴呆模型+生理盐水对照组、血管性痴呆模型+甲磺酸去铁胺(50mg/kg)干预组及血管性痴呆模型+甲磺酸去铁胺(100mg/kg)干预组,每组40只。各组再次随机分成4亚组,每组10只,分别标记术后3d、7d、14d、21d。同实验第一部分制作动物模型,再灌注时给予甲磺酸去铁胺或等量生理盐水干预,之后2天相同时间点再次给予去铁胺或等量生理盐水干预。术后3、7、14、21天四个时间点每组中的各亚组10只小鼠分别进行行为学检测、取血及脑组织匀浆行铁含量检测。
     结果:去铁胺干预组较生理盐水空白对照组术后7、14、21d的Morris水迷宫定位航行实验上台潜伏期明显缩短,悬尾不动时间也明显缩短(P<0.05);而去铁胺高剂量组与低剂量组相比,上述指标差异无统计学意义(P>0.05)。水迷宫空间探索实验在再灌注21d时去铁敏不同剂量干预组较生理盐水空白对照组跨越站台次数明显增多(P<0.05);而7、14d时,各组间无明显统计学差异(P>0.05)。再灌注14天时旷场实验小鼠休息时间,各模型组间无明显差异(P>0.05)
     血清铁及脑组织匀浆铁检测表明:生理盐水模型组较假手术组,四个时间点血清及脑组织匀浆铁含量均明显增高,有统计学意义(P<0.05);去铁胺干预组较生理盐水空白对照组,术后3、7、14三个时间点,血清及脑组织匀浆铁含量均明显减少,有统计学意义(P<0.05)
     结论:
     1、铁螯合剂可改善血管性痴呆小鼠与认知有关的行为学指标;
     2、血管性痴呆小鼠的血清和脑组织铁含量明显升高;
     3、铁螯合剂干预血管性痴呆小鼠后,血清和脑组织铁含量明显降低,说明铁螯合剂可能是通过螯合血及脑组织中铁来发挥神经保护作用的。
     第三部分铁螯合剂对血管性痴呆小鼠模型的神经保护作用机制探讨
     方法:实验动物分组和干预以及血和脑组织标本收集同第二部分。小鼠大脑左半球投入4%多聚甲醛后固定48小时后投入20%蔗糖/PB溶液4℃浸泡至组织沉底。行冰冻切片,选取额叶皮层区域分别行免疫组化GST-pi染色和MBP染色,记数前额叶GST-pi阳性的少突胶质细胞的数目以及测定MBP Density/Area。小鼠大脑右半球脑组织匀浆,分别检测脑组织总超氧化物歧化酶活力,抑制羟自由基能力、丙二醛含量。血清测定乙酰胆碱含量、胆碱酯酶活力。
     结果:去铁胺干预组较生理盐水空白对照组术后3、7、14、21d脑组织抑制羟自由基能力增强、丙二醛含量减少、T-SOD活力增强,差异均有统计学意义(p<0.05)血清乙酰胆碱含量、胆碱酯酶活力在各组间无明显统计学差异(P>0.05)。病理结果提示:单纯模型组与假手术组相比,术后各时间点额叶皮层下少突胶质细胞数目明显减少,前额叶皮层髓鞘碱性蛋白(MBP) Density/Area明显降低,差异有统计学意义(P<0.05);而去铁敏干预组与生理盐水空白对照组相比,术后各时间点额叶皮层下少突胶质细胞数目增多、前额叶皮层Density/Area升高,有统计学意义(p<0.05)
     结论:
     1、铁螯合剂可阻断氧化应激反应,减少缺血缺氧诱导的血管性痴呆小鼠模型羟自由基和丙二醛生成,增强SOD活力。这种作用能持续至缺血再灌注21天。
     2、铁螯合剂可以促进血管性痴呆小鼠的髓鞘修复,促进少突胶质细胞的增生具有胶质细胞保护作用。这种作用在缺血再灌注3周内均比较明显。
background
     Vascular dementia(VaD) is a chronic progressive disease causing acquired intellectualdeficiency and cognitive disorder because of cerebral vascular diseases(CVD).VaD is thesecond most common cause of dementia after Alzheimer disease (AD)[1]. As theworldwide elderly population and mobidity of CVD grows the morbidity of VaD which isa danger to human health is increasing that causes severe economic pressure on familyeven society. VaD is the only type of dementia which can be prevented so far. So it maybehas more value in prevention and therapy than AD[2]. Early prevention of VD can reducethe heavy burden of social and family. For this reason, the VaD gradually become thefocus of attention in recent years.
     The pathogenesis of VaD may be related to several factors: the cholinergic systemdysfunction, oxygen free radicals injury, less RNA and protein synthesis in central nervoussystems(CNS), the local inflammatory stimulation, immune abnormalities and so on[3].Due to the diversification of the pathogenesis, drugs for treatments(such ascholinesterase inhibitors, N-methyl-D-aspartate (N-methyl-D-aspartate NMDA) receptorsantagonist) can not relieve all the symptoms of vascular dementia or delay even reverse theprogress.
     Recent studies show that metal ions, especially iron ions, are closely related toneurodegenerative diseases [4]. The animal experiments show that iron overload in thebrain tissue is directly related to the incidence of Alzheimer's disease (AD) and Parkinson'sdisease (PD). Some optimistic results are got in Iron chelator to treat animal models ofneurodegenerative diseases. More and more evidences show that AD and VaD are oftenaccompanied by each other. There are some parallels in the etiology, risk factors,pathogenesis, pathology, symptoms and prognosis between AD and VaD. However, therole of iron ions in vascular dementia is not very clear nowadays.
     Objectives
     This study aimed at observing the vascular dementia model mice’s behavior testresults and their brain damage in different time points of the ischemia-reperfusion(IR). We intervene the VaD animal models with the iron chelator-deferoxamine to observewhether it has a protective or therapeutic effect in the model and explore its possiblemechanism.
