用户名: 密码: 验证码:
模拟降雨条件下非均质包气带中“三氮”迁移转化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水氮污染问题一直是广泛受到关注的问题,而包气带岩性、结构、厚度等在很大程度上影响氮污染物的入渗和降解,进而决定着地下水是否易受到污染及其污染程度。本文针对浅层地下水铵态氮污染较为严重的北京市东郊温榆河沿岸地区,通过一系列钻孔剖面,揭示了区内包气带中氮素的垂向分布特征;以含有细质地透镜体,粗细交错的非均质包气带结构为对象,通过室内砂箱模拟实验,就恒定模拟降雨强度下砂箱中水分运移、铵态氮污染及淋溶过程中氮素的迁移转化和富集分布规律进行了研究,主要得出以下结论:
     (1)钻孔氮素垂向分布特征研究表明,研究区9个钻孔铵态氮底部出现累积峰;硝态氮主要表现为表层(30cm)累积和中部含量高的单峰型两种分布类型;氮素分布与岩性无明显相关关系,推测可能是由于包气带粗细分层相互交错的结构影响了地表氮污染物在包气带中的迁移过程最终导致其分布的复杂化。
     (2)水分运移实验结果表明,粗细相间的非均质介质中存在水分绕流现象,粗细介质颗粒粒径差距越大,水分绕流越明显;同细砂层相比,亚粘土透镜体中含水率高达29%,说明亚粘土透镜体对水分的滞留能力大于细砂层;铵态氮连续穿透实验结果亦表明质地细密的亚粘土透镜体中铵态氮累积量较高,亚粘土透镜体对铵态氮和水分的滞留能力大于质地较粗的细砂层。
     (3)铵态氮间歇污染实验表明,历时23个周期89天基本达到吸附-硝化反硝化-吸附的稳定状态。包气带氮素的迁移和分布受介质的非均匀性影响明显,同野外氮素分布规律相似,砂箱上层土壤中硝态氮累积较多,铵态氮和亚硝态氮在砂箱深层土壤中得到累积,同时在上亚粘土透镜体的上下表面土壤中出现较明显的铵态氮和亚硝态氮累积;淋溶试验结果表明,历时9个周期出水氮素含量减少90%,模拟降雨对土层残留氮素具有显著的淋洗效应,而亚粘土透镜体的存在可阻滞氮素的下移。
     (4)氮平衡计算结果表明:出水淋失总氮量占进入系统总氮量的70%,反硝化损失氮量占进入系统总氮量的17%;本实验条件下硝化反应强烈,反硝化作用相对较弱,大部分氮素以铵态氮、硝态氮和亚硝态氮的形态随出水淋失。
Nitrogen pollution of groundwater has become a popular problem in the world, which has been posed a great risk to the drinking water supply. During the process of the contaminants infiltrate from land surface to the groundwater, the unsaturated zone soil texture, structure and thickness have large effects on the nitrogen transport and transformation, and then decide the possibility and degree of groundwater contamination. An area along Wenyu River was selected as the study area which is polluted to various extents of ammonium nitrogen in shallow groundwater. Soil samples were collected from a series of boreholes in unsaturated zone and the vertical distribution characters of nitrogen in the profiles were analyzed. Laboratory experiments with simulated rainfall were conducted using a sandbox to investigate the influence of unsaturated zone heterogeneous structure on the process of moisture transfer, nitrogen transport and transformation. The results were summarized as follows:
     (1) Vertical distribution characters of nitrogen in unsaturated zone profiles indicate that: An accumulation of ammonium nitrogen is found in the lower parts of 9 soil profiles in the study area; There are two main types of the residual nitrate nitrogen distribution: one was the accumulation of nitrate appeared in the surface soil, and the other was the peak value of nitrate concentration appeared in the middle of profile. The results have shown that no obvious relations between the distribution of nitrogen and the soil texture, which suggests that the soil strcture and layered-structure may have an effect on the nitrogen transport and transformation in the unsaturated zone and finally result in the complex of its distribution.
