用户名: 密码: 验证码:
面神经损伤大鼠脑内移植SPIO标记的GFP转基因胎鼠神经干细胞后的MRI示踪研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过将SPIO标记的GFP转基因胎鼠NSCs移植入面神经损伤大鼠脑内,并利用MRI对移植的NSCs进行活体示踪,探讨了移植的NSCs的在脑内的迁移情况及用MRI对移植NSCs进行活体示踪的可行性。结果显示移植的NSCs可在脑内存活并向损伤侧面神经核区域迁移,MRI可以显示移植细胞的迁移。因此,本课题为面神经损伤后的修复提供了一种新的思路(中枢神经元的修复)和建立了一种活体检测方法(MRI活体示踪移植细胞),为进一步深入研究奠定了良好的实验基础。详细摘要如下:
     实验一面神经损伤大鼠模型的建立
     目的动物实验是研究面神经疾病的基础,无论是研究面神经损伤后的病理生理变化、神经再生过程,还是研究面神经疾病的病因和治疗,都需要建立理想的动物模型。本实验旨在建立面神经高位损伤模型,为面神经损伤后脑内移植NSCs研究奠定模型基础。
     方法SD大鼠12只,随机分为术后1周和3周组,然后将右侧面神经主干在茎乳孔根部牵拉出约3 mm切断。按规定时间处死大鼠并取材、制备石蜡切片,行HE、TB和TUNEL染色,观察双侧面神经元的凋亡情况。
     结果健侧和术后1周组损伤侧面神经元均未见明显凋亡,术后3周组损伤侧见大量凋亡面神经元。
     结论采用将面神经主干在茎乳孔根部牵拉出约3 mm切断的方法建立的面神经高位损伤模型成功诱导了面神经元的凋亡,且重复性好,为进一步研究奠定了良好的模型基础。
     实验二GFP转基因胎鼠NSCs的分离、培养和鉴定
     目的建立GFP转基因胎鼠NSCs的分离、培养和鉴定的方法,为面神经损伤后脑内移植NSCs研究准备供体细胞。
     方法①分离GFP转基因胎鼠的海马组织,用吸管吹打机械方法制成单细胞悬液。采用含B27、碱性成纤维细胞生长因子(bFGF)和表皮生长因子(EGF)的无血清培养基培养。②利用Nestin抗体对原代和传代细胞进行特异性鉴定。③用胎牛血清诱导分化后,荧光显微镜下观察分化细胞的形态和GFP表达情况。利用NeuN、GFAP和O_4抗体分别对分化后的神经元、星形胶质细胞和少枝胶质细胞进行特异性鉴定。
     结果①从GFP转基因胎鼠海马组织分离的细胞以悬浮方式生长,可形成典型的神经球,能在体外传代培养和连续形成克隆,且原代和传代细胞GFP表达均呈阳性。②免疫细胞化学染色示原代和传代细胞均为Nestin阳性。③血清诱导分化后的细胞可分别表达神经元、星形胶质细胞和少枝胶质细胞特异性抗原NeuN、GFAP和O_4,且分化后的细胞GFP表达呈阳性。
     结论从GFP转基因胎鼠海马组织成功分离培养出了NSCs。培养出的细胞Nestin阳性且具有增殖、自我更新能力及向神经元及神经胶质细胞分化的潜力,且均可稳定表达GFP,因此可作为NSCs脑内移植实验研究的供体细胞。
     实验三GFP转基因胎鼠NSCs的SPIo标记及体外磁共振成像
     目的探索用SPIO体外标记NSCs的可行性及1.5 T MR仪对磁标记干细胞的显示能力,为进一步利用MRI活体示踪移植于面神经损伤脑内的NSCs奠定基础。
     方法①将SPIO和PLL混悬制备SPIO-PLL复合物,加入无血清NSCs条件培养液,使其中铁的终浓度为25μg/ml,PLL的终浓度为0.75μg/ml,然后与NSCs在37℃、5%CO_2培养箱中共同孵育48小时,以便对NSCs进行SPIO标记。②用倒置相差显微镜和荧光显微镜观察标记细胞的形态和GFP表达。③于标记后24小时和诱导分化后5天行普鲁士蓝染色观察细胞内铁颗粒。④于标记后2、4、6天行台盼蓝拒染试验观察细胞活性。⑤于标记后2、4、6、8天用MTT法检测标记细胞的增殖。⑥用流式细胞仪检测标记后2天细胞的凋亡和坏死及细胞周期并用TUNEL方法检测细胞凋亡。⑦用NeuN、GFAP和O_4抗体分别对标记细胞分化后的神经元、星形胶质细胞和少枝胶质细胞进行特异性鉴定。⑧用1.5 T MR仪对不同数量级的标记细胞行体外MRI。
     结果①SPIO标记和未标记的NSCs在光镜下形态无明显差别,但标记细胞颜色呈棕黄色;荧光显微镜下两组细胞绿色荧光强弱无明显差别。②普鲁士蓝染色显示SPIO标记NSCs和分化后的细胞胞质内均见大量蓝色颗粒,而未标记NSCs和分化后的细胞胞质内未见蓝色颗粒。③SPIO标记NSCs 2、4、6天组和未标记NSCs的台盼蓝拒染率比较均无统计学差异。④SPIO标记NSCs 2、4、6、8天组利未标记NSCs的OD值比较均无统计学差异。⑤SPIO标记NSCs 2天和未标记NSCs的凋亡和坏死及细胞周期比较无统计学差异,TUNEL法亦未检测到细胞凋亡。⑥SPIO标记NSCs诱导分化后的细胞可分别表达神经元、星形胶质细胞和少枝胶质细胞特异性抗原NeuN、GFAP和O_4。⑦GRE T_2~*WI中,1×10~6管和1×10~5管均可见明显低信号改变,1×10~4管、1×10~3管和琼脂糖管未见明显低信号改变;FSE T_2WI中,1×10~6管可见明显低信号改变,余4管未见明显低信号改变;T_1WI中,5管的信号未见有明显差别。
     结论①SPIO-PLL复合物可用于体外标记NSCs,应用SPIO-PLL复合物标记NSCs安全、有效。②在1.5 TMR仪上,SPIO标记NSCs可引起明显信号降低,且信号降低程度与标记细胞的数量和扫描序列有关,其中GRE T_2~*WI对信号改变最敏感。
     实验四面神经损伤大鼠脑内移植SPIO标记的GFP转基因胎鼠NSCs后的MRI示踪研究
     目的探讨大鼠面神经损伤后脑内移植SPIO标记的GFP转基因胎鼠的NSCs的迁移情况及用MRI对移植NSCs进行活体示踪的可行性。
     方法24只SD大鼠随机分为4组:A组为面神经切断后移植SPIO标记的GFP转基因胎鼠NSCs悬液;B组为面神经切断后移植未用SPIO标记的GFP转基因胎鼠NSCs悬液;C组为面神经切断后移植含SPIO的NSCs培养液;D组为正常大鼠移植SPIO标记的GFP转基因胎鼠NSCs悬液。造模后1周,行立体定向移植,注射点为前囟后方11.30 mm、背侧9.00 mm、正中线位置。分别于移植后第3天及第2、3、4周行MRI,并于第4周处死大鼠,取脑组织冰冻切片后用荧光显微镜和普鲁士蓝染色观察GFP和SPIO双标的NSCs的迁移,并将该结果与MRI相比较。
     结果①移植部位:MRI:A、C、D各组动物移植后第3天至第4周均呈类圆形低信号,且无明显改变,B组动物移植后第3天至第4周均无明显低信号;普鲁士蓝染色:A、C、D组对应于MRI低信号区呈蓝染,B组未见蓝染区域;GFP荧光检测:A、B、D组见多少不等的GFP阳性细胞,其中A、D组与普鲁士蓝蓝染区对应,C组未见GFP阳性细胞;②损伤侧面神经核区域(桥脑右份腹外侧区):MRI:移植后第3天及第2周所有大鼠均未见低信号改变,移植后第3周及第4周A组动物中有3只(3/6)可见条形或点状低信号,A组动物中另外3只(3/6)及B、C、D组均未见低信号;普鲁士蓝染色:只有A组见多少不等的蓝染,与MRI低信号区相符,B、C、D组均未见蓝染;GFP荧光检测示:A、B组均见多少不等的GFP阳性细胞,其中A组与普鲁士蓝蓝染区对应,C、D组未见GFP阳性细胞。③健侧面神经核区域(桥脑左份腹外侧区):MRI:4组均未见低信号改变;普鲁士蓝染色示:4组均未见蓝染;GFP荧光检测示:4组均未见GFP阳性细胞。④血管内:在移植部位附近和远离移植部位均见GFP阳性细胞位于血管内;⑤移植处与面神经核团区域之间:未见GFP阳性细胞或蓝色相连。
     结论SPIO和GFP双标记的NSCs移植入面神经损伤大鼠脑内后,可在脑内存活并向损伤侧面神经核区域迁移,利用MRI技术可以对移植后脑内的标记细胞进行初步活体示踪。
Experiment one:Establishment of the model of facial nerve injury on rat
     Objective Animal experiment is the basis of the study on facial nerve diseases.It all needs to construct an ideal model for the research on changes of pathology and physiology after facial nerve injury,on process of nerve regeneration and on etiological factor and treatment of facial nerve diseases.This experiment aims to establish a model of facial nerve injury on rat in order to set up the foundation for the study of transplanting NSCs into rat brain after facial nerve injury.
     Methods 12 SD rats were randomly divided into 2 groups:1 week and 3 week after model induction.Then the right facial nerve was softly drug out about 3 mm from stylomastoid foramen before cut off at the root of stylomastoid foramen.1 week and 3 week following model induction,rats were killed respectively.Then paraffin sections of brain tissues were prepared.HE,TB and TUNEL staining were made to observe the neuronal apoptosis of facial nucleus on both sides.