     Part Establishment and evaluation of a vascular dementia mice model
     Methods: we use the methods that the bilateral common carotid artery completelyblocked for1hour before reperfusion to model.3days after the modeling surgery, themice are trained in the Morris water maze. we measure tail suspended imobility time in the3,7,14,21days after the surgery, the latent period to find the platforms in the navigationtest and the times of across platforms in spatial probe test in the7,14,21days after thesurgery, and the rest time in Open filed test21d after the surgery. We observe the micebrain tissue pathological changes (HE staining, Nissl staining) in21days after the surgery.
     Results: The mouse ischemia-reperfusion group compared with the sham group, thestationary time in tail suspension test was more and the latent period in the navigation testwas longer but the times of across platforms in spatial probe test was significantly fewer.The differences were statistically significant (P <0.05); In the open field test, the differenceof rest time between the two groups was not statistically significant (P>0.05). Comparisonamong the model groups at different time points, more reperfusion time, better thebehavior test result was. The differences was significant (P <0.05). Pathological HEstaining showed the neurons in hippocampus were unclear and small in the model groupmice.Nissle staining showed that hippocampal neurons with irregular shape, unevencoloring were significantly reduced in the model group.
     Conclusion: The method of making vascular dementia model mice is good. Themodel mice’s mortality is low and the model is stale..
     Part The iron chelator’s function in a mouse model of vascular dementia
     Methods:160male ICR mice were purchased at the University Experimental AnimalCenter and were randomly divided into four groups: sham group, vascular dementia model+saline control group, vascular dementia model+deferoxamine mesylate(50mg/kg) groupand vascular dementia model+deferoxamine mesylate(100mg/kg) group (mice number ineach group was40). Mice in each group were randomly divided into four subgroups:3d,7d,14d and21d after operation. We made the same experimental animal models justlike that in part and gave deferoxamine mesylate or saline at the beginning of repefusion.At the same time in the next two days, we gave deferoxamine or saline again. In3,7,14,21 days after repefusion,10mice in each subgroup were selected for behavioral testing andsacrifice. We detected the iron content in serum and brain tissue of mice.
     Results: The stationary time in tail suspension test and the latent period in thenavigation test was shorter in Deferoxamine groups than which in saline group(P<0.05).but there was no significant difference between the high dose Deferoxamine group and lowdose Deferoxamine group(P>0.05). The times of across platforms in spatial probe test wassignificantly more in Deferoxamine groups than that in saline group in21d after therepefusion(P<0.05) while the differences were not so significant in7or14d(P>0.05); Inthe open field test, the difference of rest time among the model groups was not statisticallysignificant (P>0.05).
     iron detection showed that: the iron content in serum and brain tissue of the four timepoints in model group was significantly more than that in sham group (P <0.05). In3,7,14dafter the repefusion, iron content in serum or brain decresed significantly in Deferoxaminegroups compared with which in the saline model group(P<0.05),
     Conclusion:
     1. The iron chelator can improve the behavioral indicators related to cognition in vasculardementia mice;
     2. The iron content in serum and brain tissue was significantly increased in vasculardementia mice;
     3. The iron chelator decresed iron content of serum and brain tissue significantly invascular dementia mice which indicating that iron chelator may play a neuroprotective roleby chelating iron.
     part The neuroprotective mechanism of iron chelator in the vasculardementia mice model
     Methods: the methods of grouping,intervention and collecting blood and brain tissuespecimens were just like the second part. The left brain hemisphere of mice was throwninto4%paraformaldehyde for48hours and then into20%sucrose/PB solution until itsank to the bottom. Serial coronal sections (20m) of the brains were cut. the sections offrontal cortical regions were used for immunohistochemical staining of GST-pi and MB.We counted the number of GST-pi-positive oligodendrocytes and measured thedensity/area of MBP in the prefrontal cortex. The right brain hemisphere of mice werewere homogenized for measurement of total superoxide dismutase, capacity of inhibiting hydroxyl radical and malondialdehyde content. Serum was used to detect acetylcholinecontent and cholinesterase activity.
     Results: in3,7,14,21d after the surgery, capcity of inhibiting hydroxyl radicalenhanced, malondialdehyde content reduced and T-SOD activity increased in DFO groupscompared with that in saline group. The differences were statistically significant (p<0.05).While there was no significant difference in Serum acetylcholine content andcholinesterase activity among the groups(P>0.05). Pathology results suggest that: thenumber of oligodendrocytes and myelin basic protein (MBP) Density/Area in the frontalcortex reduced in the model group. When compared with the sham group at each timepoint after the surgery,the differences were statistically significant (P<0.05). Comparedwith the saline control group, the number of oligodendrocytes and myelin basic protein(MBP) Density/Area in the frontal cortex increased significantly in the DFO group (p<0.05).
     Conclusion:
     1. The iron chelator can block oxidative stress.It reduce generation of hydroxyl radical andmalondialdehyde but enhance SOD activity in vascular dementia mice model induced bycerebral ischemia and hypoxia. This role can keep on at least21d afterischemia-reperfusion(IR).
     2. The iron chelator can promote the repairment of myelin and proliferation ofoligodendrocytes in vascular dementia mice model. So it has a protective effect of glialcells. This function is obvious within3weeks after IR.
引文
1. Lobo A,Iauner LJ,Franglioni L,et al.Prevalence of dementia and major subtypes in Europe:A collaborative study of population-based cohorts.Neurologic Diseases in the Elderly Research Group.Neurology,2000,54(Suppl),51:S4-9.
    2.张蓓,吴海琴,张海雄.血管性痴呆的神经生化机制.国外医学脑血管疾病分册2005,13,9:672-675.
    3.周淼,秦大莲.治疗血管性痴呆的天然药物研究进展.泸州医学院.2008,31,3:343-345.
    4.Badrick,Alison C,Jones, Christopher E.Reorganizing Metals:the Use of Chelating Compounds as Potential Therapies for Metal-Related Neurodegenerative Disease.Current Topics in Medicinal Chemistry.2011,11(5):543-552.
