用户名: 密码: 验证码:
添加剂对钯纳米晶的形成及电催化性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料电池是一种适应未来能源和环境要求的理想电源,目前已经在交通工具、手机电源等行业示范性应用。然而新型燃料电池催化剂铂的昂贵价格是制约其产业化的主要障碍之一,因此,探讨如何降低催化剂的成本、提高催化剂的活性是该领域目前的研究热点。现在较成熟的办法是加入导电的碳材料作为载体,以减少金属的用量,然而碳载体的化学惰性不利于金属的负载,为此要用强酸氧化使其表面官能团化。但是强氧化过程引起的环境污染和对载体表面结构的破坏是其明显的缺点,这促使人们尝试加入有机添加剂,以便改善载体表面化学惰性,使金属催化剂均匀地负载在载体表面,提高催化剂的催化活性和利用率,但是这方面目前还缺乏系统的研究。
     本文用钯取代铂作催化剂,以碳纳米管为主要载体,通过加入三类系列变化的添加剂修饰碳载体,以及试用聚吡咯-C60复合载体,分别研究了它们对钯纳米晶的形貌、粒径以及用于甲酸、氢氧化的电催化性能的影响,并探讨了其影响规律。本论文的主要内容有以下几个方面:
     一、概述了燃料电池的研究现状、电极催化剂以及催化剂载体的研究进展,阐述了当前燃料电池催化剂研究存在的问题、本文的研究目的及研究内容。
     二、选用系列含-OH官能团的添加剂修饰多壁碳纳米管,所选添加剂主要有:HP-β-CD、壳聚糖、乙二醇、邻苯二酚等,分别代表了不同的结构类型。合成了金属钯纳米晶体,研究了添加剂对Pd纳米晶体的形貌、粒径及其对甲酸和氢氧化的电催化性能的影响。结果表明,在所选添加剂的作用下,钯纳米颗粒可以均匀地负载在碳纳米管表面,并且纳米颗粒的粒径和形貌受其结构影响。电催化性能的测试结果表明,在甲酸中活性顺序为:HP-β-CD>邻苯二酚>乙二醇>壳聚糖,在硫酸中活性顺序为:HP-β-CD>邻苯二酚>壳聚糖>乙二醇,我们从分子结构的角度,进一步讨论了这一顺序产生的原因。
     三、分别用柠檬酸钠、草酸钠、邻苯二甲酸和海藻酸钠等系列含-COOH官能团添加剂修饰碳纳米管作载体,合成了钯纳米晶体,并研究不同结构添加剂对钯纳米晶的形貌、粒径以及电催化活性的影响。结果表明,在以上几种含-COOH官能团添加剂的作用下,金属钯纳米颗粒分散性较好地负载在碳纳米管表面,并且均有进一步团聚成簇状结构的趋势。钯纳米晶体的粒径有以下顺序:柠檬酸钠≈草酸钠<邻苯二甲酸<海藻酸钠;在硫酸中的活性顺序为:柠檬酸钠>草酸钠>海藻酸钠>邻苯二甲酸;在甲酸中的活性顺序为:草酸钠>柠檬酸钠>海藻酸钠>邻苯二甲;稳定性顺序为:邻苯二甲酸>柠檬酸钠>海藻酸钠>草酸钠。我们讨论了该实验结果与添加剂结构的关系。
     四、分别用邻菲啰啉(phen)、聚吡咯(ppy)、聚苯胺(PANI)、乙二胺(en)等系列含N添加剂修饰碳纳米管作载体,合成了高分散性金属钯纳米结构晶体,并研究了不同结构添加剂对纳米晶体的形貌、粒径以及电催化活性的影响。结果表明,以phen或ppy为添加剂时,可以得到高分散金属钯纳米小颗粒,并且催化剂活性明显提高。为了进一步改善催化剂的活性,又以ppy-C为复合载体,以新制备纳米钴颗粒为模板,通过表面置换,在常温下分别合成了Pd/ppy-XC-72和Pd/ppy-MWCNTs纳米空壳结构催化剂,并且对它们的电化学性能进行了表征,结果表明这种空壳结构催化剂对甲酸氧化有很好的电催化性能。
     五、分别以ppy、HP-β-CD、柠檬酸钠为添加剂修饰载体C60作为一种新型复合载体,并在载体表面均匀沉积了钯纳米晶体,研究了不同结构添加剂对纳米晶体的形貌、粒径以及电催化活性的影响。结果表明,不同官能团修饰载体C60可以得到不同形貌催化剂:ppy修饰C60时,在载体表面形成粒径均一、高分散的纳米小颗粒;后两种添加剂修饰C60时,则形成由小颗粒组成的纳米簇状结构。不同添加剂作用下金属钯纳米晶粒径大小顺序为:ppyHP-β-CD>柠檬酸钠,即:催化剂Pd/ppy-C60的活性最好,这可能与ppy的导电性和含氮结构有关。
     六、对上述研究结果进行归纳总结,探讨了三类不同添加剂和载体对钯纳米晶的形貌、粒径及电催化性能的影响规律。结果表明,含N官能团添加剂修饰载体时有利于金属颗粒的分散性;含-COOH,-OH官能团的添加剂修饰载体时,金属小颗粒容易聚集成纳米簇状结构;小分子添加剂有利于提高催化剂的活性,但是长链大分子或含苯环的添加剂有利于提高催化剂的稳定性。
Fuel cell is a kind of ideal power source to suit for the future energy and environmental requirements, and its prospective application involves clean power generation, transportation,space navigation. However, low oxidation activity of formic acid and high cost of Pt-based catalysts are the major drawbacks to limit the DFAFC’s practical application. Therefore, considerable efforts have been focused on the exploration of less expensive, more abundant non-platinum catalysts with enhanced performance. In the preparation of catalysts on the supports, one of the significant challenges is how to deposit metal nanoparticles uniformly on the surface of them due to their inherent inertness. In order to anchor and deposit catalyst nanoparticles on the surface of the supports, we modified the surface of support, which could increase the electrocatalytic activity and utilization ratio of catalyst.