     (2) Experimental study on moisture transfer shows the preferential flow occurred in the heterogeneous unsaturated zone, and the difference between soil textures has great effect on preferential flow formation. Water content is 29% in the two clay lenses which suggests that the clay lenses keep more water than fine sand layer. Even in the breakthrough experiment, the distribution of ammonium nitrogen in the soil keeps the same characteristic with the soil water. Both experiments demonstrate that soil water and nitrogen are maintained at a higher level in the clay lenses.
     (3) Study on intermittent contamination of ammonium nitrogen reveals that the dynamic equilibrium of absorption and biodegradation is reached after 89 days. The unsaturated zone soil texture and layered-structure are very important to the nitrogen transport and transformation which lead to an accumulation of ammonium nitrogen and nitrite nitrogen in the upper surface of two sandy-clay interface. Nitrate nitrogen is accumulated in the topsoil while an accumulation of ammonium nitrogen and nitrite nitrogen is found in the sublayer soil. The leaching test suggests that nitrogen concentration in outflow were reduced more than 90 percent after 9 periods. Stimulated rainfall has a significantly effect on the leaching of nitrogen while the clay lenses can retard the transport of nitrogen.
     (4) In a study of nitrogen balance, it is found that total leaching losses of nitrogen and denitrification loss account for 70% and 17% respectively; It is also suggested that nitrification is intensity high and denitrification is comparatively weak in the simulated sandbox; Most of nitrogen is lost in outflow water in the forms of ammonium, nitrate and nitrite nitrogen.
引文
Aronsson H, Torstensson G, Bergstrom L. Leaching and crop uptake of N, P and K from organic and convertional cropping systems on a clay soil [J]. Soil Use and Management, 2007, 23:71-81
    Barkle G, Clough T, Stenger R. Denitrification capacity in the vadose zone at three sites in the lake taupo catchment, new zealand [J]. Australian Journal of Soil Research, 2007, 45(2):91-99
    Baver L.D.1972; Soil physics 4:343-345. John Wiley and Sons, New York
    Birkinshaw SJ, Ewen J. Nitrogen transformation component for SHETRAN catchment nitrate transport modeling [J]. Hydrol, 2000, 230:117-121
    Bravo-Garza MR, Bryan RB, Voroney P. Influence ofwetting and drying cycles and maize residue addition on the formation of water stable aggregates in Vertisols [J].Geoder-ma, 2009, 151: 150-156
    Compbell J H. Nonaqueous phase liquid flowthrough porous media:experimental study and conceptual sharp-front model development [J]. M. S. Thesis, Department of Civil Environemntal and Architectural Eng., University of Colorado, Boulder, CO, 1992, 179.
    Costa J L., Massone H., Martinez D., et al. Nitrate contamination of a ural aquifer and accumulation in the unsaturated zone[J].Agricultural Water Management, 2002,57(1) : 33-47
    Fierer N., Schimel JP. Effects of drying-rewetting frequency on soil carbon and nitrogen transformations [J].Soil Biology andBiochemistry, 2002, 34 :777-787
    Gaines T P., Gaines S T. Soil texture effect on nitrate leaching in soil percolates [J]. Communication Analysis, 1994, 25(13-14):2561-2570
    Gheysari M, Mirlatifi S M, Homaee M,et al. Nitrate leaching in a silage maize field under different irrigation and nitrogen fertilizer rates [J]. Agricultural Water Management, 2009, 96:946-954.
    Green M., Friedler E., Ruskol Y., et al. Investigation of alternative method for nitrification in constructed wetalnds [J ]. Wat. Sci. Tech., 1997, 35 (5): 63 -70
    Hoffmann M., Johnsson H., Gustafson A., et al. Leaching of nitrogen in Swedish agriculture-a historical perpective [J].Agriculture, Ecosystem sand Environment, 2000, 80:277-290
    Porro I P J., Wierenga R.G., Hills. Solute transport through large uniform and layered soil columns [J].Water Resources Research, 1993, 29:1321-1330
    Illangasekare T H, Ramsey J L, Karsten H J, et al. Experimental Study of Movement and Distribution of Dense Organic Contaminants in Heterogeneous Aaquifers [J]. Journal of Contaminant Hydrology, 1995, 20: 1-25
    James A, Tindall. Nitrate transport and transformation processes in unsaturated porous media [J]. Journal of hydrology, 1995, 169:51-94
    Joosten L T A, Buijze S T, Jansen D M. Nitrate in sources of drinking water Dutch drinking water companies aim at prevention [J]. Environ Pollut, 1998, 102:487-492.
