用户名: 密码: 验证码:
挥发性氯代烃在我国典型土壤中的吸附—解吸特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,中国土壤污染事故频发,引起了社会和政府部门的广泛关注。吸附是挥发性氯代烃(Volatile chlorinated hydrocarbons,VCHs)污染土壤的主要机制之一。土壤对VCHs的吸附行为不仅直接影响土壤中VCHs的浓度及其分布,而且影响VCHs在土壤中的迁移转化,并对污染现场的修复能力产生重大影响。因此,了解VCHs在土壤中的吸附特性对于污染场地调查与修复有着重要的实际意义。在对VCHs在土壤中的吸附-解吸行为进行调研的基础上,本研究定量解析了我国典型土壤与常见VCHs气体的吸附平衡关系,建立了根据土壤气体浓度预测土壤中污染物含有量的方法,同时用连续通气实验研究了四氯乙烯(tetrachloroethylene, PCE)从长期污染土壤中的解吸特性,为推进我国调查和控制城市地区的土壤污染提供理论基础。主要包括以下3部分内容:
     (1)采用静态吸附平衡实验测试3类干燥水稻土对6种VCHs气体的吸附平衡。结果显示干燥土壤的平衡吸附等温线用Dubinin-Astakhov方程拟合良好(R2>0.95),且方程参数与土壤和VCHs特性的有关。Dubinin-Astakhov等式各参数不受土壤有机碳含量的影响;β与VCHs化合物的分子体积之间没有发现相关性,但随VCHs分子极性的增大有变大的趋势;E0与土壤的V<平均孔径呈线性相关;W_0与V_(<10nm)相关良好,但与土壤比表面积关系不大。用Dubinin-Astakhov方程进行干燥土壤的平衡吸附量预测,预测值与实测值拟合良好(R~2=0.98)。
     (2)用动态吸附平衡实验测试8类湿润土壤对4种VCHs气体的吸附平衡。发现湿润土壤对三氯乙烯、四氯乙烯、1,1,1-三氯乙烷的吸附等温线符合Henry型吸附等温式,而1,1,2-三氯乙烷则呈非线性吸附。不同土壤的固-液吸附平衡系数(KSW)与土壤有机碳含量(α)呈良好的线性关系。对湿润土壤的平衡吸附量进行预测,预测值与实测值相关良好(R~2=0.98)。对于含水率介于干燥与湿润之间的半湿润土壤的吸附不能忽略直接暴露于气相中的水合土壤表面的吸附,这部分与干燥土壤有类似的吸附机制,可以通过压汞法和BET N_2吸附法得到暴露于气相中的土壤表面比例γ和土壤的相对饱和度RS。这样,半湿润土壤的吸附量可以用干燥和湿润土壤的预测式进行估算。
     (3)用连续通气实验解析PCE从长期污染土壤中的解吸特性。脱离气体中PCE浓度随通气时间而降低,特别是在通气初期一段时间里浓度急剧下降。通气过程中的PCE去除率与污染土壤的粒径分布和有机碳含量有关。通气结束后,有一部分PCE难以通气脱离,这是因为吸附于土壤有机碳、矿物晶体内及粒子层间的PCE扩散缓慢的缘故。
In recent years, soil pollution accidents had happened frequently in China, and had aroused wide attention of government and community. Adsorption is one of the principal mechanisms of soil contamination by volatile chlorinated hydrocarbons (VCHs). The adsorption behaviors of VCHs onto soil not only directly affect the concentration of VCHs and distribution in soil, but also influence the VCHs migration and transformation in soil, and also have a significant impact on the ability of remediation of contaminated site. Therefore, understanding the adsorption characteristics of VCHs onto soil has important practical significance for the investigation and remediation of contaminated sites. On the basis of reviewing the adsorption-desorption behaviors onto soils, the adsorption equilibrium relationships between VCHs gases and typical soils in China were quantitatively analyzed and methods used to predict quantity of pollutants in soil according to soil gas concentrations was established in this study. Besides, the desorption behavior of tetrachloroethylene (PCE) from long-term contaminated soils was studied using continuous air stripping. Thus, provide a theoretical basis for promoting the investigation and control of soil pollution in urban areas. The study mainly includes the following three parts:
     (1)The equilibrium adsorption of 6 VCHs gases onto 3 dry paddy soils was studied using static equilibrium adsorption experiments. Results showed that the equilibrium adsorption isotherms of dry soils could be well fitted with the Dubinin-Astakhov equation (R~2>0.95). Parameters of the Dubinin-Astakhov equation were influenced by the characteristics of soils and VCHs. No correlation was found between the parameters and soil organic carbon content. The affinity coefficients (β) did not show significant dependence on the molecular volumes of VCHs but tended to increase along with the increase in the molecular polarities. The adsorption energies (E_0) of the reference compound (tetrachloroethylene) positively correlated to the pore volume with radius below the average (V     (2)The equilibrium adsorption of 4 VCHs gases onto 8 moist soils were studied using dynamic equilibrium experiments. It was found that adsorption isotherms of trichloroethylene, tetrachloroethylene, 1,1,1-trichloroethane, could be described by Henry equation, but the adsorption isotherms of 1,1,2-trichloroethane was non-linear. The soil-water adsorption equilibrium coefficients KSW showed a good linear relationship with soils’organic carbon content (α). The adsorbed amounts of wet soils agreed well with the measured values (R2=0.98). For soils with water content between dry and moist soils, the adsorption onto the hydrated soil surface exposed directly to the vapor phase which was similar to dry soil can’t be neglected. The relative saturation of soil (RS) and the fraction of soil surface exposed to the vapor phase (γ) can be obtained by combining mercury intrusion data and BET adsorption data. Thus, the adsorbed amounts by those soils can be estimated using the predicted equations of dry and moist soils.
     (3)Continuous ventilation experiment was conducted to study the desorption behavior from unsaturated soils which were long-term contaminated by PCE. The PCE concentration in the effluent air decreased with time of ventilation, mostly during the early stages of air injection. The PCE removal rate was related to the soil particle size distribution and soil organic carbon content. Some fraction of adsorbed PCE couldn’t be removed at the end of ventilation, because the process of diffusion from soil was difficult due to the strong adsorption in soil organic carbon, crystallization of minerals and porous particle layers.
引文
[1] Agency for Toxic Substances and Disease Registry. Toxicological profile for trichloroethylene[R]. Atlanta, GA: US Department of Health & Human Services, 2003.1-2.
    [2] Schumacher T, Odziemkowski M S, Reardon E J, Gillham R W. 2nd International containment technology conference[C]. Petersburg, Florida: Florida State University, 1997. 858-864.
    [3]日本环境省环境管理局水环境部.平成13年土壤污染调查. http://www.env.go.jp/water/report/h16-03/ index.html.
    [4]日本环境省环境管理局水环境部.平成13年地下水污染事例调查. http://www.env.go.jp/water/chikasui/ hokoku_h13/osen.pdf.
    [5]张达政,陈鸿汉,李海明,等.浅层地下水卤代烃污染初步研究[J].中国地质, 2002, 29(3):326-329.
    [6]中国地质大学(北京).地质调查研究院成果公报. http://infos.mlr.gov.cn/GuSHome/Data/TempUsed/GuS_Dynamic_DocImg9/4879_4379_05_11_11_10_25_47.htm.
    [7]刘明亮.土壤/沉积物对三氯乙烯的吸附行为研究[D].中国地质大学(北京), 2007.
    [8]解玉梅.三氯乙烯国内外市场分析[J].化工技术经济, 2005, 23(4): 20-23.
    [9]商超平,张艳梅,沈晔.国内外四氯乙烯生产消费现状及市场前景[J].中国氯碱, 2006, 3(3): 4-7.
    [10]国内外氯甲烷产能和市场[J].化工文摘, 2005, (1): 16.