     Pd catalyst was found to possess superior performances in formic acid oxidation compared with Pt-based catalysts. In addition, as the amount of Pd is much more abundant on the earth than that of Pt, it is considered as substitute of Pt for catalyst in DFAFC. Surface modification of carbon supports was carried out by many kinds of additives with different functional groups, such as N element, hydroxyl (–OH), carboxyl (–COOH) groups. Their influence on the catalysts’morphology, partical size and the electrical properties was studied. The main contents of the thesis are following:
     Firstly, not only the current research of the fuel cell , the progress of catalyst and catalyst support were given, but also the current questions about the fuel cell catalyst, objective and the main research contents of this paper were described in detail.
     Secondly, MWCNTs modified with -OH functional groups of different additives were used as composite supports for synthesizing nanostructured palladium catalysts for formic acid oxidation. The selected additives contain HP-β-CD, Chitosan, Glycol, Catechol and so on. And the influence of the additives on the catalysts’morphology, partical size and the electrical properties was studied. The results suggest that palladium nanoparticles can be deposited on the surface of MWCNTs, and have the trendency to further reunion to cluster-like structures at the presence of the -OH functional groups. The activity order of palladium catalyst in H2SO4 is as follows: HP-β-CD > catechol > Chitosan > ethylene glycol. And the activity for formic acid oxidation is in sequence as follows: HP-β-CD > catechol > ethylene glycol > chitosan. Furthermore, the reason of activity order was discussed from the perspective of the molecular structure.
     Thirdly, sodium citrate, sodium oxalate, phthalate and sodium alginate were used as additives to modified MWCNTs, all of which contain -COOH functional groups. Then the formed compositions were used as supports of nanostructured palladium catalysts for formic acid oxidation. The influence of different structured additives on the catalyst morphology, particle size and electrocatalytic activity were studied. The results suggest that on the effect of the -COOH functional groups, palladium nanoparticles can be deposited on the surface of MWCNTs, and have the trendency to further reunion to cluster-like structures. The order of the particle size is as follows: sodium citrate≈sodium oxalate < phthalate < sodium alginate; the activity order: citrate > oxalate > sodium alginate > phthalate; and stability order: phthalate > citrate > sodium alginate > oxalate.
     Fourthly, we prepared highly dispersed palladium nanostructured catalyst with MWCNTs as supports, which was modified by the phen, ppy, PANI, en etc, respectively. The influence of the additives on the catalysts’morphology, partical size and the electrical properties was studied. The results showed that the palladium nanoparticles were well-dispersed on the surface of MWCNTs with a relatively narrow particle size distribution at the presence phen or ppy, and the electrocatalytic activity increased significantly. On this basis, to further improve the catalytic activity, we prepared hollow nanospheres catalyst Pd/ppy-XC-72 and Pd/ppy-MWCNTs. In the preparation progress, Co nanoparticles as sacrificial templates were deposited on the prepared polypyrrole-carbon composites by chemical reduction, and then Pd hollow nanospheres formed through the surface replacement reaction between the surface of Co nanoparticles and PdCl2 at room temperature. The catalysts of hollow structure Pd showed a very high electrochemically-active surface area and significant increase in electrocatalytic activity towards formic acid oxidation, which make them the preferable catalysts for direct formic acid fuel cells (DFAFC).
     Fifthly, the composite of additive-modified C60 was introduced as a new type of support of nanostructured palladium catalysts for formic acid oxidation. The additives included ppy, HP-β-CD and sodium citrate. The influence of different structured additives on the catalyst morphology, particle size and electrocatalytic activity were studied. The results show that the functionalized C60 composite support can control the particle size and increase dispersivity, and different functional groups can lead to different morphology. The uniform and well-dispersed Pd nanoparticles can be obtained on ppy-modified C60, while the Pd nanocluster catalysts were prepared at the presence of HP-β-CD or sodium citrate. The results were consistent with that with MWCNTs as support. The order of the particle size is as follows: ppy HP-β-CD > sodium citrate. Furthermore, because of the special structure and strong adsorption capacity to metal, the C60 may increase the metal loading. Therefore, the ppy-C60 catalyst may be a kind of more promising catalyst. The electrocatalytic activity of the as-prepared Pd/ppy-C60 catalysts for the oxidation of formic acid is much higher than those of others, showing that the ppy-C60 may be a better potential candidate to be used as the supports of catalyst for electrochemical oxidation.
     Sixthly, we summarized the above studies to explore the influence law of different additives and supports on the formation and catalytic properties of the catalysts.
引文
[1]衣宝廉.燃料电池一原理技术运用[M].化学工业出版社,2004: 1-2.
    [2]毛宗强.氢能——21世纪的绿色能源[M].化学工业出版社,2004: 1-2.
    [3]汪继强.电源技术[J]. 1995, 19 (4): 38.
    [4] Hogarth M.P., Hards G. A., Direct methanol fuel cell [J]. Platinum Metals Rev. 1996, 6: 44-46.
    [5] M. Eikerling, A. S. Loselevich, A. A. Kornyshev., How good are the Electrodes we use in PEFC [J] Fuel Cell 2004, 4: 131-140.
    [6] Ralph T R.Clear fuel cell energy for today.[J]Platinum Metal Rev. 1999,43(z):14-17.
    [7]衣宝廉.燃料电池一原理技术运用.化学工业出版社,2004: 160-161.
    [8]朱科.质子交换膜燃料电池Pt/C电催化剂和膜电极的研究.天津.天津大学. 2005.
    [9]林维明.燃料电池系统.北京:化学工业出版社,1996.
    [10]于景荣,邢丹敏,刘富强等.燃料电池用质子交换膜的研究进展.电化学,2001,7(4):385-395.
    [11] Mehta V,Cooper J S. Review and analysis of PEM fuel cell design and manufract Uring. J.Power Source,2003, 114: 32-53.