     Results There were no obvious neuronal apoptosis of facial nucleus on the healthy side and injured side of 1 week group.But on the injured side of 3 week group there was remarkable neuronal apoptosis of facial nucleus.
     Conclusion The model made in this experiment induces remarkable neuronal apoptosis of facial nucleus successfully and have good reproducibility.So it settles good foundation for the study of transplanting NSCs into rat brain after facial nerve injury.
     Experiment two:Isolation,culture and identification of NSCs derived from GFP transgenic embryonic mice
     Objective To prepare donor cells for the study of transplanting NSCs into rat brain after facial nerve injury by isolating,culturing and identifying NSCs derived from GFP transgenic embryonic mice.
     Methods①Hippocampus isolated from GFP transgenic embryonic mice was blown mechanically and collected in centrifuge tube.Serum-free medium containing 1% B27,20 ng/ ml bFGF and 20 ng/ ml EGF was added into the tube after centrifugalization to suspend the cells.After the cells were dissociated into single cell, the density was adjusted to 2×10~5 cells/ml.Then cells were inoculated into culture plate and cultured in 37℃,5%CO_2 incubator.About 5 to 7 days the cells proliferated and formed neurospheres.Then cells were passage by isolating mechanically.After that,cells were passage every 5 to 7 days.Cells growth and GFP expression were observed with invert phase-contrast light microscope and fluorescence microscope respectively.②Primary and passage cells were identified by anti-nestin immunocytochemical staining.③Cells morph and GFP expression were observed with fluorescence microscope after differentiation induced by fetal bovine serum. Identification of neuron,astrocyte and oligodendrocytes were performed by NeuN, GFAP and O_4 immunocytochemical staining respectively.
     Results①Cells isolated from GFP transgenic embryonic mice were grown in the matter of suspensions and formed typical neurospheres after culturing 48 hours.They were able to serial passage and form clones in vitro.Meanwhile the primary and passage cells both showed GFP positive.②Immunocytochemical method showed the primary and passage cells were nestin positive.③Cells induced by FBS differentiated and immunocytochemical method showed they were NeuN,GFAP and O_4 positive respectively.The differentiated cells also showed GFP positive.
     Conclusion The cells isolated from GFP transgenic embryonic mice are nestin positive and possess the abilities of proliferation,self-renew and multipotency of differentiating into neuron,astrocyte and oligodendrocyte which are believed to be the main characteristics of NSCs.They also stably express GFP.So the cells isolated from GFP transgenic embryonic mice could be considered as one of the ideal donor cells in experimental research on NSCs transplantation therapy in future.
     Experiment three:SPIO labeling and in vitro MRI of NSCs derived from GFP transgenic embryonic mice
     Objective To explore the feasibility of magnetic labeling of NSCs with SPIO and to investigate the possibility of in vitro detection of magnetically labeled NSCs with a clinical 1.5 T MR.
     Methods①SPIO was mixed with PLL to obtain a complex of SPIO-PLL,in which the ultimate concentration of Fe and PLL was 25ug/ml and 0.75ug/ml respectively. Then NSCs were cultured in the culture media containing SPIO-PLL in 37℃,5%CO_2 incubator for about 48 hours to label NSCs with SPIO.②Morph and expression of GFP of labeled NSCs were observed with invert phase-contrast light microscope and fluorescence microscope respectively.③Prussian blue staining was performed for demonstrating intracytoplastic nanoparticles at 24 hours and 5 days after cells induced differentiation respectively.④Trypan blue exclusion test for cell viability were performed at 2,4,6 days after labeling respectively.⑤MTT test for cell proliferation were performed at 2,4,6,8 days after labeling respectively.⑥Cell cycle,cellular apoptosis and necrosis of labeled NSCs were studied by flow cytometry.Meanwhile cellular apoptosis were also detected by TUNEL staining.⑦After differentiation induced by FBS,identification of neuron,astrocyte and oligodendrocytes were performed by NeuN,GFAP and O_4 immunocytochemical staining respectively.⑧1×10~6,1×10~5,1×10~4 and 1×10~3 cells were respectively suspended in 0.5 ml gelatin (1%) for in vitro MRI at 1.5 T MR imaging system.A tube contain gelatin used as negative control.