    [11] United States Environmental Protection Agency. Soil Screening Guidance[R]. 1996.
    [12] Wallace L A, Tai H K, Lam S, et al. Personal expsosures, indoor-outdoor relationships and breath levels of toxic air pollutants measured for 355 persons in New Jersey[J]. Atmospheric Environment, 1985, 19(11): 1652-1661.
    [13] Derwent R G, Jenkin M E. Hydrocarbons and the long-range transport of ozone and PAN across Europe[J]. Atmospheric Environment, 1991, 25A: 1661-1678.
    [14]王虹,马娜,叶露,等.国外土壤污染防治进展及对我国土壤保护的启示[J].环境监测管理与技术, 2006, 18(5): 51-53.
    [15]张胜田,林玉锁,华小梅,等.我国污染场地管理面临的问题及对策[C].中国环境科学学会年会优秀论文集, 2007. 1345-1348.
    [16]汪再祥.中国土壤污染防治立法述评[C].全国环境资源法学研讨会(兰州)论文集, 2007. 682-687
    [17] United States Environmental Protection Agency. Treatment Technologies for Site Cleanup: Annual Status Report (Twelfth Edition)[R].Washington DC: US EPA, 2007. 2-1.
    [18] Department of Toxic Substances Control of California Environment Protection Agency. Proven Technologies and remedies guidance remediation of chlorinated volatile organic compounds in vadose zone soil[R]. Sacramento, California: Department of Toxic Substances Control, 2010. 10-12.
    [19] U.S Army Corps of Engineers. Engineering and Design: Soil Vapor Extraction and Bioventing[R]. Washington DC: Department of the Army, 2002, Chapter2: 5.
    [20] Alvim-Ferraz M., Albergaria J T., Delerue-Matos C. Soil remediation time to achieve clean-up goals II: Influence of natural organic matter and water contents[J]. Chemosphere, 2006, 64(5): 817-825.
    [21]马海斌夏新,李金惠,等.油污染土壤气体抽排去污影响因素分析及机理模型[J].环境保护, 2002, 23(10): 43-45.
    [22]李金惠马海斌,夏新,等.有机污染土壤通风去污技术研究进展[J].环境污染治理技术与设备, 2001, 2(4): 39-48.
    [23] Chiou C T, Kile D E. Contaminant sorption by soil and bed sediment--Is there a difference? US Geological Survey Fact Sheet 087-00. http://toxics.usgs.gov/pubs/FS-087-00/, 2000.
    [24] Luthy R G, Aiken G R, Brusseau M L, et al. Sequestration of hydrophobic organic contaminants by geosorbents[J]. Environ.Sci.Technol, 1997, 31(12): 3341-3347.
    [25]胡枭,樊耀波,王敏健.影响有机污染物在土壤中的迁移,转化行为的因素[J].环境科学进展, 1999, 7(5): 14-22.
    [26]彭胜,陈家军,王红旗.挥发性有机污染物在土壤中的运移机制与模型[J].土壤学报, 2001, 38(3): 315-323.
    [27]李晓军,李培军,蔺昕.土壤中难降解有机污染物锁定机理研究进展[J].应用生态学报, 2007, 18(7): 1624-1630.
    [28] Chen X, Jawitz J W. Convergence of DNAPL source strength functions with site age[J]. Environ Sci Technol, 2009, 43(24): 9374-9379.
    [29] Weber W J Jr, Mcginley P M, Katz L E. Sorption phenomena in subsurface systems: concepts, models and effects on contaminant fate and transport[J]. Water Res, 1992, 25(5): 499-528.
    [30] Chiou C T, Peters L J, Freed V H. A physical concept of soil-water equilibria for nonionic organic compounds[J]. Science, 1979, 206: 831-832.
    [31] Brusseau M L, Rao P S C. Sorption nonideality during organic contaminant transport in porous media[J]. Environ Control, 1989, 19(1): 33-99.
    [32] Culver T B, Brown R A, Smith J A. Rate-limited sorption and desorption of 1,2-dichlorobenzene to a natural sand soil column[J]. Environ Sci Technol, 2000, 34(12): 2446-2452.