    5. Ferri CP,Prince M,Brayne C,et al.Global prevalence of dementia:a Delphi consensus study.Lancet.2005,366:2112-2117.
    6. Fratiglioni L, Launer LJ, Andersen K, Breteler MM, Copeland JR, Dartigues JF, et al. Incidence of dementia and major subtypes in Europe:A collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group.Neurology.2000,54:S10-5.
    7. Dara L,Dickstein,Jessica Walsh,Hannah Brautigam,et al. Role of Vascular Risk Factors and Vascular Dysfunction in Alzheimer's Disease.Mt Sinai J Med.2010,77(1):82-102.
    8. Kivipelto M, Helkala EL, Hanninen T, et al. Midlife vascular risk factors and late-life mild cognitive impairment:A population-based study.Neurology.2001,56:1683-1689.
    9. Matthews FE, Brayne C, Lowe J, McKeith I, Wharton SB, Ince P.Epidemiological pathology of dementia:attributable-risks at death in the Medical Research Council Cognitive Function and Ageing Study. PLoS Med.2009,6:100-180.
    10. Ott A, Slooter AJ, Hofman A, et al. Smoking and risk of dementia and Alzheimer's disease in a population-based cohort study:the Rotterdam Study.Lancet.1998,351:1840-1843.
    11. Zhu X, Smith MA, Honda K, et al. Vascular oxidative stress in Alzheimer disease J Neurol Sci.2007,257:240-246.
    12. Kalaria RN. Comparison between Alzheimer's disease and vascular dementia:implications for treatment.Neurol Res.2003,25:661-4.
    13. Wurtman RJ,Wurtman JJ.Nutrition and the brain[M].New York:Raven Press.1990:101-46.
    14. Gelman BB.Iron in CNS disease[J].J Neuropath Experi ment Neurol,1995,54:477.
    15. Huang, X. et al. Alzheimer's disease, β-amyloid protein and zinc. J. Nutr.2000,78,130:1488S-1492S.
    16. Rottkamp, C. A. et al. Redox-active iron mediates amyloid-β toxicity. Free Radic. Biol.Med. 2001,79,30:447-450.
    17. Shoham, S.&Youdim, M. B. Nutritional iron deprivation attenuates kainate-induced neurotoxicity in rats:implications for involvement of iron in neurodegeneration. Ann. NY Acad.Sci.2004,1012:94-114.
    18. Kalaria R Similarities between Alzheimer's disease and vascular dementia. J Neurol Sci.2002,203-204:29-34.
    19.余涛,廖清查,罗春华等.脑组织铁分布与新生儿缺氧缺血性脑损伤.新生儿科杂志.2001,16,4:150-152.
    20.张志华.脑缺血、铁代谢失衡与神经退行性疾病.国外医学老年医学分册.2004,25,5:204-207.
    21. Powell SR.Wahezi SE.Maulik D.The effect of in utero hypoxia on fetal heart and brain trace metals.J Trace Elem Med Biol,2002,16(4):245-248.
    22. Kompala SD,Babbs CF,Blabo KE,et al.Effect of deferoxamine on late dementia following CPR in rats. Ann Emerg Med,1986,15,405.
    23.王蕊,杨秦飞,唐一鹏.大鼠拟“血管性痴呆”模型的改进[J].中国病理生理杂志.2000,10(16):563-564.
    24. Hachinski VC, Bowler JV. Vascular dementia:diagnostic criteria for research studies.Neurology.1993,43:2159-60.
    25. Erkinjuntti T, Inzitari D, Pantoni L, Wallin A, Scheltens P, Rockwood K, et al. Research criteria for subcortical vascular dementia in clinical trials. J Neural Transm Supp1.2000,59:23-30.
    26. Vermeer SE, Prins ND, den Heijer T, Hofman A, Koudstaal PJ, Breteler MM. Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med.2003;348:1215-22.
    27. Pantoni L, Leys D, Fazekas F, Longstreth WT, Jr, Inzitari D, Wallin A, et al. Role of white matter Lesions in cognitive impairment of vascular orgin. Alzheimer Dis Assoc Disord.1999,13:S49-54.
    28. Chui H. Dementia due to subcortical ischemic vascular disease. Clin Cornerstone.2001,3:40-40.
    29. Looi JC, Sachdev PS. Differentiation of vascular dementia from AD on neuropsychological tests1.Neurology.1999,11(53):670-8.
    30. Graham NL, Emery T, Hodges JR. Distinctive cognitive profiles in Alzheimer's disease and subcortical ascular dementia J Neurol Neurosurg Psychiatry.2004,75:61-71.
    31. Rockwood K, Moorhouse PK, Song X, MacKnight C, Gauthier S, Kertesz A, et al. Disease pregression in vascular cognitive impairment:cognitive, functional and behavioural outcomes in the Consortium to Investigate Vascular Impairment of Cognition (CIVIC) cohort study. J Neurol Sci.2007,252:106-12.
    32.张新凯,张明园,李春波.血管性痴呆的可能心理社会危险因素[J].中国神经精神疾病杂志,2001,27(1):22.
    33. Andersen G,Vestergaard K,Riis J,et a1.dementia of depression or depression of dementia instroke[J].Acta psychiatr Scand,1996,94(35):272.
    34. Yamaguchi M., Calvert J. W., Kusaka G. and Zhang J. H. Onestage anterior approach for four-vesselocclusion in rat. Stroke.2005,36,2212-2214.
    35. Chung E., Iwasaki K., Mishima K., Egashira N. and Fujiwara M. Repeated cerebral ischemiainduced hippocampal cell death and impairments of spatial cognition in the rat. LifeSci.2002,72,609-619.
    36. Mickel H. S., Kempski O., Feuerstein G., Parisi J. E. and Webster H. D. Prominent white matterlesions develop in Mongolian gerbils treated with100%normobaric oxygen after global brain ischemia.Acta Neuropathol.1990,79,465-472.
    37. Carboni S,Boschert U, Gaillard P,et al.a c-Jun NH2-terminal kinase (JNK) inhibitor, reducesaxon/dendrite damage and cognitive deficits after global cerebral ischaemia in gerbils. Br. J. Pharmacol.2008,153,157-163.