     Results①There were no significantly difference in cell morph and GFP expression between labeled and unlabeled cells.But the colour of labeled cells was buffy under light microscope.②Numerous intracytoplastic iron particles were stained with Prussian blue staining in the SPIO-PLL labeled NSCs and differentiated cells.But there were no iron particles in unlabeled cells.③There were no significantly difference in Trypan blue exclusion test for cell viability between labeled and unlabeled cells at 2,4,6 days after labeling.④There were no significantly difference in MTT test for cell proliferation between labeled and unlabeled cells at 2,4,6,8 days after labeling.⑤There were no significantly difference in cell cycle,cellular apoptosis and necrosis between labeled and unlabeled cells at 2 days after labeling. Cellular apoptosis were not detected by TUNEL staining.⑥Immunocytochemical method showed differentiated NSCs induced by FBS were NeuN,GFAP and O_4 positive respectively.⑦On GRE T_2~*WI only tubes of 1×10~6 and 1×10~5 cells presented obvious low signal intensity.On FSE T_2WI only tubes of 1×10~6 cells presented obvious low signal intensity.On T_1WI there was no obvious difference among all five tubes.
     Conclusion①It is feasible,efficient and safe to label NSCs with SPIO-PLL complex.②NSCs labeled with SPIO-PLL complex can result in a negative enhancement on GRE T_2~*WI and FSE T_2WI,which can be detected by a clinical 1.5 T MR imaging system.The degree of negative enhancement is correlated with the cell number.GRE T_2~*WI is the most sensitive sequence to detect negative enhancement of labeled cells.
     Experiment four:Magnetic resonance tracking of transplanted NSCs derived from GFP transgenic embryonic mice labeled with SPIO in rat brain after facial nerve injury
     Objective To explore the migration of transplanted NSCs derived from GFP transgenic embryonic mice labeled with SPIO in rat brain after facial nerve injury and the feasibility of magnetic resonance tracking of this migration.
     Methods NSCs were derived from the brain of GFP transgenic embryonic mice and labeled with SPIO.24 adult SD rats were randomly divided into 4 groups:A group, transplanted SPIO labeled NSCs in rat brain after facial nerve injury;B group, transplanted unlabeled NSCs in rat brain after facial nerve injury;C group, transplanted nutrient solution contained SPIO in rat brain after facial nerve injury;D transplanted SPIO labeled NSCs in normal rat brain.1 week following model induction,NSCs stereotaxis transplantation was performed,and the injection point was 11.30 mm to pone of the anterior fontanelle,9.00 mm to dorsal side,at the median line.MR scanning was performed to monitor the transplanted cells after implantation in 3 day and 2,3,4 weeks respectively.After MRI on the fourth week all rats were killed and frozen sections of brain tissues were prepared.Fluorescence microscope and Prussian blue staining of the histological sections were employed to observe the migration of GFP and SPIO co-labeled NSCs and the results were compared with MRI.
     Results①At grafting region:MRI:there was a round area of low signal intensity in groups A,C and D except B from the third day to the fouth week after transplantation. Prussian blue staining:there were blue staining area in groups A,C and D except B. And this area was matched with the low signal intensity area on MRI;Fluorescence microscope:GFP-positive cells were observed in groups A,B and D except C.In groups A and D GFP-positive cells were matched with blue staining area on Prussian blue staining.②In the area around facial nucleus of injured side facial nerve(ventral side of right part of pons):MRI:From the third day to the second week after transplantation there was no area of low signal intensity in all groups.From the third week to the fourth week after transplantation there was low signal intensity presented on 3 animals(3/6) of group A.No low signal intensity was observed on the other animals.Prussian blue staining:Only group A had blue staining area which was matched with the low signal intensity area on MRI.Fluorescence microscope:In groups A and B GFP-positive cells were observed migration to this area.And in groups A GFP-positive cells were matched with blue staining area on Prussian blue staining.③In the area around facial nucleus of healthy side facial nerve(ventral side of left part of pons):MRI:There was no area of low signal intensity in all groups;Prussian blue staining:There was no area of blue staining in all groups;Fluorescence microscope:No GFP-positive cell was observed migration to this area in all groups.④In blood vessel:Some GFP-positive cells were observed in blood vessel near or away from the injection point.⑤The area between grafting region and facial nucleus: No GFP-positive cell or blue staining was observed connecting the two points.
     Conclusion NSCs co-labeled with SPIO and GFP could migrate into area around nucleus of injured side facial nerve after transplanted into rat brain and 1.5T MRI is feasible to tracking the migration of the labeled neural stem cells.
引文
[1]牛宇,胡敏,田淑琴.大鼠面神经颅外段的解剖及组织学研究.实验动物科学,2007:27(4):19-20.
    [2]Takahashi H,Hitsumoto Y,Honda N,et al.Mouse model of Bell's palsy induced by reactivation of herpes simplex virus type 1.J Neuropathol Exp Neuro,2001;60(6):621-627.
    [3]诸葛启钏主译.大鼠脑立体定位图谱.第三版.北京:人民卫生出版社,2005.
    [4]Romansky RK.Axonal misdirection as contributing factor to aberrant reinnervation of muscles after facial nerve suture in cats.Arch Physiol Biochem,2003;111(3):273-283.
    [5]Constantinidis J,Akbarian A,Steinhart H,et al.Effects of immediate and delayed facial-facial nerve suture on rat facial muscle,Acta Otolaryngol,2003;123(8):998-1003.
    [6]Most SP.Facial nerve recovery in bcl-2 over expression mice after crush injury.Arch Facial Plast Surg,2004;6(2):82-87.
    [7]五锦玲,卢连军,刘顺利.A型肉毒素对面神经和运动神经元的影响.中华耳鼻咽喉科杂志,2002;37(3):180-183.
    [8]Imitola J,Raddassi K,Park KI,et al.Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor lalpha/CXC chemokine receptor 4 pathway.Proc Natl Acad Sci U S A,2004;101(52):18117-18122.
    [9]Tran PB,Ren D,Veldhouse TJ,et al.Chemokine receptors are expressed widely by embryonic and adult neural progenitor cells.J Neurosci Res,2004;76(1):20-34.
    [10]Ohab JJ,Fleming S,Blesch A,et al.A neurovascular niche for neurogenesis after stroke.J Neurosci,2006;26(50):13007-13016.
    [11]Wang ZM,Dai CF,Kanoh N,et al.Apoptosis and expression of BCL-2 in facial motoneurons after facial nerve injury.Otology & Neurotology,2002;23(3):397-404.
    [12]Mattsson P,Delfani K,Janson AM,et al.Motor neuronal and glial apoptosis in the adult facial nucleus after intracranial nerve transaction.J Neurosurg,2006;104(3):411-418.
    [13]Raivich G,Liu ZQ,Kloss CUA,et al.Cytotoxic potential of proinflammatory cytokines:combined deletion of TNF receptors TNFRI and TNFR2 prevents motoneuron cell death after facial axotomy in adult mouse.Exp Neurol,2002;178(2):186-193.
    [14]Dai CF,Kanoh H,Li KY,et al.Study on facial motoneuronal death after proximal or distal facial nerve transaction.Am J Otol,2000;21(1):115-118.
    [15]Mattsson P,Meijer B,Svensson M.Extensive neuronal cell death following intracranial transection of the facial nerve in the adult rat.Brain Res Bull,1999;49(5):333-341.
    [16]Gu YM,Spasic Z,WuW T.The effects of remaining axons on motoneuron survival and nos expression following axotomy in the adult rat.Dev Neurosci,1997;19(3):255-259.
    [17]Moran LB,Graeber MB.The facial nerve axotomy model.Brain Res Brain Res Rev,2004;44(2-3):154-178.