    [12] Shukla A K, Raman R.K., Choudhury N.A., Priolkar K.R., Sarode P.R., Enlura S., Kumashiro R., Carbon-supported Pt-Fe alloy as a methanol-resistant oxygen-reduetion catalyst for direct methanol fuel cells. J.Eleetroanaly,Chem.,2004,563(2):181-190
    [13] Menieol B.D., Rand D.A., Williams K.R., Direct methanol-air fuel cells for road transportation. J power Sources,1999,83: 11-31
    [14] Zhou W.J., Zhou B.; Li W.Z.: Zhou Z.H.; Song S.Q., Sun G.Q., Xin Q., Douvartzides S, Goula M., Tsiakaras P., Performance comparison of low-temperature direct aleohol fuel cells with different anode catalysts. J.PowerSourees,2004,126:16-22.
    [15] Jeng K.T., Chen C.W., Modeling and simulation of a direct methanol fuel cell anode. J Power Sources. 2002, 112: 367-375
    [16] Rajesh B., Karthik V., Karihikeyan S., Ravindranathan K.T., Bonard J.M., Viswanathan B.P, Pt-WO3 supported on carbon nanotubes as Possible anodes for direct methanol fuel cells.J.Fuel,2002, 81:2177-2190
    [17]唐亚文.直接甲醇质子交换膜燃料电池阳极催化剂的研究.硕士学位论文. 2002.
    [18] Li W.Z., Zhou W.J., Li H.Q., Zhou Z.H., Zhou B., Xin Q., Nano-structured Pt-Fe/C as cathode catalyst in direct methanol fuel cell. Eleetrochim.Acta. 2004, 49: 1045-105.
    [19] Ren X.M, Zelenay P., Thomas S., Davey J., Gottesfeld S., Recent advances in direct Methanol fuel cells at Los Alamos National Laboratory. J.Power Sources.2000,86: 111-116
    [20] Trieoli V., Proton and methanol transport in Poly(Perfluorosulfonote) membranes containing Cs+ and H+ cations. J.Electrochem.soc.1998, 145: 3798-3502
    [21]陆天虹.直接醇类燃料电池—一种可能最早商品化的燃料电池. J.科学中国人,2005,l: 51
    [22] Capon A., Parsons R, The oxidation of formic acid at noble metal electrodes:1. Review of Previous work. J.Eletronanal.Chem. 1973, 44:l-7.
    [23]王新,直接甲酸燃料电池中炭载Pd及Pd基复合阳极催化剂的研究.南京师范大学,2008.
    [24] Rice C, Ha S, Masel R I, etal. Direct formic acid fuel cells[J]. J Power Sources 2002, 111: 83–86.
    [25] Rice C., Ha S., Masel,R.L., WieCkowski A., Catalysts for direct formic fuel cells. J.Power Sources. 2003,115:229-235.
    [26] Zhu Y, Ha S Y, Masel R I. High power density direct formic acid fuel cells[J]. J Power Sources 2004, 130: 8–14.
    [27]袁青云,唐亚文,周益明等.甲酸作直接甲醇燃料电池替代燃料[J].应用化学2005, 22(9): 929-932.
    [28] Pavese A.G, Solis V.M., Comparative investigation of formic acid and formaldehyde oxidationon Palladium particle by a rotating ring-disc eleetrode and on-line mass spectroscopy in acidic solutions.[J]. J.Eleetroanal.Chem. 1991,301:117
    [29] Yu X W, Pickup P G. Recent advances in direct formic acid fuel cells (DFAFC) [J] J Power Sources 2008, 182: 124–132.
    [30] Samjeske G, Miki A, Ye Sh, et al. Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy[J]. J. Phys. Chem. B 2006, 110: 16559-16566.
    [31] Zhou W P, Lewera A, Larsen R, et al. Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid[J]. J. Phys. Chem. B 2006, 110: 13393-13398.
    [32] Chen Y X, Heinen M, Jusys Z, et al. Bridge-bonded formate: active intermediate or spectator species in formic acid oxidation[J]. Langmuir 2006, 22, 10399-10408
    [33]侯中军,俞红梅,衣宝廉等,质子交换膜燃料电池阳极抗C0催化剂的研究进展,电化学,2000,6(4):379一387
    [34]陈延禧,电解工程,天津:天津科学技术出版社,1993:44-48.
    [35] Rice C, Ha S, Masel R I, etal. Direct formic acid fuel cells[J]. J Power Sources 2002, 111: 83–86.
    [36] Zhu Y, Ha S Y, Masel R I. High power density direct formic acid fuel cells[J]. J Power Sources 2004, 130: 8–14.
    [37]袁青云,唐亚文,周益明等.甲酸作直接甲醇燃料电池替代燃料[J].应用化学2005, 22(9): 929-932.
    [38] Kunz; Harold Russell December 17, 1976. Method formaking a fuel cell electrode usp4054687
    [39] Prabhuram J, Zhao T S, et al. Synthesis and physical/electrochemical characterisation of Pt/C nanocatalyst for polymer electrolyte fuel cells. J. Power Sources. 2004∶134∶1 - 6
    [40] Ye S,Vijh A K,Dao L H, et al, J NewMaterials for Electrochemical Systems, 1998∶1∶17
    [41] Ye S, ZhengyuW, et al. Int Symp On NewMaterials for Fuel Cell andModern Battery Systems, Montreal, Canada: July 9 - 10, 1997∶756
    [42] Maruyama J, Abe I, Cathodic oxygen reduction at the catalyst alyer formed from Pt / carbon with adsorbed water, J Electroanalytical Chemistry, 2003, 545∶109-115.
    [43] Lufrano F., Passalacqua E., Squadrito G. Patti A., and Giorgi L., Improvement in the diffusion characteristics of low Pt-loaded electrodes for PEFCs [J]. J. Appl. Electrochem. 1999, 29: 445-457.
    [44] Giorgi L., Antolini E., Pozio A. Passalacqua E., Influence of the PTFE content in the diffusion layer of low-Pt loading electrodes for polymer electrolyte fuel cells [J]. Electrochim. Acta 1998, 43: 3675-3680.