    38. Wiard R. P., Dickerson M. C., Beek O,et al.Neuroprotective properties of the novel antiepilepticlamotrigine in a gerbil model of global cerebral ischemia.Stroke.1995,26,466-472.
    39. Walker E. J. and Rosenberg G. A. Divergent role for MMP-2in myelin breakdown andoligodendrocyte death following transient global ischemia. J. Neurosci. Res.2010,88,764-773.40Yamamoto Y., Shioda N., Han F. et al.Nobiletin improves brain ischemia-induced learning andmemory deficits through stimulation of CaMKII and CREB phosphorylation. BrainRes.2009,1295,218-229.
    41. Lai M., Horsburgh K., Bae S. E. et al. Forebrain mineralocorticoid receptor overexpressionenhances memory, reduces anxiety and attenuates neuronal loss in cerebral ischaemia. Eur. J.Neurosci.2007,25,1832-1842.
    42. Wang F, Geng X, Tao H. Y. and Cheng Y. The restoration after repetitive transcranial magneticstimulation treatment on cognitive ability of vascular dementia rats and its impacts on synaptic plasticityin hippocampal CA1area. J. Mol.Neurosci.2010,41,145-155.
    43. Sarti C., Pantoni L., Bartolini L. and Inzitari D. Persistent impairment of gait performances andworking memory after bilateral common carotid artery occlusion in the adult Wistar rat.Behav. BrainRes.2002,136,13-20.
    44. Farkas E., Donka G., de Vos R. A., Mihaly A., Bari F. and Luiten P. G.Experimental cerebralhypoperfusion induces white matter injury and microglial activation in the rat brain. ActaNeuropathol.2004,108,57-64.
    45. Vicente E., Degerone D., Bohn L. et al. Astroglial and cognitive effects of chronic cerebralhypoperfusion in the rat. Brain Res.2009,1251,204-212.
    46. Wakita H., Tomimoto H., Akiguchi I., Lin J. X., Ihara M., Ohtani R. and Shibata M. Ibudilast, aphosphodiesterase inhibitor, protects against white matter damage under chronic cerebral hypoperfusionin the rat. Brain Res.2003,992,53-59.
    47. Farkas E., Luiten P. G. and Bari F. Permanent, bilateral common carotid artery occlusion in the rat: amodel for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Res. Rev.2007,54,162-180.
    48. Wang J., Zhang H. Y. and Tang X. C. Huperzine a improves chronic inflammation and cognitivedecline in rats with cerebral hypoperfusion. J. Neurosci. Res.2010,88,807-815.
    49. Miyamoto N,Tanaka R,Shimura H,et al.Phosphodiesterase III inhibition promotes differentiationand survival of oligodendrocyte progenitors and enhances regeneration of ischemic white matter lesionsin the adult mammalian brain.J.Cereb.Blood Flow Metab.2010,30,299-310.
    50. Sarti C,Pantoni L,Bartolini L,et al.Persistent impairment of gait performances and working memoryafter bilateral common carotid artery occlusion in the adult Wistar rat.Behav.Brain Res.2002,136,13–20.
    51. Horecky J,Baciak L,Kasparova S,et al.Minimally invasive surgical approach for three-vesselocclusion as a model of vascular dementia in the rat-brain bioenergetics assay. J. Neurol. Sci.2009,283,178-181.
    52. Plaschke K,Yun S. W, Martin E,et al.Interrelation between cerebral energy metabolism andbehaviour in a rat model of permanent brain vessel occlusion.Brain Res.1999,830,320-329.
    53. Kudo T, Tada K, Takeda M, et al. Learning impairment and microtubule-associated protein2decrease in gerbils under chronic cerebral hypoperfusion. Stroke.1990,21,1205-1209.
    54. Hattori H, Takeda M, Kudo T, et al.Cumulative white matter changes in the gerbil brain underchronic cerebral hypoperfusion.Acta Neuropathol.1992,84,437-442.
    55. Kurumatani T, Kudo T, Ikura Y,et al.White matter changes in the gerbil brain under chronic cerebralhypoperfusion.Stroke.1998,29,1058-1062.
    56. Nishio K, Ihara M, Yamasaki N,et al. A mouse model characterizing features of vascular dementiawith hippocampal atrophy.Stroke.2010,41,1278-1284.
    57. Shibata M,Yamasaki N, Miyakawa T,et al.Selective impairment of working memory in a mousemodel of chronic cerebral hypoperfusion. Stroke2007,38,2826-2832.
    58. Miki K,Ishibashi S,Sun L,et al.Intensity of chronic cerebral hypoperfusion determines white/graymatter injury and cognitive/motor dysfunction in mice. J.Neurosci.Res.2009,87,1270-1281.
    59. Yoshizaki K, Adachi K, Kataoka S,et al.Chronic cerebral hypoperfusion induced by right unilateral common carotid artery occlusion causes delayed white matter lesions and cognitive impairment in adult mice. Exp. Neurol.2008,210,585-591.
    60. Kitagawa K., Yagita Y., Sasaki T., Sugiura S., Omura-Matsuoka E.,Mabuchi T., Matsushita K. and Hori M. Chronic mild reduction of cerebral perfusion pressure induces ischemic tolerance in focal cerebral ischemia. Stroke.2005,36,2270-2274.
    61. Yoshizaki K., Adachi K., Kataoka S., Watanabe A., Tabira T., Takahashi K. and Wakita H. Chronic cerebral hypoperfusion induced by right unilateral common carotid artery occlusion causes delayed white matter lesions and cognitive impairment in adult mice. Exp. Neurol.2008,210,585-591.
    62. Lecrux C., McCabe C., Weir C. J., Gallagher L., Mullin J., Touzani O.,Muir K. W., Lees K. R. and Macrae I. M. Effects of magnesium treatment in a model of internal capsule lesion in spontaneously hypertensive rats. Stroke.2008,39,448-454.