    [33] Xing B S, Pignatello J J, Gigliotti B. Competitive sorption between atrazine and other organic compounds in soils and model sorbents[J]. Environ Sci Technol, 1996, 30(8):2432-2440.
    [34] Endo S, Grathwohl P, Haderlein S B, et al. Compound-specific factors influencing sorption nonlinearity in natural organic matter[J]. Environ Sci Technol, 2008, 42(16):5897-5903.
    [35] Weber W J Jr, Leboeuf E J, Young T M, et al. Contaminant interactions with geosorbent organic matter: Insights drawn from polymer sciences[J]. Water Res, 2001, 35(4): 853-868.
    [36] Pignatello J J, Lu Y F, Leboeuf E J, et al. Nonlinear and competitive sorption of apolar compounds in black carbon-free natural organic materials[J]. J Environ Qual, 2006, 35(4): 1049-1059.
    [37] Allen-King R M, Grathwohl P, Ball W P. New modeling paradigms for the sorption of hydrophobic organic chemicals to heterogeneous carbonaceous matter in soils, sediments, and rocks[J]. Adv Water Resour, 2002, 25(8-12): 985-1016.
    [38] Accardi-Dey A M, Gschwend P W. Reinterpreting literature sorption data considering both absorption into organic carbon and adsorption onto black carbon[J]. Environ Sci Technol, 2003, 37(1): 99-106.
    [39] Huang H C, Lee J F, Lee C K, et al. The structural and sorptive characteristics of high-surface-area carbonaceous material (HSACM) in soils[J]. J Haza Mater, 2006, 138(3): 485-492.
    [40] Xia G S, Pignatello J J. Detailed sorption isotherms of polar and apolar compounds in a high-organic soil[J]. Environ Sci Technol, 2001, 35(1): 84-94.
    [41] Shi X, Ji L L, Zhu D Q. Investigating roles of organic and inorganic soil components in sorption of polar and nonpolar aromatic compounds[J]. Environ Pollution, 2010, 158(1): 319-324.
    [42] Ong S K, Lion L W. Mechanisms for trichloroethylene vapor sorption onto soil minerals[J]. J Environ Qual, 1991, 20(1): 180-188.
    [43] Unger D R, Lam T T, Schaefer C E, et al. Predicting the effect of moisture on vapor-phase sorption of volatile organic compounds to soils[J]. Environ Sci Technol, 1996, 30(4): 1081-1091.
    [44] Pennell K D, Rhue R D, Rao P S, et al. Vapor-phase sorption of p-xylene and water on soils and clay minerals[J]. Environ.Sci.Technol, 1992, 26(4): 756-763.
    [45] Brusseau M L, Popovicova J, Silva J a K. Characterizing gas-water interfacial and bulk-water partitioning for gas-phase transport of organic contaminants in unsaturated porous media[J]. Environ Sci Technol, 1997, 31(6): 1645-1649.
    [46] Brantley S L, Kubicki J D, F.White A. Kinetics of water-rock interaction, Chapter 4 Kinetics of sorption-desorption (contributed by Chorover J, Brusseau M L)[M]. New York, USA: Springer, 2008. 109-110.
    [47] Grathwohl P. Influence of organic matter from soils and sediments from various origins on the sorption of some chlorinated aliphatic hydrocarbons: implications on Koc correlations[J]. Environ.Sci.Technol, 1990, 24 (11): 1687-1693.
    [48] Cornelissen G, Gustafsson ?, Bucheli T D, et al. Extensive Sorption of Organic Compounds to Black Carbon, Coal, and Kerogen in Sediments and Soils: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation[J]. Environ Sci Technol, 2005, 39(18): 6881-6895.
    [49] Endo S, Grathwohl P, Haderlein S B, et al. Characterization of sorbent properties of soil organic matte and carbonaceous geosorbents using n-alkanes and cycloalkanes as molecular probes[J]. Environ Sci Technol, 2009, 43(2): 393-400.