    [18]矫毓娟,刘江红,许贤豪.细胞凋亡的检测方法中国神经免疫学和神经病学杂志,2004:11(1):53-56.
    [19]Gavrieli Y,Sherman Y,Ben-Sasson SA.Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation.J Cell Biol,1992;119():493-501.
    [20]Charriaut MC,Ben AY.A cautionary note on the use of TUNEL stain to determine apoptosis.Neuroreport,1995;7(1):61-64.
    [21]Bicknell GR,Cohen GM.Cleavage of DNA to large kilobase pair fragments occurs in some forms of necrosis as well as apoptosis.Biochem Biophys Res Commun,1995;207(1):40-47.
    [1]Reynolds BA,Weiss S.Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system.Science,1992;255(5052):1707-1710.
    [2]Weiss S,Reynolds BA,Vescovi AL,et al.Is there a neural stem cell in the mammalian forebrain.Trends Neurosci,1996;19(9):387-393.
    [3]Morrison SJ,Shah NM,Anderson DJ.Regulatory mechanisms in stem cell biology.Cell,1997;88(3):287-298.
    [4]Morrison R.Stem cells in the central nervous system.Science,1997;276(5309):66-71.
    [5]Barinaga M.Fetal neuron grafts pave the way for stem cell therapies.Science,2000;287(5457):1421-1422.
    [6]Gage HF.Mammalian neural stem cells.Science,2000,287(5457):1433-1438.
    [7]Galli R,Gritti A,Bonfanti L,et al.Neural stem cells.Circ Res,2003;92(4):598-608.
    [8]Ohtsuka T,Imayoshi I,Shimojo H,et al.Visualization of embryonic neural stem cells using Hes promoters in transgenic mice.Mol Cell Neurosci,2006;31(1):109-122.
    [9]Berninger B,Hack MA,Gotz M.Neural stem cells:on where they hide,in which disguise,and how we may lure them out.Handb Exp Pharmacol,2006;(174):319-360.
    [10]Yue F,Chen B,Wu D,et al.Biological properties of neural progenitor cells isolated from the hippocampus of adult cynomolgus monkeys.Chin Med J(Engl),2006;119(2):110-116.
    [11]Hovakimyan M,Haas SJ,Schmitt O,et al.Mesencephalic human neural progenitor cells transplanted into the neonatal hemiparkinsonian rat striatum differentiate into neurons and improve motor behaviour.J Anat,2006;209(6):721-732.
    [12]Martino G,Pluchino S.The therapeutic potential of neural stem cells.Nat Rev Neurosci,2006;7(5):395-406.
    [13]Pluchino S,Zanotti L,Deleidi M,et al.neural stem cells and their use as therapeutic tool in neurological disorders.Brain Res Brain Res Rev,2005;48(2):211-219.
    [14]Magnus T,Rao MS.Neural stem cells in inflammatory CNS diseases:mechanisms and therapy.J Cell Mol Med,2005;9(2):303-319.
    [15]Imitola J.Prospects for neural stem cell-based therapies for neurological diseases.Neurotherapeutics,2007;4(4):701-714.
    [16]Park KI,Hack MA,Ourednik J,et al.Acute injury directs the migration,proliferation,and differentiation of solid organ stem cells:evidence from the effect of hypoxia-ischemia in the CN$ on clonal "reporter" neural stem cells.Exp Neurol,2006;199(1):156-178.
    [17]Miller RH.The promise of stem cells for neural repair.Brain Res,2006;1091(1):258-264.
    [18]Darsalia V,Kallur T,Kokaia Z.Survival,migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum.Eur J Neurosci,2007;26(3):605-614.
    [19]Ben-Shaanan TL,Ben-Hur T,Yanai J.Transplantation of neural progenitors enhances production of endogenous cells in the impaired brain.Mol Psychiatry,2008;13(2):222-231.
    [20]Bacigaluppi M,Pluchino S,Martino G,et al.Neural stem/precursor cells for the treatment of ischemic stroke.J Neurol Sci,2008;265(1-2):73-77.
    [21]Sun L,Lee J,Fine HA.Neuronally expressed stem cell factor induces neural stem cell migration to areas of brain injury.J Clin Invest,2004;113(9):1364-1374.
    [22]鄢文海,陈正跃,崔景彬,等.β淀粉样蛋白诱导胚胎大鼠神经干细胞凋亡.实用儿科临床杂志,2004:19(8):658-659.
    [23]Schulz TC,Noggle SA,Palmarini GM,et al.Differentiation of human embryonic stem cells to dopaminergic neurons in serum-free suspension culture.Stem Cells,2004;22(7):1218-1238.
    [24]Kallos MS,Behie LA,Vescovi AL.Extended serial passaging of mammalian neural stem cells in suspension bioreactors.Biotechnol Bioeng,1999;65(5):589-599.
    [25]胡钧涛,涂汉军,张力,等.大鼠胚胎神经干细胞的培养与鉴定.中华神经外科疾病研究杂志,2005:5(1):5-8.
    [26]Wachs FP,Couillard-Despres S,Engelhardt M,et al.High efficacy of clonal growth and expansion of adult neural stem cells.Lab Invest,2003;83(7):949-962.
    [27]田志红,黄国伟,姬长珍,等.胎鼠神经干细胞分离培养和鉴定.天津医科大学学报,2007:13(4):476-478.
    [28]Svendsen CN,Fawcett JW,Bentlage C.Increased survival of rat EGF generated CNS precursor cells or cells using B27 supplemented medium.Exp Brain Res,1995;102(3):407-414.
    [29]Santa-Olalla J,Covarrubias L.Basic fibroblast growth factor promotes epidermal growth factor responsiveness and survival of mesencephalic neural precursor cells.J Neurobiol,1999;40(1):14-27.
    [30]Itoh T,Satou T,Dote K,et al.Effect of basic fibroblast growth factor on cultured rat neural stem cell in three-dimensional collagen gel.Neurol Res,2005;2?(4):429-432.
    [31]宫晓洁,孙莉,黎靖宇,等.昆明种小鼠胚胎神经干细胞的分离及培养.中国组织工程研究与临床康复,2008,12(8):1477-1480.
    [32]Lendahl U,Zimmerman LB,McKay RD.CNS stem cells express a new class of intermediate filament protein.Cell,1990;60(4):585-595.
    [33]Uchida K,Okano H,Hayashi T,et al.Grafted swine neuroepithelial stem cells can form myelinated axons and both efferent and afferent synapses with xenogeneic rat neurons.J Neurosci Res,2003;72(6):661-669.
    [34]An YH,Wan H,Zhang ZS,et al.Effect of rat Schwann cell secretion on proliferation and differentiation of human neural stem cells.Biomed Environ Sci,2003;16(1):90-94.
    [35]Menoret S,Aubert D,Tesson h,et al.LacZ transgenic rats tolerant for beta-galactosidase:recipients for gene transfer studies using lacZ as a reporter gene.Hum Gene Ther,2002;13(11):1383-1390.
    [36]Fu Y,Wang S,hiu Y,et al.Study on neural stem cell transplantation into natural rat cochlea via round window.Am J Otolaryngol,2009;30(1):8-16.