    63. Whitehead S., Cheng G, Hachinski Ⅴ. and Cechetto D. F.Interaction between a rat model of cerebral ischemia and betaamyloid toxicity:Ⅱ. Effects of triflusal. Stroke.2005,36,1782-1789.
    64. Roof R. L., Schielke G P., Ren X. and Hall E. D. A comparison of long-term functional outcome after2middle cerebral artery occlusion models in rats. Stroke.2001,32,2648-2657.
    65. Yonemori F., Yamaguchi T., Yamada H. and Tamura A.Spatial cognitive performance after chronic focal cerebral ischemia in rats. J. Cereb. Blood Flow Metab.1999,19,483-494.
    66. Sakai N., Yanai K., Ryu J. H., Nagasawa H., Hasegawa T., Sasaki T.,Kogure K. and Watanabe T. Behavioral studies on rats with transient cerebral ischemia induced by occlusion of the middle cerebral artery. Behav. Brain Res.1996,77,181-188.
    67. Ferrara A., El B. S., Seyen S., Tirelli E. and Plumier J. C. The usefulness of operant conditioning procedures to assess long-lasting deficits following transient focal ischemia in mice. Behav.Brain Res.2009,205,525-534.
    68. Bouet V., Freret T., Toutain J., Divoux D., Boulouard M. and SchumannBard P. Sensorimotor and cognitive deficits after transient middle cerebral artery occlusion in the mouse. Exp. Neurol.2007,203,555-567.
    69. Gibson C. L. and Murphy S. P.Progesterone enhances functional recovery after middle cerebral artery occlusion in male mice. J. Cereb. Blood Flow Metab.2004,24,805-813.
    70. Hachinski V., Iadecola C., Petersen R. C. et al.(2006) National Institute of Neurological Disorders and Stroke-Canadian Stroke Network vascular cognitive impairment armonization standards. Stroke37,2220-2241.
    71.靳玮,宋春风,吕佩源等.反复缺血再灌注制备小鼠血管性痴呆模型的评价.疑难病杂志.2008,7,3:131-133.
    72. Chung E, hvasaki K, Mishinra K, et al. R-eated cerebral ischemia induced hippocampal cell death and impairments I)f spatial cognition in the rat[J].Life Sci,2002,72(4-5):609-619.
    73.郑妮,汤宇,冯星等.新型复合式老年痴呆小鼠模型的建立.中南药学.2009,7,7:480-484
    74. Alladi Suvarna. Vascular cognitive impairment. Indian J Psychiatry.2009January;51(Suppll): S61-S64.
    75. Meyer JS, Rogers RL, McClintic K, Mortel KF, Lotfi J. Randomized clinical trial of daily aspirin therapy in multi-infarct dementia.A pilot study. J Am Geriatr Soc.1989;37:549-55.
    76. Mintzer JK, Kertesz A, et al. Donepezil in vascular dementia:a randomized, placebocontrolled study. Neurology.2003;61:479-86.
    77. Forette F, Seux ML, Staessen JA, Thijs L, Babarskiene MR, Babeanu S, et al. The prevention of dementia with antihypertensive treatment:new evidence from the Systolic Hypertension in Europe (Syst-Eur) study. Arch Intern Med.2002;162:2046-52.
    78. Lithell H, Hansson L, Skoog I, Elmfeldt D, Hofman A, Olofsson B, et al. The Study on Cognition and Prognosis in the Elderly(SCOPE):principal results of a randomised double-blind intervention trial. J Hypertens.2003;21:875-86.
    79. Dufouil C, Ricard F, Fievet N, Dartigues JF, Ritchie K, Tzourio, et al. APOE genotype, cholesterol level, lipid-lowering treatment, and dementia:the Three-City study. Neurology.2005;64:1531-8.
    80. Snowdon, D. A. Nun Study. Healthy aging and dementia:findings from the Nun Study. Ann. Intern. Med.2003,139,450-454.
    81. Bartzokis, G. Age-related myelin breakdown:a developmental model of cognitive decline and Alzheimer's disease. Neurobiol. Aging.2004,25,5-18.
    82. Rogers, J. T. et al. An iron-responsive element type Ⅱ in the5'-untranslated region of the Alzheimer's amyloid precursor protein transcript. J. Biol. Chem.2002,277,45518-45528.
    83. Bodovitz, S., Falduto, M. T., Frail, D. E.&Klein, W. L. Iron levels modulate a-secretase cleavage of amyloid precursor protein. J. Neurochem.1995,64,307-315.
    84. Rottkamp, C. A. et al. Redox-active iron mediates amyloid-ptoxicity. Free Radic. Biol. Med.2001,30,447-450.
    85. Perry, G. et al. The role of iron and copper in the aetiology of neurodegenerative disorders: therapeutic implications. CNS Drugs.2002,16,339-352.
    86. Freret, T., Valable, S., Chazalviel, L., Saulnier, R., Mackenzie, E.T., Petit, E.,Bernaudin, M., Boulouard, M., Schumann-Bard, P.,Delayed administration of desferoxamine reduces brain damage and promotes functional recovery after transient focal cerebral ischemia in the rat. Eur. J. Neurosci.2006,23,1757-1765.
    87. Wan S, Hua Y, Keep RF, Hoff JT, and Xi G.Deferoxamine reduces CSF free iron levels followingintracerebral hemorrhage. Acta Neurochir Suppl2006,96:199–202.
    88. Hishikawa T, Ono S, Ogawa T, Tokunaga K, Sugiu K, and Date I Effects of deferoxamine-activatedhypoxia-inducible factor-1on the brainstem after subarachnoid hemorrhage in rats. Neurosurgery.2008,62:232–241.
    89. Long DA, Ghosh K, Moore AN, Dixon CE, and Dash PK.Deferoxamine improves spatial memoryperformance following experimental brain injury in rats.Brain Res.1996,717:109–117.
    90. Jiang H, Luan Z, Wang J, and Xie J.Neuroprotective effects of iron chelator Desferal ondopaminergic neurons in the substantia nigra of rats with ironoverload.Neurochem Int.2006,49:605–609.