    [50] Kobayashi T, Shimizu Y, Urano K. Estimation of adsorbed amounts of volatile organic compounds to wet soil based on the properties of the compounds and soils[J]. Sci Total Environ, 2003, 301(1-3): 215-223.
    [51] Kile D E, Chiou C T, Zhou H D, et al. Partition of nonpolar organic pollutants from water to soil and sediment organic matters[J]. Environ Sci Technol, 1995, 29(5): 1401-1406.
    [52] Weber W J Jr, Mcginley P M, Katz L E. A distributed reactivity model for sorption by soils and sediments. 1. Conceptual basis and equilibrium assessments[J]. Environ Sci Technol, 1992, 26(10): 1955-1962.
    [53] Jeong S, Wander M M, Grathwohl P, et al. The role of condensed carbonaceous materials on the sorption of hydrophobic organic contaminants in subsurface sediments[J]. Environ Sci Technol, 2008, 42(5): 1458-1464.
    [54]邢宝山,宋春雨,刘晓冰.土壤有机污染物非理想吸附研究的理论与方法[J].土壤与环境, 2002, 11(2): 144-151.
    [55] Werth C J, Reinhard M. Effects of Temperature on Trichloroethylene Desorption from Silica Gel and Natural Sediments. 1. Isotherms[J]. Environ Sci Technol, 1997, 31(3): 689-696.
    [56] Cheng H F, Reinhard M. Sorption of trichloroethylene in hydrophobic micropores of dealuminated Y zeolites and natural minerals[J]. Envion Sci Technol, 2006, 40(24): 7694-7701.
    [57] Aringhieri R. Nanoporosity characteristics of some natural clay minerals and soils[J]. Clay Miner, 2004, 52(6): 700-704.
    [58] Cheng S Y, Bryant R , Doerr S H, et al. Investigation of surface properties of soil particles and model materials with contrasting hydrophobicity using atomic force microscopy[J]. Environ Sci Technol, 2009, 43(17): 6500-6506.
    [59] Peterson M S, Lion L W, Shoemaker C A. Influence of vapor-phase sorption and diffusion on the fate of trichloroethylene in an unsaturated aquifer system[J]. Environ.Sci.Technol, 1988, 22(5): 571-578.
    [60] Chiou C T, Kile D E. Effects of polar and nonpolar groups on the solubility of organic compounds in soil organic matter [J]. Environ.Sci.Technol, 1994 28(6): 1139-1144.
    [61] Werth C J, Reinhard M. Effects of Temperature on Trichloroethylene Desorption from Silica Gel and Natural Sediments. 2.Kinetics[J]. Environ Sci Technol, 1997, 31(3): 697-703.
    [62] Nguyen T H, Goss K U, Ball W P. Polyparameter linear free energy relationships for estimating the equilibrium partition o organic compounds between water and the natural organic matter in soils and sediments[J]. Environ Sci Technol, 2005, 39(4): 913-924.
    [63] Zhu D Q, Pignatello J J. A concentration-dependent multi-term linear free energy relationship for sorption of organic compounds to soils based on the hexadecane dilute-solution reference state[J]. Environ Sci Technol, 2005, 39(22): 8817-8828.
    [64] Endo S, Grathwohl P, Haderlein S B, et al. LFERs for soil organic carbon-wate distribution coefficients(Koc) at environmentally relevant sorbate concentrations[J]. Environ SciTechnol, 2009, 43(9): 3094-3100.
    [65] Faria I R, Young T M. Comparing linear free energy relationships for organic chemicals in soils: effects of soil and solute properties[J]. Environ Sci Technol, 2010, 44(18): 6971-6977.
    [66] Holmén B A, Gschwend P M. Estimating sorption rates of hydrophobic organic compounds in iron oxide- and aluminosilicate clay-coated aquifer sands[J]. Environ Sci Technol, 1996, 31(1): 105-113.