    Kueper B H, Frind E O. Two-phase flow in heterogeneous porous media. 1. Model development [J]. Water Resour. Res., 1991, 27 (6): 1049-1057
    Kyllmar K, Martensson K, Johnsson H. Model-based coefficient method for calculation of N leaching from agricultural fields applied to small catchments and the effects of leaching reducing measures [J]. Hydrol, 2004:343-354
    Lüdemann H., Arth I., Liesack W. Spatial changes in thebacterial community structure along a vertical oxygen gradi-ent in flooded paddy soil cores [J].Applied and Environmental Microbiology, 2000, 66:754-762
    Mohammad N, Almasri, Jagath J, et al. Modeling nitrate contamination of groundwater in agricultural watersheds [J]. Journal of Hydrology, 2007, 343: 211-229
    Pantazidou M, Sitar N. Emplacement of nonaqueous liquids in the vadose zone[J]. Water Resources Research, 1993, 29(3): 705-722
    Pesaro M., Nicollier G., Zeyer J., et al. Impactof soildr-ying-rewetting stress on microbial communities and activi-ties and on degradation of two crop protection products [J]. Ap-plied and Environmental Microbiology, 2004,70: 2577-2587
    Schroth, Martin H., Istok, et al. Three-phase immiscible fluid move-ment in the vicinity of tex-tural interfaces [J]. Journal of Contaminant Hydrology, 1998, 32:1-23
    Schwille F. Dense chlorinated solvents in porous and fractured media [M]. Lewis, Chelsea. MI. 1988.
    Selim H M.Transport of reactive solutes during transint unsaturated water flow in multilayered soils [J]. Soil Science, 1978, 126(3):127-135
    Song Y, Deng SP, Acosta-MartínezV, et al.Character-ization of redox-related soilmicrobial communities along ariver floodplain continuum by fatty acid methyl ester (FAME) and 16S rRNA genes [J].Applied Soil. Ecology, 2008, 40:499-509
    Southwick L M., Willis G H., Johnson D C., et al. Leaching of nitrate,atrazine and metribuzinfrom sugarcane in southern Louisiana [J]. Environ Qual, 1995, 24:684-690