    [45] Antolini E., Passos R. R., Ticianelli E. A., Effects of the cathode gas diffusion layer characteristics on the performance of polymer electrolyte fuel cells [J]. J. Appl. Electrochem. 2002, 32: 383-392.
    [46] Bock C., Blakely M. A., MacDougall B., Characteristics of adsorbed CO and CH3OH oxidation reactions for complex Pt/Ru catalyst systems [J]. Electrochim. Acta 2005, 50: 2401-2408.
    [47] Choi J. H., Park K. W., Park I. S., Nam W. H., Sung Y. E., Methanol electro-oxidation and direct methanol furel cell using Pt/Rh and Pt/Ru/Rh alloy catalysts [J]. Electrochim. Acta 2004, 50: 787-792.
    [48] Ureta-Zanatu M. S., Montenegro M., Zagal J. H., Methanol electro-oxidation on Pt-Rh alloys in acid medium [J]. Boletin de La Sociedad Chilena De quimica 2001, 46: 209-215.
    [49] Gokagac G., Leger J. M., Hahn F., Behaviour of bimetallic Pt-Pd carbon supported catalysts in methanol electrooxidation [J]. Zeitchrift Fur Naturforschung Secton B– a Journal of chemical sciences. 2003, 58: 423-432.
    [50] Ishikawa Y., Liao M. S., Cabrera C. R., Energentics of H2O dissociation and COads+OHads reaction on a series of Pt-M mixed metal clusters: a relativistic density-functional study [J]. Sur. Sci. 2002, 513: 98-110.
    [51] Park K. W., Choi J. H., Lee S. A., Pak C., Chang H. Sung Y. E., PtRuRhNi nanoparticles electrocatalyst for methanol electrooxidation in direct methanol fuel cell [J]. J. Cata. 2004, 224: 236-242.
    [52] Bai Z Y, Yang L, Zhang J Sh, er al. High-efficiency carbon-supported platinum catalysts stabilized with sodium citrate for methanol oxidation [J]. J Power Sources 2010, 195: 2653–2658.
    [53] Naohara H, Yoshimoto T, Toshima N. Platinum nanoparticles protected by a perfluorinated sulfonic acid copolymer: preparation, nano-network formation and electrocatalytic activity[J]. J Power Sources 2010, 195: 1051–1053.
    [54] Lu G Q., Crown A., Wieekowski.A. Formic Aeid Decomposition on Polyerystalline Platinum and Palladized Platinum Eleetrodes,J.Phys.Chem.B. 1999,103(44):9700-9711.
    [55] Bartlett P.N.; Marwanw J, The effect of surface species on the rate of H sorption into nanoStructured Pd. Phys.Chem.Chem.Phys. 2004, 6(11): 2895-259.
    [56] Arenz M., Stamenkovic V., SehmidtT.J., WandeltK., RossP.N.:MarkovieN.M, The eleetro-oxidationof formic aeid on Pt-Pd single crystal bimetallic surfaces. Physical Chemistry Chemieal Physies,2003,5(19):4242-4251
    [57] Arenz M.;Stamenkovic V., Schmidt T J.; Wandelt K., RossP.N., Markovie N.M, The Oxygen Reduction Reaction on Thin Palladium Films Supported on a Pt(111) Eleetrode. J.Phys.Chem B,2003,107(36):9813-9819.
    [58] Weber M, Wang J T, Wasmus S, etal. Formic acid oxidation in a poiymer electrolyte fuel cell[J]. J. Electrochem. Soc. 1996, 143(7): L158-L160.
    [59] Rice C, Ha S, Masel R I, etal. Direct formic acid fuel cells [J]. J Power Sources 2002, 111: 83–86.
    [60] Rice C, Ha S, Masel R I etal. Catalysts for direct formic acid fuel cells[J]. J Power Sources 2003, 115: 229–235.
    [61] Ha S, Adams B, Masel R I. A miniature air breathing direct formic acid fuel cell[J]. J Power Sources 2004, 128: 119–124.
    [62] Zhu Y, Ha S Y, Masel R I. High power density direct formic acid fuel cells[J]. J Power Sources 2004, 130: 8–14.
    [63]袁青云,唐亚文,周益明等.甲酸作直接甲醇燃料电池替代燃料[J].应用化学2005, 22(9): 929-932.
    [64] Miesse C M, Jung W S, Jeong K J, et al. Direct formic acid fuel cell portable power system for the operation of a laptop computer[J]. J Power Sources 2006, 162: 532–540.
    [65] Kim H S, Morgan R D, Gurau B, etal. A miniature direct formic acid fuel cell battery[J]. J Power Sources 2009, 188: 118–121.
    [66]徐群杰,周小金,李巧霞等.直接甲酸燃料电池阳极催化剂的研究进展[J].上海电力学院学报2009, 225(5): 453-456.
    [67] Zhou W P, Lewera A, Larsen R, Masel R I, Bagus P S, Wieckowski A, Size Effeets in Electronic and Catalytic Properties of Unsupported Palladium Nanopartieles in Electrooxidation of Formic Aeid. J.Phys.Chem.B.; 2006: 110(27):1339-13398
    [68] Ha S., Larsen R., Masel,R. I., Performance charaeterization of Pd/C nanocatalyst for direct formic acid fuel cells. J. of Power Sources. 2005, 144(l): 28-34
    [69] Zhang X.G., Arikawa T., Murakami Y., Yahikozawa K., Takasu Y, Eleetroeatalytic oxidation of formic acid on ultrafine Palladium Partieles a glassy carbon. EleetroehimieaAeta , 1995 ,40(12):1889-1897
    [70]周全,张存中,陆晓林,吴仲达.镀Pd的GC电极上HCOOH的电催化氧化.电化学,2000,6(3):329-334.
    [71] Zhu Y.M., Khan A., Masel R.I, The behavior of Palladium catalysts in direct formic acid fuel cells. J. Power Sources. 2005,139: 15-20.
    [72] Bowker M., Stone,P., Bennett R., Perkins N, Formic acid adsorption and decomposition on TiO2 (110) and on Pd/TiO2 (110) model catalysts. Surface Science. 2002, 511: 435-448.