    [67] Chiou C T, Shoup T D. Soil sorption of organic vapors and effects of humidity on sorptive mechanism and capacity[J]. Environ.Sci.Technol, 1985, 19(12): 1196-1200.
    [68] Shonnard D R, Bell R L, Jackman A P. Effects of nonlinear sorption on the diffusion of benzene and dichloromethane from two air-dry soils[J]. Environ.Sci.Technol, 1993, 27(3): 457-466.
    [69] Goss K U. Effects of temperature and relative humidity on the sorption of organic vapors on clay minerals[J]. Environ.Sci.Technol, 1993, 27(10): 2127-2132.
    [70] Kobayashi T, Shimizu Y, Urano K. Analysis of adsorption equilibrium of volatile chlorinated organic compounds to dry soil[J]. Journal of Hazardous Materials, 2004, B(108): 69-75.
    [71]施建平潘贤章.中国土种数据库. http://www.soil.csdb.cn/page/showItem.vpage?id=cn.csdb.soil.soiltype.soilClass/20# .2010.10.
    [72] United States Environmental Protection Agency. Method 5021: Volatile organic compounds in soils and other solid matrices using equilibrium headspace analysis[S]. 1996.
    [73]何余生,李忠,奚红霞,等.气固吸附等温线的研究进展[J].离子交换与吸附, 2004, 20(4): 376-384.
    [74] Mota J P B., Esteves I a a C. Multicomponent adsorption dynamics calculations employing adsorption potential and ideal adsorbed solution theories[C]. Charleston,SC: American Carbon Society, 24th Biennial conference. 764-765.
    [75] Ikuo A , Katsumi H , Mutsuo K , et al. Mechanism of adsorption on activated carbon in the liquid phase 2. Characteristic curve for adsorption on activated carbon in gas and liquid phases [J]. Nippon Kagaku Kaishi 1979, 7: 830-835.
    [76] Bering B P, Dubinin M M, Serpinsky V V. Theory of volume filling for vapor adsorption[J]. Journal of Colloid and Interface Science, 1966, 21(4): 378-393.
    [77] Dubinin M M, Stoeckli H F. Homogeneous and heterogeneous micropore structures in carbonaceous adsorbents[J]. Journal of Colloid and Interface Science, 1980, 75(1): 34-42.
    [78] Wood G O. Affinity coeffecients of the Polanyi/Dubinin adsorption isotherm equations :a review with compilations and correlations[J]. Carbon, 2001, 39: 343-356.
    [79] Dastgheib S A, Karanfil T. The effects of activated carbon physical and chemical characteristiocs on the adsorption energy and affinity coefficient of Dubinin-Raushkevich equation. http://acs.omnibooksonline.com/data/papers/2004_G019.pdf, 2004.
    [80] Stoeckli F, Lopez-Ramon M V, Hugi-Cleary D, et al. Micropore sizes in activated carbons determined from the Dubinin-Radushkevich equation[J]. Carbon, 2001, 39: 1103-1116.
    [81]马玉露部重太郎.日本火山灰土壤的粘土矿物特征[J].内蒙古民族大学学报(自然科学版), 2008, 23(3): 297-300.
    [82]郑喜坤,汪庆华,鲁安怀,等.浙江土壤矿物组成特征[J].地质通报, 2005, 24(8): 761-766.
    [83] Dubinin M M, Kadlets O. Adsorption of gases by microporous adsorbents. Communication 1. The nitrogen-microporous carbon adsorbent system[J]. Russian Chemical Bulletin, 1984, 33(3): 455-460.
    [84] Carmo A M, Hundal L S, Thompson Michael L. Sorption of hydrophobic organic compounds by soil materials:application of unit equivalent Freundlich coefficients[J]. Environ.Sci.Technol, 2000, 34(20): 4363-4369.
    [85] Shimizu Y, Takei N, Hayashi E, et al. Effects of solid trichloroethylene components vapor onto on the sorption of national solids[J]. Proc Environ Eng Res, 1994, 31: 347-358.