    Tanakas, Funaka S., Kaewkhongka T.N., et al. Nmineralization process of the surface soil sunder shifting cultivation in NorthernThailand [J].Soil Sci. Plant Nutr., 1998, 44 (4) :539-549
    Vuorenmaa J, Rekolainen S, Lepisto A, et al. Losses of nitrogen and phosphorus from agricultural and forest areas in Finland during the 1980s and 1990s[J]. Environmental Monitoring and Assessment, 2002, 76(2):13-248
    Wang Quanjiu, Shao Mingan, Robert Horton. Modified Green-Ampt models for layered soil infiltration and muddy water infiltration [J]. Soil Science, 1999, 164(7):445-453
    Zhou Liuzong, Selim H. M. Solute Transport in Layered Soils: Nonlinear and Kinetic Reactivity [J]. Soil Sci.Soc.Am.J, 2001, 65:1056-1064
    陈登美.生活污水土地处理过程中氮的迁移转化[D]:[硕士学位论文].贵阳:贵州师范大学,2008
    陈效民,潘根兴,沈其荣,等.太湖地区农田土壤中硝态氮垂直运移的规律[J].中国环境科学,2001,21(6): 481-484
    程东娟,赵新宇,费良军.膜孔灌灌施尿素条件下氮素转化和分布室内模拟试验[J].农业工程学报,2009,25(12):58-62
    董悦安,沈照理,钟佐焱.粗粒包气带结构对地下水氮污染影响的模拟实验研究[J].环境科学学报,1999,19(6):610-613
    董悦安,沈照理,钟佐焱,等.农田地区地下水氮污染和氮转化的实验研究[J].北京师范大学学报,2001,(2):199-204
    冯绍元,张瑜芳,沈荣开.非饱和土壤中氮素运移与转化试验及其数值模拟[J] .水利学报,1996,8:8-14
    冯绍元,张瑜芳,沈荣开.排水条件下饱和土中氮肥转化与运移模拟[J].水利学报,1995,3(6):16-22
    付玉芹,雷玉平,郑力.农田厚不饱和层硝态氮分布特征初探[J].干旱地区农业研究, 2006, 24(1):73-77
    高太忠,姜鑫,戚鹏,等.磁河流域污染物在包气带中赋存规律研究[J].城市环境与城市生态,2002,15(5):54-58
    韩用德,罗毅,于强,等.非均匀土壤剖面的Green-Ampt模型[J].中国生态农业学报,2001,9(1):31-33
    郝汉舟,靳孟贵,李瑞敏,等.重金属的土水分配行为研究-根际土壤溶液采样器的应用[J].土壤,2009,41 (4):577-582
    黄丽华,沈根祥,钱晓雍,等.砂质梨园和蔬菜地氮素流失及其影响因素研究[J].农业环境科学学报, 2008, 27(2):687-691
    黄绍敏,皇甫湘荣.土壤中硝态氮含量的影响因素研究[J].农业环境保护,2001,20(5):351-354 康银红.黄土塬灌区包气带NO3--N运移规律的试验研究[硕士学位论文].陕西杨凌:西北农林科技大学,2006
    雷杰,蔡万涛,刘曦,等.京郊地区施肥水平对露地菜田硝态N累积的影响[A].全国农业面源污染综合防治高层论坛论文集[C], 2008, 21(增刊): 81-84
    雷志栋,等.土壤水动力学.北京:清华大学出版社, 1988, 223-231
    李久生,杨风艳,栗岩峰.层状土壤质地对地下滴灌水氮分布的影响[J].农业工程学报, 2009, 25(7):25-31
    李世清,李生秀.半干旱地区农田生态系统中硝态氮的淋失[J].应用生态学报,2000,11(2):240-242
    李书绅,赵英杰,武清华,等.包气带中不同示踪源层条件下核素迁移对比试验[J].辐射防护, 2002,22(6):349-353
    李天安,王玉.不同剖面层次土壤磷素运移研究[J].土壤与环境, 2002,11(3):290-293
    李韵珠,胡克林.蒸发条件下粘土层对土壤水和溶质运移影响的模拟[J].土壤学报, 2004, 41(4):493-501
    李志萍,张金炳,屈吉鸿,等.污染河水中铵态氮对浅层地下水的影响[J].中国地质大学学报, 2004, 29(3):363-368