    [37]Kim DE,Tsuji K,Kim YR,et al.Neural stem cell transplant survival in brains of mice:assessing the effect of immunity and ischemia by using real-time bioluminescent imaging.Radiology,2006;241(3):822-830
    [38]崔晓萍,应大君,余资江,等.绿色荧光蛋白转基因小鼠神经干细胞的培养与鉴定.解剖学杂志,2006:29(5):592-595.
    [39]Eisch AJ,Mandyam CD.Adult neurogenesis:can analysis of cell cycle proteins move us "Beyond BrdU"? Curr Pharm Biotechnol,2007;8(3):147-165.
    [40]Ngwenya LB,Rosene DL,Peters A,et al.An ultrastructural characterization of the newly generated cells in the adult monkey dentate gyrus.Hippocampus,2008;18(2):210-220.
    [41]付勇,龚树生,薛秋红,等.胚胎大鼠神经干细胞的分离培养和鉴定及标记.临床耳鼻咽喉头颈外科杂志,2007:21(4):172-175.
    [42]Murayama A,Matsuzaki Y,Kawaguchi A,et al.Flow cytometric analysis of neural stem cells in the developing and adult mouse brain.J Neurosci Res.2002;69(6):837-847.
    [43]李东,崔磊,舒朝锋,等.荧光活性染料DiI标记观察人骨髓基质干细胞与部分脱钙骨粘附的实验研究.中华创伤骨科杂志,2004:6(3):311-314.
    [44]Teramoto K,Asahina K,Kumashiro Y,et al.Hepatocyte differentiation from embryonic stem cells and umbilical cord blood cells.J Hepatobiliary Pancreat Sure,2005;12(3):196-202.
    [45]Chalfi M,Tu Y,Euskirchen G,et al.Green fluorescent protein as a marker for gene expression.Science 1994;263(5148):802-805.
    [46]Tsien RY.The green fluorescent protein.Annu Rev Biochem 1998;67:509-544.
    [1]Hovakimyan M,Haas SJ,Schmitt O,et al.Mesencephalic human neural progenitor cells transplanted into the neonatal hemiparkinsonian rat striatum differentiate into neurons and improve motor behaviour.J Anat,2006;209(6):721-732.
    [2]Martino G,Pluchino S.The therapeutic potential of neural stem cells.Nat Rev Neurosci,2006;7(5):395-406.
    [3]Pluchino S,Zanotti L,Deleidi M,et al.neural stem cells and their use as therapeutic tool in neurological disorders.Brain Res Brain Res Rev,2005;48(2):211-219.
    [4]Magnus T,Rao MS.Neural stem cells in inflammatory CNS diseases:mechanisms and therapy.J Cell Mol Med,2005;9(2):303-319.
    [5]Imitola J.Prospects for neural stem cell-based therapies for neurological diseases.Neurotherapeutics,2007;4(4):701-714.
    [6]Park KI,Hack MA,Ourednik J,et al.Acute injury directs the migration, proliferation,and differentiation of solid organ stem cells:evidence from the effect of hypoxia-ischemia in the CNS on clonal“reporter”neural stem cells.Exp Neurol,2006;199(1):156-178.
    [7]Miller RH.The promise of stem cells for neural repair.Brain Res,2006;1091(1):258-264.
    [8]Darsalia V,Kallur T,Kokaia Z.Survival,migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum.Eur J Neurosci,2007;26(3):605-614.
    [9]Ben-Shaanan TL,Ben-Hur T,Yanai J.Transplantation of neural progenitors enhances production of endogenous cells in the impaired brain.Mol Psychiatry,2008;13(2):222-231.
    [10]Bacigaluppi M,Pluchino S,Martino G,et al.Neural stem/precursor cells for the treatment of ischemic stroke.J Neurol Sci,2008;265(1-2):73-77.
    [11]Lagasse E,Connors H,Al-Dhalimy M,et al.Purified hematopoietic stem cells can differentiate into hepatocytes in vivo.Nat Med,2000;6(11):1229-1234.
    [12]Orlic D,Kajstura J,Chimenti S,et al.Bone marrow cells regenerate infarcted myocardium.Nature.2001;410(6829):701-705.
    [13]Weissleder R.Molecular imaging:exploring the next frontier.Radiology,1999;212(3):609-614.
    [14]ModoM,MellodewK,Cash D,et al.Mapping transplanted stem cell migration after a stroke:a serial,in vivo magnetic resonance imaging study.Neuroimage.2004;21(1):311-317.
    [15]Roch A,Muller RN,Gillis P,et al.Water relaxation by SPM particles:neglecting the magnetic anisotropy? A caveat.J Magn Reson Imaging,2001;14(1):94-96.
    [16]Frank JA,Anderson SA,Kalsih H,et al.Methods for magnetically labeling stem and other cells for detection by in vivo magnetic resonance imaging.Cytotherapy,2004;6(6):621-625.
    [17]Frank JA,Miller BR,Arbab AS,et al.Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents.Radiology,2003,228(2):480-487.
    [18]Taupitz M,Wagner S,Schnorr J,et al.Phase I clinical evaluation of citrate-coated monocrystalline very small superparamagnetic iron oxide particles as a new contrast medium for magnetic resonance imaging.Invest Radiol.2004;39(7):394-405.
    [19]Yeh TC,Zhang W,Ildstad ST,et al.In vivo dynamic tracking of rat T-cells labeled with superparamagnetic iron-oxide particles.Magn Reson Med,1995;330:200-208.
    [20]居胜红,滕皋军,毛曦,等.脐血间充质干细胞磁探针标记和MR成像研究.中华放射学杂志,2005:39(1):101-106.
    [21]Lars M,Thorsten P,Alexander W,et al.Cell tagging with clinically approved iron oxides:feasibility and effect of lipofection,particle size,and surface coating on labeling efficiency.Radiology,2005;235(1):155-161.
    [22]Yocum GT,Wilson LB,Ashari P,et al.Effect of human stem cells labeled with ferumoxides - Poly - L - lysine on hematologic and biochemical measurements in rats.Radiology,2005;235(2):547-552.
    [23]Arbab AS,Yocum GT,Wilson LB,et al.Comparison of transfection agents in forming complexes with ferumoxides,cell labeling efficiency,and cellular viability.Mol Imaging,2004;3(1):24-32.
    [24]Arbab AS,Yocum GT,Kalish H,et al.Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI.Blood,2004;104(4):1217-1223.
    [25]Kobayashi H,Brechbiel MW.Dendrimer-based macromolecular MRI contrast agents:characteristics and application.Mol Imaging,2003,2(1):1-10.
    [26]Kim SW,Ogawa T,Tabata Y,et al.Efficacy and cytotoxicity of cationic-agent-mediated nonviral gene transfer into osteoblasts.J Biomed Mater Res A,2004;71(2):308-315.
    [27]Kaufman CL,Williams M,Ryle LM,et al.Superparamagnetic iron oxide particles transactivator protein-fluorescein isothiocyanate particle labeling for in vivo magnetic resonance imaging detection of cell migration:uptake and durability.Transplantation,2003;76(7):1043-1046.
    [28]Lewin M,Carlesso N,Tung CH,et al.Tat peptide-derivatized magnetic nanoparticles allow vivo tracking and recovery of progenitor cells.Nat Biotechnol,2000;18(4):410-414.