    91. de Lima MN, Dias CP, Torres JP, Dornelles A, Garcia VA, Scalco FS, Guimara es MR,Petry RC,Bromberg E, Constantino L, et al. Reversion of age-related recognition memory impairment by ironchelation in rats. Neurobiol Aging.2008,29:1052–1059.
    92. Selim MH and Ratan RR.The role of iron neurotoxicity in ischemic stroke.Ageing Res Rev.2004,3:345–353.
    93. Koga H, Yuzuriha T, Yao H et al.Quantitative MRI findings and cognitive impairment amongcommunity dwelling elderly subjects. J Neurol Neurosurg Psychiatry.2002,72:737–741
    94. Jellinger KA.The enigma of vascular cognitive disorder and vascular dementia. Acta Neuropathol2007,113:349–388.
    95. Sjobeck M, Englund E.Glial levels determine severity of white matter disease in Alzheimer’sdisease: a neuropathological study of glial changes. Neuropathol Appl Neurobiol.2003,29:159–169.
    96. Londos E, Passant U, Brun A, Gustafson L.Clinical Lewy body dementia and the impact of vascularcomponents. Int J Geriatr Psychiatry.2000,15:40–49.
    97. Englund E.Neuropathology of white matter disease: parenchymal changes. In: ID Pantoni L, WallinA (eds) The Matter of white matter. Clinical and pathophysiological aspects of white matter diseaserelated to cognitive decline and vascular dementia. Academic Pharmaceutical Productions, Utrecht,2000,10:223–246
    98. Salat DH, Tuch DS, Greve DN et al. Age-related alterations in white matter microstructuremeasured by diffusion tensor imaging. Neurobiol Aging.2005,26:1215–1227.
    99. Haglund M, Kalaria R, Slade JY, Englund E.Differential deposition of amyloid beta peptides incerebral amyloid angiopathy associated with Alzheimer’s disease and vascular dementia.ActaNeuropathol.2006,111:430–435.
    100. Tullberg M, Fletcher E, DeCarli C et al.White matter lesions impair frontal lobe function regardless of their location. Neurology.2004,63:246-253.
    101. Polidori MC, Mecocci P, Frei BF. Plasma Vitamin C levels are decreased and correlated with brain damage in patients with intracranial hemorrhage or head trauma. Stroke2001;32:898-902.
    102. Leinonen JS, Ahonen JP, Lonnrot K, Jakhonen M, Dastidar P, Molnar G, et al. Low plasma antioxidant activity is associated with high lesion volume and neurological impairment in stroke. Stroke2000;31:33-9.
    103. Zhu X, Lee HG, Casadesus G, Avila J, Drew K, Perry G, Smith MA. Oxidative imbalance in Alzheimer's disease. Mol Neurobiol2005;31:205-17.
    104. Lovell MA, Xie C, Markesbery WR. Decreased glutathione transferase activity in brain and ventricular fluid in Alzheimer's disease. Neurology1998;51:1562-6.
    105. Smith MA, Perry G, Richey PL, Sayre LM, Anderson VE, Beal MF, Kowall N. Oxidative damage in Alzheimer's. Nature1996;382:120-1.
    106. Smith MA, Richey Harris PL, Sayre LM, Beckman JS, Perry G. Widespread peroxynitrite-mediated damage in Alzheimer's disease. J Neurosci1997;17:2653-7.
    107. Mecocci P, Beal MF, Cecchetti R, Polidori MC, Cherubini A, Chionne F, Avellini L, Romano G, Senin U. Mitochondrial membrane fluidity and oxidative damage to mitochondrial DNA in aged and AD human brain. Mol Chem Neuropathol1997;31:53-64.
    108. Nunomura A, Chiba S, Lippa CF, Cras P, Kalaria RN, Takeda A, Honda K, Smith MA, Perry GNeuronal RNA oxidation is a prominent feature of familial Alzheimer's disease. Neurobiol Dis2004;17:108-13.
    109. Viswanathan A, Rocca WA, Tzourio C (2009) Vascular risk factors and dementia:how to move forward. Neurology72:368-374.
    110. White LR, Garseth M, Aasly J, Sonnewald U. Cerebrospinal fluid from patients with dementia contains increased amounts of an unknown factor. J Neurosci Res.2004Oct15;78(2):297-301.
    111. Jia JP, Jia JM, Zhou WD, et al. Differential acetylcholine and choline concentrations in the cerebrospinal fluid of patients with Alzheimer's disease and vascular dementia. PMID:15361288[PubMed-indexed for MEDLINE]
    112.张云,吕军,季敏等.老年期痴呆相关影响因素分析.中国康复理论与实践.2010,16,6:509-512.
    1. Crichton, R. R. Inorganic Biochemistry of Iron Metabolism:From Molecular Mechanisms to ClinicalConsequences(John Wiley&Sons, Chichester,2001).A comprehensive overview of iron biochemistry,from molecules to medicine.
    2. Pigeon, C. et al. A new mouse liver-specific gene, encoding a protein homologous to humanantimicrobial peptide hepcidin, is overexpressed during iron overload. J. Biol.Chem.2001,276,7811–7819.
    3. Papanikolaou, G. et al. Mutations in HFE2cause iron overload in chromosome1q-linked juvenilehemochromatosis. Nature Genet.2004,36,77–82.
    4. Burdo, J. R.&Connor, J. R. Brain iron uptake and homeostatic mechanisms: an overview. BioMetals2003,16,63–75.
    5. Connor, J. R.&Menzies, S. L. Cellular Management of Iron in the Brain. J. Neurol. Sci.1999,134(Suppl.),33–44.
    6. Connor, J. R., Boeshore, K. L.&Benkovic, S. A. Isoforms of ferritin have a specific cellulardistribution in the brain. J.Neurosci. Res.1994,37,461–465.
    7. Moos, T.&Morgan, E. H. The metabolism of neuronal iron and its pathogenic role in neurologicaldisease: review. Ann.NY Acad. Sci.2004,1,1012–1014.