    刘翔,刘兆昌.氮对地下水的污染预测模型[J].环境科学,1991,12(6):8-11
    刘汉乐,周启友,徐速.非饱和带中非均质条件下LNAPL运移与分布特性实验研究[J]. 水文地质工程地质, 2006(5):52-57
    刘宏斌,李志宏,张云贵,等.北京市农田土壤硝态氮的分布与累积特征[J].中国农业科学, 2004, 37(05): 692-698
    刘宏斌,张云贵,李志宏,等.北京市平原农区深层地下水硝态氮污染状况研究[J]. 2005, 42(3):411-418
    刘明柱.氯代烃在浅层地下水中运移转化的数值模拟研究:[博士学位论文].北京:中国地质大学(北京),2002
    卢修元,魏新平,邱王月,等.粉粘土夹层对砂的减渗规律试验分析[J].水资源与工程学报,2009, 20(2):22-25
    鲁如坤.土壤植株营养学原理和施肥[M] .化学工业出版社,1998:121-123
    陆安祥,赵云龙,王纪华,等.不同土地利用类型下氮、磷在土壤剖面中的分布特征[J].生态学报,2007,27(9):3924-3929
    陆垂裕,杨金忠, N.Jayawardane,等.污水灌溉系统中氮素转化运移的数值模拟分析[J].水利学报, 2004,5:83-88
    倪余文,区自清,应佩峰.土壤优先水流及溶质优先迁移的研究[J].应用生态学报,2001,12(1):103-107
    倪余文,区自清.土壤优先水流及污染物优先迁移的研究进展[J].土壤与环境,2000,9(1):60-63
    潘宏雨.水文地质学基础.北京:地质出版社,2008,(1):27-28
    潘兴瑶,刘洪禄.基于GIS技术的北京通州区灌区生态需水研究[J].农业工程学报, 2007,23(2):42-46
    邱汉学,刘贯群,焦超颖.三氮循环与地下水污染-以辛店为例[J].青岛海洋大学学报, 1997, 27(4):533-538
    曲晨晓,王炜.土壤剖面中砂质夹层的储水作用及机理研究[J].华中农业大学学报,1997,16(5):349-356
    任理,秦耀东,王济.非均质饱和土壤盐分优先运移的随机模拟[J].土壤学, 2001,38(l):104-113
    任理,王济,秦耀东.非均质土壤饱和稳定流中盐分运移的传递函数模拟[J].水科学进展,2000,11(14):392-400
    阮晓红,王超,朱亮.氮在饱和土壤层中迁移转化特征研究[J].河海大学学报, 1996, 24(2):51-55
    芮孝芳.水文学原理[M].北京:中国水利水电出版社. 2004.
    邵明安,王全九,黄明斌.土壤物理学[M].北京:高等教育出版社. 2006.
    束善治,梁宏伟,袁勇.轻非水相液体在非均质地层包气带中运移和分布特征数值分析[J ].水利学报,2002,(11):31-37
    司友斌,王慎强,陈怀满.农田氮磷的流失与水体富营养化[J].土壤, 2000, 4:188-193
    孙志高,刘景双.三江平原典型小叶樟湿地土壤氮的垂直分布特征[J].土壤通报,2009,40(6):123-135
    同延安,石维,吕殿青,等.陕西三种类型土壤剖面硝酸盐累积、分布与土壤质地的关系[J].植物营养与肥料学报, 2005, 11(4):435-441
    汪志荣,王文焰.砂土夹层的阻水减渗机制及合理埋深[J].西安理工大学学报, 2000,16 (2):170-174
    王超.非饱和分层土壤中污染物迁移转化规律研究[J].河海大学学报,1998,26(1):59-65
    王超.氮污染物在土壤中迁移转化规律试验研究[J].水科学进展,1997,8(2):176-182
    王春颖,毛晓敏,赵兵.层状夹砂土柱室内积水入渗试验及模拟[J].农业工程学报,2010,26(11):61-67
    王大纯.水文地质学基础.北京:地质出版社,1986:15-16
    王丽.轻非水相液体污染土壤多相流实验研究:[硕士学位论文].西安:长安大学, 2009
    王禄,喻志平,赵智杰.人工快渗渗滤系统铵态氮去除机理[J].中国环境科学,2006, 26(4):500-504
    王全九,邵明安,郑纪勇.土壤中水分运动与溶质迁移[M].北京:中国水利水电出版社,2007
    王少平,俞立中,许世远,等.上海青紫泥土壤氮素淋溶及其对水环境影响研究[J].长江流域资源与环境, 2002, 11(6):554-558
    王文焰,王全九,沈冰,等.甘肃秦王川地区双层土壤结构的入渗特性[J].土壤侵蚀与水土保持学报, 1998, 4(2):36-40