    [29]Josephson L,Tung CH,Moore A,et al.High-efficiency intracellular magnetic labeling with novel superparamagnetic-tat peptide conjugates.Bioconjug Chem,1999;10(2):186-191.
    [30]Lee JM,Takahashi M,Mon H,et al.Efficient gene transfer into silkworm larval tissues by a combination of sonoporation and lipofection.Cell Biol Int,2005;29(11):976-979.
    [31]Walczak P,Kedziorek DA,Gilad AA,et al.Instant MR labeling of stem cells using magnetoelectroporation.Magn Reson Med,2005;54(4):769-774.
    [32]Suwa T,Ozawa S,Ueda M,et al.Magnetic resonance imaging of esophageal squamous cell carcinoma using magnetite particles coated with anti-epidermal growth factor receptor antibody.Int J Cancer,1998;75(4):626-634.
    [33]Bulte JW,Ben-Hut T,Miller BR,et al.MR microscopy of magnetically labeled neurospheres transplanted into the Lewis EAE rat brain.Magn Reson Med,2003;50(1):201-205.
    [34]Arbab AS,Wilson LB,Ashari P,et al.A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide(SPIO) nanoparticles:implications for cellular magnetic resonance imaging.NMR Biomed,2005,18(6):383-389.
    [35]Cahill KS,Gaidosh q Huard J,et al.Noninvasive monitoring and tracking of muscle stem cell transplants.Transplantation,2004,78(11):1626-1633.
    [36]杨志军,徐如祥,姜晓丹,等.菲立磁标记兔骨髓基质源神经干细胞自体移植入纹状体后的形态学观察.中华神经医学杂志,2005:4(2):121-125.
    [37]景猛,刘新权,梁鹏,等.应用超顺磁性氧化铁纳米粒子标记神经干细胞及活体磁共振示踪的实验研究.中华医学杂志,2004:84(16):1386-1389.
    [38]Shapiro EM,Skrtic S,Sharer K,et al.MRI detection of single particles for cellular imaging.PNAS,2004;101(30):10901-10906.
    [39]Hinds KA,Hill JM,Shapiro EM,et al.Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells.Blood,2003;102(3):867-872.
    [40]Arbab AS,Bashaw LA,Miller BR,et al.Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging.Radiology,2003;229(3):838-846.
    [41]Daldrup-Link HE,Rudelius M,Oostendorp RA,et al.Targeting of hematopoietic progenitor cells with MR contrast agents.Radiology,2003;228(3):760-767.
    [42]Kraitchman DL,Heldman AW,Atlar E,et al.In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction.Circulation,2003;107(18):2290-2293.
    [43]Bos C,Delmas Y,Desmouliere A,et al.In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver.Radiology,2004;233(3):781-789.
    [44]Saksena MA,Saokar A,Harisinghani MG.Lymphotropic nanoparticle enhanced MR imaging(LNMRI) technique for lymph node imaging.Eur J Radiol,2006;58(3):367-374.
    [45]Himes N,Min JY,Lee R,et al.In vivo MRI of embryonic stem cells in a mouse model of myocardial infarction.Magn Reson Med,2004;52(5):1214-1219.
    [46]Kostura L,Kraitchman DL,Mackay AM,et al.Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis.NMR Biomed,2004;17(7):513-517.
    [47]Fukuchi K,Tomoyasu S,Tsuruoka N,et al.Iron deprivation-induced apoptosis in HL-60 cells.FEBS Lett,1994;350(1):139-142.
    [1]Wang ZM,Dai CF,Kanoh N,et al.Apoptosis and expression of BCL-2 in facial motoneurons after facial nerve injury.Otology & Neurotology,2002;23(3):397-404.
    [2]MattssonP,Delfani K,Janson AM,et al.Motor neuronal and glial apoptosis in the adult facial nucleus after intracranial nerve transaction.J Neurosurg,2006;104(3):411-418.
    [3]Dai CF,Kanoh H,Li KY,et al.Study on facial motoneuronal death after proximal or distal facial nerve transaction.Am J Otol,2000;21(1):115-118.
    [4]Mattsson P,Meijer B,Svensson M.Extensive neuronal cell death following intracranial transection of the facial nerve in the adult rat.Brain Res Bull,1999;49(5):333-341.
    [5]Hovakimyan M,Haas SJ,Schmitt O,et al.Mesencephalic human neural progenitor cells transplanted into the neonatal hemiparkinsonian rat striatum differentiate into neurons and improve motor behaviour.J Anat,2006;209(6):721-732.
    [6]Martino G,Pluchino S.The therapeutic potential of neural stem cells.Nat Rev Neurosci,2006;7(5):395-406.
    [7]Pluchino S,Zanotti L,Deleidi M,et al.neural stem cells and their use as therapeutic tool in neurological disorders.Brain Res Brain Res Rev,2005;48(2):211-219.
    [8]Magnus T,Rao MS.Neural stem cells in inflammatory CNS diseases:mechanisms and therapy.J Cell Mol Med,2005;9(2):303-319.
    [9]Imitola J.Prospects for neural stem cell-based therapies for neurological diseases.Neurotherapeutics,2007;4(4):701-714.
    [10]Park KI,Hack MA,Ourednik J,et al.Acute injury directs the migration,proliferation,and differentiation of solid organ stem cells:evidence from the effect of hypoxia-ischemia in the CNS on clonal“reporter”neural stem cells.Exp Neurol,2006;199(1):156-178.
    [11]Miller RH.The promise of stem cells for neural repair.Brain Res,2006;1091(1):258-264.
    [12]Darsalia V,Kallur T,Kokaia Z.Survival,migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum.Eur J Neurosci,2007;26(3):605-614.
    [13]Ben-Shaanan TL,Ben-Hur T,Yanai J.Transplantation of neural progenitors enhances production of endogenous cells in the impaired brain.Mol Psychiatry,2008;13(2):222-231.
    [14]Bacigaluppi M,Pluchino S,Martino G,et al.Neural stem/precursor cells for the treatment of ischemic stroke.J Neurol Sci,2008;265(1-2):73-77.
    [15]Bjorklund A,Dunnett SB,Brundin P,et al.Neural transplantation for the treatment of Parkinson's disease.Lancet Neurol,2003;2(7):437-445.
    [16]Jendelova P,Herynek V,Urdzlkova L,et al.Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord.Journal of Neuroscience Research,2004; 76(2):232-243.
    [17]薛静,高培毅,李晋,等.脑梗死大鼠脑内移植超顺磁性氧化铁颗粒标记神经干细胞后的MR示踪研究.中华放射学杂志,2006:40(2):122-126.
    [18]Ben-Hur T,van Heeswik RB,Einstein O,et al.Serial in vivo MR tracking of magnetically labeled neural spheres transplanted in chronic EAE mice.Magn Reson Med,2007;57(1):164-171.
    [19]Imitola J,Raddassi K,Park KI,et al.Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor lalpha/CXC chemokine receptor 4 pathway.Proc Natl Acad Sci U S A,2004;101(52):18117-18122.
    [20]Tran PB,Ren D,Veldhouse TJ,et al.Chemokine receptors are expressed widely by embryonic and adult neural progenitor cells.J Neurosci Res,2004;76(1):20-34.
    [21]Ohab JJ,Fleming S,Blesch A,et al.A neurovascular niche for neurogenesis after stroke.J Neurosci,2006;26(50):13007-13016.