    [73] Kibler L.A., El-Aziz A.M., Kolb D.M., Eleetroehemical of pseudomorphic overlayers: Pd on Au(111). Joumal of Moleeular Catalysis A:Chemieal. 2003, 199: 57-63.
    [74] ZhangL.L., Tang Y.W., Bao J.C., Lu T.H, Li C. A carbon-supported Pd-P catalyst as the anodic catalyst in a direct formic acid fuel cell. Joumal of Power Sources,2006,162:177-179.
    [75] Zhang L, Lee K Ch, Zhang J J. Effect of synthetic reducing agents on morphology and ORR activity of carbon-supported nano-Pd–Co alloy electrocatalysts[J]. Electrochimica Acta 2007, 52: 7964–7971.
    [76] Yu X W, Pickup P G. Novel Pd–Pb/C bimetallic catalysts for direct formic acid fuel cells[J] J Power Sources 2009, 192: 279–284.
    [77] Serov A, Nedoseykina T, Shvachko O, et al. Effect of precursor nature on the performance of palladium–cobalt electrocatalysts for direct methanol fuel cells[J]. J Power Sources 2010, 195: 175–180.
    [78] Wang H, Xu Ch W, Cheng F L, et al. Pd/Pt core–shell nanowire arrays as highly effective electrocatalysts for methanol electrooxidation in direct methanol fuel cells[J]. Electrochem Commun 2008, 10: 1575–1578.
    [79] Alonso-Vante N, Tributsch H. Energy conversion catalysis using semiconducting transition metal cluster compounds. Nature, 1986, 323: 431~432.
    [80] Reeve R W, Christensen P A, Hamnett A, et al. J. Electrochem. Soc., 1998, 145(10): 3463~3471.
    [81] Solorza, K Ellmer, M Giersig et al. Novel low-temperature synthesis of semiconducting transition metal chalcogenide electrocatalyst for multielectron charge transfer: molecular oxygen reduction. Electrochimica Acta, 1994, 39(11~12): 1647~1653.
    [82] Martin Alves M. C. ,Dodelet J. P. , Guay D. , et al, Origin of the electrocataly + tic properties for O2 reduction of some heat-treated polyacrylonitrile and phthalocyanine cobalt compounds adsorbed on carbon biack as p robed by electrochemisty and X - ray absorp tion spectroscopy, J. Phys Chem. , 1992∶96∶10898
    [83] Lalande G. , Tamizhmani G, Cote R. et al, Infiuence of loading on the activity and stability of heat - treated carbon - supported cobalt phthalocyanine electrocatalysts in solid polymer electrolyte frel cells, J. Electrochem. Soc. , 1995∶142∶1162
    [84] Lalande G. , Cote R. , Tamizhmani G. et al, Physical, chemical and electrochemical characteriation of heat - treated tetracarboxylic cobalt phthalocyanine adsorbed on carbon black as electrocatalyst for oxygen reduction in polymer deectrolyte fuel cells, Electrochinmica Acta. , 1995∶40∶2635- 2646
    [85] Faubert G, Lalande G, Cote R. et al, Heat - treated iron and cobalt tearaphenylporphyrins adsorbed on carbon black: physical characterization and catalytic p roperties of these materials for the reduction of oxygen in polymer electrolyte fuel cells, Electrochimica Acta, 1996∶41∶1689– 1911.
    [86] wiesener K, Ohms D, Neumann V, et al. N4 - macrocycles as electrocatalysts for the cathodic reduction of oxygen. Materials chemistry and Physics, 1989, 22(3-4): 457~475.
    [87] Breen J M, O’Grady W E, Saciety D E et al. Extended Abstracts, 87-1(The Electrochemical society, Pennington, NJ, 1987): 146~152.
    [88] Wingerden B V, Van Veen J A R, Mensih C T J. J. Chem. Soc. Faraday Trans. 1, 1988, 84(1): 64~74.
    [89] Scherson D A, Gupta S L, Fierro C et al. Cobalt tetramethoxyphenyl porphyrin—emission Mossbauer spectroscopy and O2 reduction electrochemical studies. Electrochimica Acta, 1983, 28(9): 1205~1209.
    [90] Faubert G, Lalande G, CǒtéR. Heat-treated iron and cobalt tetraphenylporphyrins adsorbed on carbon black: Physical characterization and catalytic properties of these materials for the reduction of oxygen in polymer electrolyte fuel cells. Electrochimica Acta, 1996, 41 (10): 1689~1701.
    [91] Lalande G, CǒtéR, G Tamizhmani et al. Physical, chemical and electrochemical characterization of heat-treated tetracarboxylic cobalt phthalocyanine adsorbed on carbon black as electrocatalyst for oxygen reduction in polymer electrolyte fuel cells. Electrochimica Acta, 1995, 40(16): 2635~2646.
    [92] Lalande G, Tamizhmani G, Cote R et al. J. Electrochem. Soc., 1995, 142(4): 1162~1168.
    [93]王广建,柳荣展,常俊石.新型催化剂-碳化钼和碳化钨的现状和展望.青岛大学学报,2001, 16(3): 51~53.
    [94] Oyama S T. Preparation and catalytic properties of transition metal carbides and nitrides. Catalysis Today, 1992, 15(2): 179~200.
    [95]魏昭彬,张耀军.催化新材料氮化钼和碳化钼的新进展.化学通报,1996, (2): 17~19.
    [96] Oyama S T, Schlatter J C. Ind. Eng. Chem. Res.,1988, 27(9): 1639~1653.
    [97]顾军,隋升,李光强等.燃料电池中氢电极催化剂的研究.燃料化学学报,1999, 27(3): 282~285.
    [98]钟和香,张华民,张建鲁,衣宝廉.低温燃料电池中的非铂催化剂.化学通报,2006, 69: 1-7..
    [99] Kawamuro G, Okamoto H, Ishikawa A et al. Tungsten molybdenum carbide for electrocatalytic oxidation of methanol. J. Electrochem. Soc., 1987, 134 (7): 1653~1658.