    8. Zecca, L. et al. The role of iron and copper molecules inthe neuronal vulnerability of locus coeruleusand substantia nigra during aging. Proc. Natl Acad. Sci. USA.2004,101,9843–9848.
    9. Connor, J. R. et al. Decreased transferrin receptor expression by neuromelanin cells in restless legssyndrome.Neurology.2004,62,1563–1567.
    10. Hulet, S. W., Powers, S.&Connor, J. R. Distribution of transferrin and ferritin binding in normaland multiple sclerotic human brains. J. Neurol. Sci.1999,165,48–55.
    11. Hallgren, B.&Sourander, P. The effect of aging on the nonhaemin iron in the human brain. J.Neurochem.1958,3,41–51.
    12. Connor, J. R., Snyder, B.S., Arosio, P., Loeffler, D. A.&LeWitt, P. A quantitative analysis ofisoferritins in select regions of aged, parkinsonian and Alzheimer Disease brains.J. Neurochem.1995,65,717–724.
    13. Zecca,L. et al. Iron, neuromelanin and ferritin in substantia nigra of normal subjects at differentages. Consequences for iron storage and neurodegenerative disorders.J.Neurochem.2001,76,1766–1773.
    14. Bartzokis, G. et al. MR evaluation of brain iron in young adults and older normal males. Magn.Reson. Imaging.1997,15,29–35.
    15. Martin, W. R., Ye, F. Q.&Allen, P. S. Increasing striatal iron content associated with normal aging.Mov. Disord.1998,13,281–286.
    16. Ogg, R. J., Langston, J. W., Haacke, E. M., Steen, R. G.&Taylor, J. S. The correlation betweenphase shifts in gradient-echo MR images and regional brain iron concentration. Magn. Reson. Imaging1999,17,1141–1148.
    17. Brun, A.&Englund,E. A white matter disorder in dementia of the Alzheimer type: apathoanatomical study. Ann.Neurol.1986,19,253–262.
    18. Snowdon, D. A. Nun Study. Healthy aging and dementia:findings from the Nun Study. Ann. Intern.Med.2003,139,450–454.
    19. Faucheux, B. A., Bonnet, A. M., Agid, Y.&Hirsch, E. C.Blood vessels change in themesencephalon of patients with Parkinson’s disease. Lancet.1999,353,981–982.
    20. Jellinger, K., Paulus, W., Grundke-Iqbal, I., Riederer, P.&Youdim, M. B. Brain iron and ferritin inParkinson’s and Alzheimer’s disease. J. Neural. Transm. Park. Dis. Dement.Sect.1990,2,327–340.
    21. Riederer, P. et al. Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J.Neurochem.1989,52,515–520.
    22. Dexter, D. T. et al. Increasednigral iron content in postmortem parkinsonian brain. Lancet.1987,341,1219–1220.
    23. Hirsch, E. C.,Brandel, J.-P., Galle, P., Javoy-Agid, F.&Agid,Y. Iron and aluminum increase in thesubstantia nigra of patients with Parkinson’s disease: an X-ray microanalysis. J.Neurochem.1991,56,446–451.
    24. Uitti, R. J. et al. Regional metal concentrations in Parkinson’s disease, other chronic neurologicaldiseases, and control brains. Can. J. Neurol. Sci.1989,16,310–314.
    25. Galazka-Friedman, J. et al. Iron in parkinsonian and control substantia nigra: a Mossbauerspectroscopy study. Mov.Disord.1996,11,8–16.
    26. Wilms, H. et al. Activation of microglia by human neuromelanin is NF-B dependent and involvesp38mitogen-activated protein kinase: implications for Parkinson’s disease. FASEB J.2003,17,500–502.
    27. Langston, J. W. et al. Evidence of active nerve cell degeneration in the substantia nigra of humansyears after1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure.Ann. Neurol.1999,46,598–605.
    28. Faucheux, B. A. et al. Expression of lactoferrin receptors is increased in the mesencephalon ofpatients with Parkinson disease. Proc. Natl Acad. Sci. USA.1995,92,9603–9607.
    29. Leveugle, B. et al. Cellular distribution of the iron-binding protein lactotransferrin in themesencephalon of Parkinson’s disease cases. Acta Neuropathol.(Berl.)1996,91,566–572.
    30. Ostrerova-Golts, N. et al. The A53T-synuclein mutation increases iron-dependent aggregation andtoxicity. J.Neurosci.2000,20,6048–6054.
    31. Uversky, V. N., Li, J.&Fink, A. L. Metal-triggered structural transformations, aggregation, andfibrillation of human-synuclein. A possible molecular link between Parkinson’s disease and heavymetal exposure. J. Biol. Chem.2001,276,44284–44296.
    32. Münch, G. et al. Crosslinking of–synuclein by advanced glycation endproducts—an earlypathophysiological step in Lewy body formation? J. Chem. Neuroanat.2000,20,253–257.
    33. Bartzokis, G. Age-related myelin breakdown: a developmental model of cognitive declineandAlzheimer’s disease. Neurobiol. Aging2004,25,5–18.
    34. Rogers, J. T. et al. An iron-responsive element typeII in the5’-untranslated region of theAlzheimer’s amyloid precursor protein transcript. J. Biol. Chem.2002,277,45518–45528.
    35. Bodovitz, S., Falduto, M. T., Frail, D. E.&Klein, W. L. Iron levels modulate-secretase cleavageof amyloid precursor protein. J. Neurochem.1995,64,307–315.
    36. Huang, X. et al. Alzheimer’s disease,-amyloid protein and zinc. J. Nutr.2000,130,1488S–1492S.
    37. Rottkamp, C. A. et al. Redox-active iron mediates amyloid-toxicity. Free Radic. Biol.Med.2001,30,447–450.
    38. Mantyh, P. et al. Aluminum, iron and zinc ions promote aggregation of physiological concentrationsof-amyloid peptide. J. Neurochem.61,1171–1174(1993).
    39. Perry, G. et al. The role of iron and copper in the aetiology of neurodegenerative disorders:therapeutic implications. CNS Drugs16,339–352(2002).