    [22]Hoehn M,Kustermann E,Blunk J,et al.Monitoring of implanted stem cell migration in vivo:a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat.Proc Natl Acad Sci U S A,2002;99(25):16267-16272.
    [23]Guzman R,Uchida N,Bliss TM,et al.Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI.Proc Natl Acad Sci U S A,2007;104(24):10211-10216.
    [24]Yano S,Kuroda S,Shichinohe H,et al.Do bone marrow stromal cells proliferate after transplantation into mice cerebral infarct?—a double labeling study.Brain Res,2005;1065(1):60-67.
    [25]Lepore AC,Walczak P,Rao MS,et al.MR imaging of lineage-restricted neural precursors following transplantation into the adult spinal cord.Exp Neurol,2006;201(1):49-59.
    [26]Walczak P,Kedziorek DA,Gilad AA,et al.Applicability and limitations of MR tracking of neural stem cells with asymmetric cell division and rapid turnover:the case of the shiverer dysmyelinated mouse brain.Magn Resort Med,2007; 58(2):261-269.
    [27]Gilad AA,McMahon MT,Walczak P,et al.Artificial reporter gene providing MRI contrast based on proton exchange.Nat Biotech,2007;25(2):217-219.
    [1]Dove A.Cell-based therapies go live.Nat Biotechnol,2002;20(4):339-343.
    [2]Valone FH,Small E,MacKenzie M,et al.Dendritic cell-based treatment of cancer:closing in on a cellular therapy.Cancer J,2001;7(Suppl 2):S53-61.
    [3]Burt RK,Traynor A.Hematopoietic stem cell therapy of autoimmune diseases.Curr Opin Hematol,1998;5(6):472-477.
    [4]Semsarian C.Stem cells in cardiovascular disease:from cell biology to clinical therapy.Intern Med J,2002;32(5-6):259-265.
    [5]Bessis N,Cottard V,Saidenberg-Kermanach N,et al.Syngeneic fibroblasts transfected with a plasmid encoding interleukin-4 as non-viral vectors for anti-inflammatory gene therapy in collagen-induced arthritis.J Gene Med,2002;4(3):300-307.
    [6]Petit-Zeman S.Regenerative medicine.Nat Biotechnol,2001;19(3):201-206.
    [7]Johnstone B,Yoo J.Mesenchymal cell transfer for articular cartilage repair.Expert Opin Biol Ther,2001;1(6):915-921.
    [8]Wen YJ,Min R,Tricot G,et al.Tumor lysate-specific cytotoxic T lymphocytes in multiple myeloma:promising effector cells for immunotherapy.Blood,2002;99(9):3280-3285.
    [9]Lagasse E,Connors H,Al-DhalimyM,et al.Purified hematopoietic stem cells can differentiate into hepatocytes in vivo.Nat Med,2000;6(11):1229-1234.
    [10]Orlic D,Kajstura J,Chimenti S,et al.Bone marrow cells regenerate infarcted myocardium.Nature.2001;410(6829):701-705.
    [11]Weissleder R.Molecular imaging:exploring the next frontier.Radiology,1999;212(3):609-614.
    [12]ModoM,MellodewK,Cash D,et al.Mapping transplanted stem cell migration after a stroke:a serial,in vivo magnetic resonance imaging study.Neuroimage.2004;21(1):311-317.
    [13]Roch A,Muller RN,Gillis P,et al.Water relaxation by SPM particles:neglecting the magnetic anisotropy? A caveat.J Magn Reson Imaging,2001;14(l):94-96.
    [14]Frank JA,Anderson SA,Kalsih H,et al.Methods for magnetically labeling stem and other cells for detection by in vivo magnetic resonance imaging.Cytotherapy,2004;6(6):621-625.
    [15]Taupitz M,Wagner S,Schnorr J,et al.Phase I clinical evaluation of citrate-coated monocrystalline very small superparamagnetic iron oxide particles as a new contrast medium for magnetic resonance imaging.Invest Radiol.2004;39(7):394-405.
    [16]Yeh TC,Zhang W,Ildstad ST,et al.In vivo dynamic tracking of rat T-cells labeled with superparamagnetic iron-oxide particles.Magn Reson Med,1995;33():200-208.
    [17]Frank JA,Miller BR,Arbab AS,et al.Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents.Radiology,2003,228(2):480-487.
    [18]Lars M,Thorsten P,Alexander W,et al.Cell tagging with clinically approved iron oxides:feasibility and effect of lipofection,particle size,and surface coating on labeling efficiency.Radiology,2005;235(1):155-161.
    [19]Yocum GT,Wilson LB,Ashari P,et al.Effect of human stem cells labeled with ferumoxides-Poly-L-lysine on hematologic and biochemical measurements in rats.Radiology,2005;235(2):547-552.
    [20]Arbab AS,Yocum GT,Wilson LB,et al.Comparison of transfection agents in forming complexes with ferumoxides,cell labeling efficiency,and cellular viability.Mol Imaging,2004;3(1):24-32.
    [21]Arbab AS,Yocum GT,KalishH,et al.Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI.Blood,2004;104(4):1217-1223.
    [22]Kobayashi H,Brechbiel MW.Dendrimer-based macromolecular MRI contrast agents:characteristics and application.Mol Imaging,2003,2(1):1-10.
    [23]Kim SW,Ogawa T,Tabata Y,et al.Efficacy and cytotoxicity of cationic-agent-mediated nonviral gene transfer into osteoblasts.J Biomed Mater Res A,2004;71(2):308-315.
    [24]Becker ML,Remsen EE,Pan D,Wooley KL.Peptide-derivatized shell-cross-linked nanoparticles.1.Synthesis and characterization.Bioconjug Chem,2004;15(4):699-709.
    [25]Torchilin VP,Rammohan R,Weissig V,et al.TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors.Proc Natl Acad Sci USA,2001;98(15):8786-8791.
    [26]Futaki S,Suzuki T,Ohashi W,et al.Arginine-rich peptides.An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery.J Biol Chem,2001;276(8):5836-5340.
    [27]Lewin M,Carlesso N,Tung CH,et al.Tat peptide-derivatized magnetic nanoparticles allow vivo tracking and recovery of progenitor cells.Nat Biotechnol,2000;18(4):410-414.
    [28]Sundstrom JB,Mao H,Santoianni R,et al.Magnetic resonance imaging of activated proliferating rhesus macaque T cells labeled with superparamagnetic monocrystalline iron oxide nanoparticles.J Acquir Immune Defic Syndr,2004; 35(1):9-21.
    [29]Wunderbaldinger P,Josephson L,WeisslederR.Tat peptide directs enhanced clearance and hepatic permeability of magnetic nanoparticles.Bioconjug Chem,2002;13(2):264-268.
    [30]Sakai N,Matile S.Anion-mediated transfer of polyarginine across liquid and bilayer membranes.J Am Chem Soc,2003;125(47):14348-1456.
    [31]Josephson L,Tung CH,Moore A,et al.High-efficiency intracellular magnetic labeling with novel superparamagnetic-tat peptide conjugates.Bioconjug Chem,1999;10(2):186-191.
    [32]Koch AM,Reynolds F,Kircher MF,et al.Uptake and metabolism of a dual fluorochrome Tat-nanoparticle in HeLa cells.Bioconjug Chem,2003;14(6):1115-1121.