    [100] Burstern G T, McIntyre D R, Vossen A et al. Relative activity of a base catalyst toward electro-oxidation of hydrogen and methanol. Electrochemical and Solid - State Letters, 2002, 5(4): A80~A83.
    [101] Barnett C J, Burstein G T, J Kucernak A R. Electrocatalytic activity of some carburised nickel, tungsten and molybdenum compounds. Electrochimica Acta, 1997, 42 (15): 2381~2388.
    [102] Lee K, Ishihara A, Mitsushima S et al. Stability and electrocatalytic activity for oxygen reduction in WC plus Ta catalyst. Electrochimica Acta, 2004, 49(21): 3479~3485.
    [103] Mcintyre D R, Vossen A, Wilde J R. Electrocatalytic properties of a nickel-tantalum-carbon alloy in an acidic electrolyte. J. Power Sources, 2002, 108(1): 1~7.
    [104] Binder H, Levy R B. Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis. Science, 1973, 181(4099): 547~549.
    [105] Cathey W N, Nicks L J, Bauer D J. US, Bur. Mines, Rep. Invest., 1979.
    [106] Deng Z C, Dignam M J. Sputtered Cobalt-Carbon-Nitrogen Thin Films as Oxygen Reduction Electrocatalysts. J. Electrochem. Soc., 1998, 145(10): 3507~3512.
    [107] Deng Z C, Dignam M J. Sputtered cobalt-carbon-nitrogen thin films as oxygen reduction electrocatalysts - II. Electrochemical stability and proposed mechanism. J. Electrochem. Soc., 1998, 145(10): 3513~3520.
    [108] Bradford R L, Ronald J S, Turner A J et al. Electrocatalyst materials for fuel cells based on the polyoxometalates [PMo(12-n)VnO40]((3+n)-) (n=0-3) Electrochimica Acta, 2005, 50(5): 1169~1179.
    [109] Lalande G, CǒtéR, Guay D et al. New Mater. Fuel Cell Mod. Battery Syst. II, Proc. Int. Symp., 2nd, 1997: 768~777.
    [110]赵宏滨.聚吡咯/碳作为催化剂载体在甲醇燃料电池中的应用研究上海交通大学.博士学位论文.2009.
    [111]李春丽.一种新型催化剂载体的研制.武汉理工大学,2003
    [112] Zhang L, Lee K Ch, Zhang J J. Effect of synthetic reducing agents on morphology and ORR activity of carbon-supported nano-Pd–Co alloy electrocatalysts[J]. Electrochimica Acta 2007, 52: 7964–7971.
    [113] Bai Z Y, Yang L, Li L,et al. A Facile Preparation of Hollow Palladium Nanosphere Catalysts for direct formic Acid fuel cell[J]. J. Phys. Chem. C 2009, 113: 10568–10573.
    [114] SuoY G, Hsing I M. Size-controlled synthesis and impedance-based mechanistic understanding of Pd/C nanoparticles for formic acid oxidation[J]. Electrochimica Acta 2009, 55: 210–217.
    [115] Wg J Y, Kang Y Y, Yang H, et al. Boron-doped palladium nanoparticles on carbon black as a superior catalyst for formic acid electro-oxidation[J]. J. Phys. Chem. C 2009, 113: 8366–8372.
    [116] Kazuaki Y., Yasuo N., The deposition of ultrafine platinum particles on carbon black by surface ion exchange—increase in loading amount [J]. Mater. Chem. Phys. 2003, 82: 921-928.
    [117] Guo J. W., Zhao T. S., Prabhuram. J.,Wong C. W., Preparation and the physical electrochemical properties of a Pt/C nanocatalyst stabilized by citric acid for polymer electrolyte fuel cells [J]. Electrochim. Acta 2005, 50: 1973-1983.
    [118] Zhu Y M, Khan Z, Masel R I, The behavior of palladium catalysts in direct formic acid fuel cells[J]. J Power Sources 2005,139: 15-20.
    [119] Ge J J, Xing W, Xue X Zh, et al. Controllable synthesis of Pd nanocatalysts for direct formic acid Fuel cell (DFAFC) application: from Pd hollow nanospheres to Pd nanoparticles[J]. J. Phys. Chem. C 2007, 111: 17305-17310
    [120] SuoY G, Hsing I M. Size-controlled synthesis and impedance-based mechanistic understanding of Pd/C nanoparticles for formic acid oxidation[J]. Electrochimica Acta 2009, 55: 210–217.
    [121] Iijima S. Helical microtubes of graphitic carbon [J].Nature, 1991, 354:56.
    [122] Zhao X.S, Li W, Jiang L H, et al. Multi一wall carbon nanotube supported Pt-Sn nano particles as an anode catalyst for the direct ethanol fuel cell[J].Carbon 2004, 42(15): 3263-3265.
    [123] Matsumoto T, Komatsu T, Nakano H, et al. Efficient usage of highly dispersed Pt on carbon nanotubes for electrode catalysts of polymer electrolyte fuel cells[J]. Cata.Today. 2004 90(3-4); 277-281.
    [124] Li W Z, Liang C H, Qiu J S, et al.Carbon nanotubes as support for cathode catalyst of a direct methano1 fue1 cell[J].Carbon.2002, 40(5):791一794.
    [125] Karousis N, TsotsouG E, Evangelista F,et al. Carbon nanotubes decorated with palladium nanoparticles: synthesis, characterization, and catalytic activity[J]. J. Phys. Chem. C 2008, 112, 13463–13469.
    [126] Liao S J, Holmes K A, Tsaprailis H, et al. High Performance PtRuIr catalysts supported on carbon nanotubes for the anodic oxidation of methanol[J]. J. AM. CHEM. SOC. 2006, 128: 3504-3505.
    [127] Shao Y Y, Yin G P, Wang J J, et al. Multi-walled carbon nanotubes based Pt electrodes prepared with in situ ion exchange method for oxygen reduction[J]. J Power Sources 161 (2006) 47–53.