    40. Connor, J. R. et al. Is hemochromatosis a risk factor forAlzheimer’s disease? J. Alzheimers Dis.3,471–477(2001).
    41. Lee, S.&Connor, J. R. Regulation of Hfe by stress factors in BV-2cells. Neurobiol. Aging (in thepress)
    42. Feder, J. N. et al. A novel MHC class I-like gene is mutated in patients with hereditaryhaemochromatosis. Nature Genet.1996,13,399–408.
    43. Namekata, K. et al. Association of transferrin C2allele with late-onset Alzheimer’s disease. Hum.Genet.1997,101,126–129.
    44. Van Landeghem, G., Sikstrom, C., Beckman, L., Adolfsson,R.&Beckman, R. Transferrin C2,metal binding and Alzheimer’s Disease. Neuroreport1998,9,177–179.
    45. Zambenedetti, P., De Bellis, G., Biunno, I., Musicco, M.&Zatta, P. TransferrinC2variant doesconfer a risk for Alzheimer’s disease. J. Alzheimers Dis.2003,5,423–427.
    46. Yoshida, K. et al. A mutation in the ceruloplasmin gene is associated with systemic hemosiderosisin humans. Nature Genet.1995,9,267–272.
    47. Harris, Z. L. et al. Aceruloplasminemia:molecular characterization of this disorder of ironmetabolism. Proc.Natl Acad. Sci. USA.1995,92,2539–2543.
    48. Miyajama, H. et al. The use of deferrioxamine in the treatment of aceruloplasminemia. Ann. Neurol.1997,41,404–407.
    49. Patel, P. I.&Isaya, G. Friedreich ataxia: from GAA tripletrepeat expansion to frataxin deficiency.Am. J. Hum. Genet.2001,69,15–24.
    50. Zoghbi, H. Y.&Orr, H. T. Glutamine repeats and neurodegeneration. Ann. Rev. Neurosci.2000,23,217–247.
    51. Gordon, N. Friedreich’s ataxia and iron metabolism. Brain Dev.2000,22,465–468.
    52. Muhlenhoff, U., Richhardt, N., Ristow, M., Kispal, G.&Lill, R.The yeast frataxin homolog Yfh1pplays a specific role in the maturation of cellular Fe/S proteins. Hum. Mol. Genet.2002,11,2025–2036.
    53. Earley, C. J. Clinical practice. Restless legs syndrome. N.Engl. J. Med.2003,348,2103–2109.
    54. Barnham, K. J., Masters, C. L.&Bush, A. I.Neurodegenerative diseases and oxidative stress.Nature Rev. Drug Discov.2004,3,205–214.
    55. Youdim, M. B. H., Stephenson, G.&BenShachar, D.Ironing iron out in Parkinson’s disease andotherneurodegenerative diseases with iron chelators: a lesson from6-hydroxydopamine and ironchelators, desferal and VK-28. Ann. NY Acad. Sci.2004,1012,306–325.
    56. Wang, X. S., Ong, W. Y.&Connor, J. R. Quinacrine attenuates increases in divalent metaltransporter-1and iron levels in the rat hippocampus, after kainate-induced neuronal injury.Neuroscience.2003,120,21–29.
    57. Gerlach, M., Ben-Shachar, D., Riederer, P.&Youdim, M. B. Altered brain metabolism of iron as acause of neurodegenerative diseases? J. Neurochem.1994,63,793–807.
    58. Cohen, G. Oxidative stress, mitochondrial respiration, and Parkinson’s disease. Ann. NY Acad. Sci.2000,899,112–120.
    59. Jenner, P.&Olanow, C. W. Understanding cell death in Parkinson’s disease. Ann. Neurol.1998,44(3Suppl.1), S72–S84.
    60. Temlett, J. A., Landsberg, J. P., Watt, F.&Grime, G. W.Increased iron in the substantia nigracompacta of the MPTP-lesioned hemiparkinsonian African green monkey:evidence from protonmicroprobe elemental microanalysis.J. Neurochem.1994,62,134–146.
    61. Oestreicher, E. et al. Degeneration of nigrostriatal dopaminergic neurons increases iron within thesubstantia nigra: a histochemical and neurochemical study. Brain Res.1994,660,8–18.
    62. Shoham, S.&Youdim, M. B. Nutritional iron deprivation attenuates kainate-inducedneurotoxicityin rats: implications for involvement of iron in neurodegeneration. Ann. NY Acad.Sci.2004,1012,94–114.
    63. Bharath, S., Hsu, M., Kaur, D., Rajagopalan, S.&Andersen, J. K. Glutathione, iron and Parkinson’sdisease. Biochem.Pharmacol.2002,64,1037–1048.
    64. Moussaoui, S. et al. The antioxidant ebselen prevents neurotoxicity and clinical symptoms in aprimate model of Parkinson’s disease. Exp. Neurol.2000,166,235–245.
    65. Moosmann, B.&Behl, C. Antioxidants as treatment for neurodegenerative disorders. Expert Opin.Investig. Drugs.2002,11,1407–1435.
    66. Mandel, S., Weinreb, O., Amit, T.&Youdim, M. B. Cell signaling pathways in the neuroprotectiveactions of the green tea polyphenol (-)-epigallocatechin-3-gallate:implications for neurodegenerativediseases. J. Neurochem.2004,88,1555–1569.
    67. Rogers, J. T.&Lahiri, D. K. Metal and inflammatory targets for Alzheimer’s disease. Curr. DrugTargets2004,5,535–551.
    68. Dexter, D. T, Ward, R.J., Florence, A., Jenner, P.&. Crichton, R. R. Effects of desferrithiocin andits derivatives on peripheral iron and striatal dopamine and5-hydroxytryptamine metabolism in theferrocene-loaded rat.Biochem. Pharmacol.1999,58,151–155.
    69. Bruehlmeier, M. et al. Increased cerebral iron uptake in Wilson’s disease: a52Fe-citrate PET study.J. Nucl. Med.2000,41,781–787.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700