    [33]Allen MJ,Meade TJ.Synthesis and visualization of a membrane-permeable MRI contrast agent.J Biol Inorg Chem,2003;8(7):746-50.
    [34]Allen MJ,MacRenaris KW,Venkatasubramanian PN,et al.Cellular delivery of MRI contrast agents.Chem Biol,2004;11(3):301-307.
    [35]Lee JM,Takahashi M,Mon H,et al.Efficient gene transfer into silkworm larval tissues by a combination of sonoporation and lipofection.Cell Biol Int,2005;29(11):976-979.
    [36]Walczak P,Kedziorek DA,Gilad AA,et al.Instant MR labeling of stem cells using magnetoelectroporation.Magn Reson Med,2005;54(4):769-774.
    [37]Suwa T,Ozawa S,Ueda M,et al.Magnetic resonance imaging of esophageal squamous cell carcinoma using magnetite particles coated with anti-epidermal growth factor receptor antibody.Int J Cancer,1998;75(4):626-634.
    [38]Bulte JW,Ben-Hur T,Miller BR,et al.MR microscopy of magnetically labeled neurospheres transplanted into the Lewis EAE rat brain.Magn Reson Med,2003;50(1):201-205.
    [39]Gupta AK,Curtis AS.Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors.Biomaterials,2004;25(15):3029-3040.
    [40]Berry CC,Wells S,Charles S,et al.Cell response to dextran-derivatised iron oxide nanoparticles post internalisation.Biomaterials,2004;25(23):5405-5413.
    [41]Fukuchi K,Tomoyasu S,Tsuruoka N,et al.Iron deprivation-induced apoptosis in HL-60 cells.FEBS Lett,1994;350(1):139-142.
    [42]Himes N,Min JY,Lee R,et al.In vivo MRI of embryonic stem cells in a mouse model of myocardial infarction.Magn Reson Med,2004;52(5):1214-1219.
    [43]Daldrup-Link HE,Rudelius M,Oostendorp RA,et al.Targeting of hematopoietic progenitor cells with MR contrast agents.Radiology,2003;228(3):760-767.
    [44]KosturaL,Kraitchman DL,Mackay AM,et al.Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis.NMR Biomed,2004;17(7):513-517.
    [45]Arbab AS,Wilson LB,Ashari P,et al.A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide(SPIO) nanoparticles:implications for cellular magnetic resonance imaging.NMR Biomed,2005,18(6):383-389.
    [46]Dousset W,Tourdias T,Brochet B,et al.How to trace stem cells for MRI evaluation? Journal of the Neurological Sciences,2008;265():122-126.
    [47]Ourednik J,Ourednik V,Lynch WP,et al.Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons.Nat Biotechnol,2002;20(11):1103-1110.
    [48]Yamamoto S,Yamamoto N,Kitamura T,et al.Proliferation of parenchymal neural progenitors in response to injury in the adult rat spinal cord.Exp Neurol,2001;172(1):115-127.
    [49]Shibuya S,Miyamoto O,Auer RN,et al.Embryonic intermediate filament,nestin,expression following traumatic spinal cord injury in adult rats.Neuroscience,2002;114(4):905-916.
    [50]Galli R,Borello U,Gritti A,et al.Skeletal myogenic potential of human and mouse neural stem cells.Nat Neurosci,2000;3(10):986-991.
    [51]Kawasaki H,Mizuseki K,Nishikawa S,et al.Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity.Neuron, 2000;28(1):31-40.
    [52]Lee SH,Lumelsky N,Studer L,et al.Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells.Nat Biotechnol,2000;18(6):675-679.
    [53]Reubinoff BE,Itsykson P,Turetsky T,et al.Neural progenitors from human embryonic stem cells.Nat Biotechnol,2001;19(12):1134-1140.
    [54]Liu S,Qu Y,Stewart TJ,et al.Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation.Proc Natl Acad Sci USA,2000;97(11):6126-6131.
    [55]Stavridis MP,Smith AG.Neural differentiation of mouse embryonic stem cells.Biochem Soc Trans,2003;31(Pt 1):45-49.
    [56]Weimann JM,Charlton CA,BrazeltonTR,et al.Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains.Proc Natl Acad Sci U S A,2003;100(4):2088-2093.
    [57]Jiang Y,Jahagirdar BN,Reinhardt RL,et al.Pluripotency of mesenchymal stem cells derived from adult marrow.Nature,2002;418(6893):41-49.
    [58]Zhang RL,Zhang L,Zhang ZG,et al.Migration and differentiation of adult rat subventricular zone progenitor cells transplanted into the adult rat striatum.Neuroscience,2003;116(2):373-382.
    [59]Hoehn M,K(?)stermann E,Blunk J,et al.Monitoring of implanted stem cell migration in vivo:a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat.Proc Natl Acad Sci U S A,2002;99(25):16267-1672.
    [60]Bulte JW,Zhang S,van Gelderen P,et al.Neurotransplantation of magnetically labeled oligodendrocyte progenitors:magnetic resonance tracking of cell migration and myelination.Proc Natl Acad Sci U S A,1999;96(26):15256-15261.
    [61]Jendelovd P,Herynek V,Urdzikovd L,et al.Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord.J Neurosci Res,2004;76(2):232-243.
    [62]Weber A,Pedrosa I,Kawamoto A,et al.Magnetic resonance mapping of transplanted endothelial progenitor cells for therapeutic neovascularization in ischemic heart disease.Eur J Cardiothorac Surg,2004;26(1):137-143.
    [63]Garot J,Unterseeh T,Teiger E,et al.Magnetic resonance imaging of targeted catheter-based implantation of myogenic precursor cells into infarcted left ventricular myocardium.J Am Coll Cardiol,2003;41(10):1841-1846.
    [64]Dick AJ,Guttman MA,Raman VK,et al.Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in swine.Circulation,2003;108(23):2899-2904.
    [65]Kraitchman DL,Heldman AW,Atlar E,et al.In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction.Circulation,2003;107(18):2290-2293.
    [66]Dodd CH,Hsu HC,Chu WJ,et al.Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles.J Immunol Methods,2001;256(1-2):89-105.
    [67]Kircher MF,Allport JR,Graves EE,et al.In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors.Cancer Res,2003;63(20):6838-6846.
    [68]Zhang Z,Jiang Q,Jiang F,et al.In vivo magnetic resonance imaging tracks adult neural progenitor cell targeting of brain tumor.Neuroimage,2004;23(1):281-287.
    [69]Aboody KS,Brown A,Rainov NG,et al.Neural stem cells display extensive tropism for pathology in adult brain:evidence from intracranial gliomas.Proc Natl Acad Sci U S A,2000;97(23):12846-12851.
    [70]Lee J,Elkahloun AG,Messina SA,et al.Cellular and genetic characterization of human adult bone marrow-derived neural stem-like cells:a potential antiglioma cellular vector.Cancer Res,2003;63(24):8877-8889.
    [71]Folkman J.Angiogenesis in cancer,vascular,rheumatoid and other disease.Nat Med,1995;1(1):27-31.
    [72]Brown SL,Ewing JR,Nagaraja TN,et al.Sickle red blood cells accumulate in tumor.Magn Reson Med,2003;50(6):1209-1214.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700