    [128] Acosta D M, Garcia J L, Godinez L A. Development of Pd and Pd–Co catalysts supported on multi-walled carbon nanotubes for formic acid oxidation[J]. J Power Sources 2010, 195: 461–465.
    [129] Bambagioni V, Bianchini C, Marchionni A, et al. Pd and Pt–Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol =methanol, ethanol, glycerol)[J]. J Power Sources 2009,190: 241–251.
    [130] Zhang S X, Qing M, Zhang H, et al. Electrocatalytic oxidation of formic acid on functional MWCNTs supported nanostructured Pd–Au catalyst[J]. Electrochem Commun 2009,11: 2249–2252.
    [131] Liu B, Li H Y, Die L, et al.Carbon nanotubes supported PtPd hollow nanospheres for formic acid electrooxidation[J]. J Power Sources 186 (2009) 62–66.
    [132] Shen Y, Xu Q, Gao H, et al. Dendrimer-encapsulated Pd nanoparticles anchored on carbon nanotubes for electro-catalytic hydrazine oxidation[J]. Electrochemistry Communications 2009, 11: 1329–1332.
    [133]李文震,周振华,周卫江,李焕巧,赵新生,汪国雄,孙公权,辛勤.直接甲醇燃料电池阴极催化剂的制备与表征.催化学报.2003,24:465-470.
    [134] Wang M H, Woo K D, Kim D K. Preparation of Pt nanoparticles on carbon nanotubes by hydrothermal method [J]. Energy Conersion and Management, 2006, 47:3235-3240
    [135] Guo D J, Li H L. Electrocatalytic oxidation of methanol on Pt modified single-walled carbon nanotubes [J]. J Power Source, 2006, 160: 44-49.
    [136] Wu G, Li L, Li J H, etal. Methanol electrooxidation of Pt nanoparticles dispersed into PANI/SWNT composite films [J]. J Power Source, 2006, 155: 118-127.
    [137] Liu Y G, Feng X M, Shen J M, et al. Fabrication of a novel Glucose biosensor based on a highly electroactive polystyrene/polyaniline/Au nanocomposite[J]. J. Phys. Chem. B 2008, 112: 9237–9242.
    [138] Gu M M, Zhang J J, Li Y, et al. Fabrication of a novel impedance cell sensor based on the polystyrene/polyaniline/Au nanocomposite[J]. Talanta 2009, 80: 246–249.
    [139] Bae H B, Ryu J H, Byun B S, et al. Facile synthesis of novel Pt–Ru@PPy–MWNT electrocatalysts for direct methanol fuel cells[J]. Current Applied Physics doi:10.1016/j.cap.2009.11.039.
    [140] Reddy A L M, Rajalakshmi N, Ramaprabhu S. Cobalt-polypyrrole-multiwalled carbon nanotube catalysts for hydrogen and alcohol fuel cells. Carbon. 2008, 4 6: 2–11.
    [141] Joo S H, Choi S J, Oh I, et al. Ordered nanoporous arrays of carbon supporting high dispersions ofplatinum nanoparticles [J]. Nature, 2001,412: 169-172.
    [142] Yu J S, Kang S, Yoon S B, et al. Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter [J]. J Am Chem Soc, 2002,124:9382-9383.
    [143] Baker W S, Long J W, Stroud R M, et al. Sulfur-functionalized carbon aerogels: a new approach for loading high-surface-area electrode nanoarchitectures with precious metal catalysts [J]. J Non-Crystalline Solids. 2004,350: 80-87.
    [144]张宁,朱红,康晓红,等.直接甲醇燃料电池用碳气凝胶载铂催化剂的研究[J].化工时刊. 2006,4:9-11.
    [145] Smirnova A, Dong X, Hara H, et al. Novel carbon aerogel-supported catalysts for PEMFC application [J].Int. J. Hydro. Energy. 2005, 30: 149-158.
    [146]尹诗斌,木士春,潘牧,袁润章.低温燃料电池用催化剂载体的研究.电池工业.2007,12:281-284.
    [147] Liu Y G, Feng X M, Shen J M, et al. Fabrication of a novel Glucose biosensor based on a highly electroactive polystyrene/polyaniline/Au nanocomposite[J]. J. Phys. Chem. B 2008, 112: 9237–9242.
    [148] Gu M M, Zhang J J, Li Y, et al. Fabrication of a novel impedance cell sensor based on the polystyrene/polyaniline/Au nanocomposite[J]. Talanta 2009, 80: 246–249.
    [149] Naohara H, Yoshimoto T, Toshima Ni. Shape-controlled Pd nanostructure catalysts for highly efficient electrochemical power sources[J]. J Power Sources 2010, 195: 1051–1053.
    [150] Hull R V, Li L, Xing Y Ch,et al.Pt Nanoparticle Binding on Functionalized Multiwalled Carbon Nanotubes Chem. Mater. 2006, 18: 1780-1788.
    [151] Wu B H, Hu D, Kuang Y J,et al. Functionalization of carbon nanotubes by an ionic-liquid polymer: Dispersion of Pt and PtRu nanoparticles on carbon nanotubes and their electrocatalytic oxidation of methanol[J]. Angew. Chem. Int. Ed. 2009, 48: 4751–4754.
    [152] Lee Ch L, Ju Y C, Chou P T. Preparation of Pt nanoparticles on carbon nanotubes and graphite nanofibers via self-regulated reduction of surfactants and their application as electrochemical catalyst Electrochem Commun 2005, 7: 453.
    [153] Wang X M, Xia Y Y. Synthesis, characterization and catalytic activity of an ultrafine Pd/C catalyst for formic acid electrooxidation[J]. Electrochimica Acta 2009, 54: 7525–7530.
    [154] Liao Sh J, HolmesK A, Tsaprailis H,et al. High Performance PtRuIr Catalysts Supported on Carbon Nanotubes for the Anodic Oxidation of Methanol[J]. J. AM. CHEM. SOC. 2006, 9: 3504-3505.
    [155] Saha M S, Li R Y, Sun X L.High loading and monodispersed Pt nanoparticles on multiwalled carbon nanotubes for high performance proton exchange membrane fuel cells[J]. Journal of Power Sources 2008, 177: 314–322.