    王文焰,张建丰,汪志荣,等.黄土中砂层对入渗特性的影响[J].岩土工程学报,1995,17(9):33-40
    王文焰,张建丰,汪志荣,等.沙层在黄土中的减渗作用及其计算[J].水利学报,2005,36(3):650-655
    王文焰,张建丰,汪志荣,等.砂层在黄土中的阻水性及减渗性的研究[J].农业工程学报,1995,11(3):104-110
    王文焰,张建丰,汪志荣.黄土中砂层对入渗特性的影响[J].岩土工程学报,1995,17(5):33-41
    王燕枫,李勇.低铵污水灌溉下土壤中硝化作用试验研究[J].江苏环境科技,2003,16(2):4-5
    王志明,江洪,姚来根,等.非饱和水在双层孔隙介质中渗流的定性实验[J].辐射防护,2003,23(1):8-13
    王志明,姚来根,江洪.双层孔隙介质中非饱和渗流的水势分布与变化[J].辐射防护2004,24(6):356-363
    吴耀国,王卫,王超,等.非饱和RBF中氮转化及其环境效应的实验研究[J].西北工业大学学报.2004,22(5):609-613
    习金根,周建斌,赵满兴,等.滴灌施肥条件下不同种类氮肥在土壤中迁移转化特性的研究[J].植物营养与肥料学报, 2004, 10(4):337-342
    习金根,周建斌.不同灌溉施肥方式下尿素态氮在土壤中迁移转化特性的研究[J].植物营养与肥料学报, 2003, 9(3):271-275
    徐谷明.北京“母亲河”温榆河危机[N].中国经济时报, 2005, 001:1-4
    谢华,王康,张仁铎,等.土壤水入渗均匀特性的染色示踪试验研究[J].灌溉排水学报,2007,26(1):1-4
    许峰,蔡强国,吴淑安.坡地农林复合系统养分过程研究进展[J].水土保持学报, 2000,14(1):83-87
    杨琳,黄介生,李大文等.控制排水条件下土壤氮素的运移[J].长江流域资源与环境, 18(11):1063-1066
    杨绒,周建斌,等.土壤中可溶性有机氮含量及其影响因素研究[J].土壤通报,2007,38(1): 15-18
    杨维,郭毓,王泳,等.铵态氮污染地下水的动态实验研究[J].沈阳建筑大学学报自然科学版. 2007, 23(5):826-831
    杨峰.北京市村镇分散水源地保护措施研究:[硕士学位论文].北京:中国地质大学(北京),2009
    杨胜科,王文科,李翔,等.水溶性污染物在土壤中转化的原位实验方法[J].西北地质, 2002, 141(2):19-23
    姚贤良,程之生,等编著.土壤物理学.北京:农业出版社,1986: 290-295
    尹澄清,毛战坡.用生态工程技术控制农村非点源污染[J].应用生态学报,2002,13(2):229-232
    袁新民,王周琼.硝态氮的淋洗极其影响因素[J].干旱区研究, 2000, 17(4):46-52
    曾宪竟,徐祝龄,杨培龄,等.黄河古道细质沙土水分性状的研究[J].中国农村水利水电(农田水利与小水电), 1996,4:29-31
    张春辉,裴元生.铵氮在大厚度包气带土层中迁移转化的数学模拟[J].甘肃环境研究与监测, 2001, 14(1):3-5
    张玉川.北京市通州区工程建设层地质建模与环境质量评价:[硕士学位论文].北京:中国地质大学(北京),2009
    赵彦琦,杨英.河道污染质垂向迁移对地下水影响的研究[J].环境污染与防治,2007,2(29):110-114
    赵勇胜.第三届“未来地下水资源危机”国际学术会议综述.世界地质, 2002,21(2):103-104
    赵玉安,王玉.娄土不同层次钾运移研究[J].西北农林科技大学学报,2003,11:37-39
    朱磊,周清,王康.土壤水非均匀流动网络特性实验[J].武汉大学学报(工学版), 2009,42(5):618-625
    朱霞,韩晓曾,乔云发,等.外加可溶性碳、氮对不同热量带土壤氨挥发的影响[J].环境科学.2009, 30(12):3465-3470
    朱兆良,文启孝.氮素管理与粮食生产和环境[J].土壤学报(增刊), 2002, 39:4-11
    朱兆良,文启孝.中国土壤氮素[M].南京:江苏科学技术出版社,1992:28-42
    朱兆良,文启孝.中国土壤氮素[M].南京:江苏科学技术出版社. 1992: 90, 267-287, 278, 213-249

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700