    [86] Karickhoff S W. Organic pollutant sorption in aquatic systems[J]. Journal of Hydraulic Engineering, 1984, 110(6): 707-735.
    [87] Mccarty P L, Reinhard M, Rittman Be. Trace organics in groundwater[J]. Envion Sci Technol, 1981, 15(1): 40-48.
    [88] Peng Dong Lin, Dural N H. Multicomponent adsorption of chloroform, carbon tetrachloride, and 1,1,1-trichloroethane on soils[J]. Journal of Chemical & Engineering Data, 1998, 43(3): 283-288.
    [89] Kenaga E E. Predicted bioconcentration factors and soil sorption coefficients of pesticides and other chemicals[J]. Ecotoxicol Environ Saf, 1980, 4(1): 26-38.
    [90] Karickhoff S W, Brown D S, Scott T A. Sorption of hydrophobic pollutants on natural sediments[J]. Water Res, 1979, 13(3): 241-248.
    [91] Baker James R, Mihelcic James R, Luehrs Dean C, et al. Evaluation of estimation methods for organic carbon normalized sorption coefficients[J]. Water Environment Research, 1997, 69(2): 136-144.
    [92] United States Environmental Protection Agency. Method 5000: Sample preparation for volatile organic compounds[S]. 1996.
    [93] Dincutoiu Iuliana, Gorecki Tadeusz, Parker Beth L. A novel technique for rapid extraction of volatile organohalogen compounds from low permeability media[J]. Envion Sci Technol, 2003, 37(17): 3978-3984.
    [94] State of Ohio Environmental Protection Agency. Technical guidance manual for ground water investigations. Chapter 11: Soil gas monitoring for site characterization[R]. Columbus, Ohio: Division of drinking and ground waters, 2008. 11-1.
    [95] Kobayashi T. Study of vapor extration method for purifying volatile chlorinatedorganic compounds contaminated soil.[D]. Ph.D thesis. Japan: Yokohama National University, June 2004.
    [96] Anderson W C. Innovative site remediation technology, volume 8: Vacuum vapor extraction[C]. Annapolis, Md: American Academy of Environmental Engineers, 1993.
    [97] Pavlostathis S G, Jaglal K. Desorptive behavior of trichloroethylene in contaminated soil[J]. Environ. Sci. Technol, 1991, 25(2): 274-279.
    [98] Culver T B, Hallisey S P, Sahoo D, et al. Modeling the desorption of organic contaminants from long-term contaminated soil using distributed mass transfer rates[J]. Envion Sci Technol, 1997, 31(6): 1581-1588.
    [99] Werth C J, Hansen K M. Modeling the effects of concentration history on the slow desorption of trichloroethene from a soil at 100% relative humidity[J]. Journal of Contaminant Hydrology, 2002, 54: 307-327.
    [100] Werth C J, Cunningham J A, Roberts P V, et al. Effects of grain-scale mass transfer on the transport of volatile organics throuch sediments 2. Column results[J]. Water Resources Research, 1997, 33(12): 2727-2740.
    [101] Cunningham J A, Werth C J, Reinhard M, et al. Effects of grain-scale mass transfer on the transport of volatile organics throuch sediments 1. Model development[J]. Water Resources Research, 1997, 33(12): 2713-2726.
    [102] Shah F H, Hadim H A, Korfiatis G P. Laboratory studies of air stripping of VOC-contaminated soils[J]. Journal of Soil contamination, 1995, 4(1): 1-16.
    [103] Riley R G, Szecsody J E, Sklarew D S, et al. Desorption behavior of carbon tetrachloride and chloroform in contaminated low organic carbon aquifer sediments[J]. Chemosphere, 2010, (79): 807-813.
    [104]孙铁珩,李培军,周启星.土壤污染形成机理与修复技术[M].北京:科学出版社, 2005: 2-3.
    [105]中国地质调查局.全国地下水污染调查评价工作进展. http://water.cgs.gov.cn/web/xmjz/xmjzy/dgxmjz/index.html. 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700