    [156] Tsang S C, Chen Y K, Harris P J F, etal. A simple chemieal method of opening and filling carbon nanotubes [J]. Nature, 1994, 372: 159-162.
    [157] Wu H Q, Wei X W, Shao M W, etal. Synthesis of copper oxide nanoparticles using carbon nanotubes as templates [J]. Chem.Phys.Lett. 2002, 364:152-156.
    [158]唐亚文,包建春,周益明,杨辉,邢巍,陆天虹,无机化学学报,2003,19(8):905.
    [159] Biro L P,Khanh N Q,Vertesy Z,et a1.Catalyst traces and other impurities in chemically purified carbon nanotubes grown by CVD. [J] Mat.Sci.Eng.C. 2002, 19: 9-l3
    [160] Jiang Q,Qu M Z,Zhang B L,et a1.Preparation of activated carbon nanotubes [J]. Carbon. 2002,40:2743-2745
    [161]刘博,刘云芳,迟伟东,沈曾民,胡琳.不同碱和酸处理对碳纳米管结构和形貌的影响.炭素技术. 2OO8 27:1-6
    [162] Jiang L Q,Gao L.Modified carbon nanotubes:an effective way to selective attachment of gold nanoparticles [J].Carbon,2003,41:2923-2929
    [163] Sun.J,Gao L.Development of a dispersion process for carbon nanotubes inceramic matrix by heterocoagulatioa [J].Carbon,2003,41:1063·1068.
    [164]胡长员.碳纳米管功能化及其负载非晶态NiB合金催化剂的加氢性能研究.南昌大学.博士学位论文. 2006
    [165] Tsnag S C, ChenY K, Green M L,etal. A simple chemical method of opening and filling carbon nanotubes [J]. Nature. 1994, 372: 159-162.
    [166] Lgae R M, Tsnag S C,Green M L,etal. Filling carbon nnaotubes with small palldaium metal cyrstallites: the effect of surface acid groups [J]. Chem.Commu. 1995, 1355-1356.
    [167] Hiura H, Ebbesen T W, Tanigaki K. Opening and purification of carbon nanotubes in high yields,Adv. Mater. 1995, 7: 275-276.
    [168] Hsin, Y. L.; Hwang, K. C.; Yeh, C. T. J. Am. Chem. Soc. 2007, 129, 9999.
    [169] Ding, W.; Eitan, A.; Fisher, F. T.; Chen, X.; Dikin, D. A.; Andrews, R.; Brinson, L. C.; Schadler, L. S.; Ruoff, R. S. Nano Lett. 2003, 3, 1593.
    [170] Jiang, K.; Eitan, A.; Schadler, L.S.; Ajayan, P.M.; Siegel, R.W.; Grobert, N.; Mayne, M.; Terrones, H.; Terrones, M. Selective attachment of gold nanoparticles to nitrogen-doped carbon nanotubes. Nano Letters. 2003, 3: 275–277.
    [171] Cao C H, Li J L., Jia Z J, New Carbon Mater. (Chinese) [J] , 2004, 19 (2):137~140
    [172]华丽,胡长员,李凤仪,乙二胺功能化处理CNTs对NiB/CNTs催化剂性能的影响分子催化,2006,20:240-244.
    [173] Chen R J,Zhang Y G,Wang D W,et a1.Noneovalent sidewall Functionalization of single-walled carbon nanotubes for protein immobilization [J].J.Am.Chem.Soc.2001,123:3838-3839.
    [174] Ou, Y. Y.; Huang, M. H. High-density assembly of goldnanoparticles on multiwalled carbon nanotubes using 1-pyrenemethylamine as interlinker. J. Phys. Chem. B 2006, 110, 2031.
    [175] Yang, D. Q.; Sacher, E. Interaction of evaporated nickel nanoparticles with highly oriented pyrolytic graphite: Back-bonding to surface defects, as studied by X-ray photoelectron spectroscopy. J, Phys. Chem. B 2005, 109, 19329-19334.
    [176] Wang, S. Y.; Wang, X.; Jiang, S. P. Polyelectrolyte functionalized carbon nanotubes as a support for noble metal electrocatalysts and their activity for methanol oxidation. Nanotechnology. 2008, 19, 265601.
    [177] Wang, S. Y.; Wang, X.; Jiang, S.P. PtRu Nanoparticles Supported on 1-Aminopyrene-Functionalized Multiwalled Carbon Nanotubes and Their Electrocatalytic Activity for Methanol Oxidation Langmuir 2008, 24, 10505-10512
    [178] Sharma R. K., Zhai L. Multiwall carbon nanotube supported poly (3,4-ethylenedioxy thiophene)/ manganese oxide nano-composite electrode for super-capacitors. Electrochimica Acta. 2009, 54: 7148–7155
    [179] Yang S.D., Zhang X.G., Mi, H.Y., Ye X.G. Pd nanoparticles supported on functionalized multi-walled carbon nanotubes (MWCNTs) and electrooxidation for formic acid. Journal of Power Sources. 2008,175: 26–32.
    [180] Wang D L, Lu, S F, Jiang S P. Pd/HPW-PDDA-MWCNTs as effective non-Pt electrocatalysts for oxygen reduction reaction of fuel cells. Chem. Commun. 2010, 46: 2058–2060
    [181] Chan K. Y., Ding J., Ren J., Cheng S., Tsang K. Y., Supported mixed metal nanoprticles as electrocatlysts in low temperature fuel cells [J]. J. Mater. Chem. 2004, 15: 505-516.
    [182]李俊.直接甲醇燃料电池催化剂及系统集成技术研究.厦门大学.博士学位论文.2005.
    [183] Zhou Z. H., Wang S. L., Zhou W. J., Wang G. X., Jiang L. H., Li W. Z., Song S. Q., Liu J. G., Sun G. Q., Xin Q., Novel synthesis of highly active Pt/C cathode electrocatalyst for direct methanol fuel cell [J]. Chem. Comm. 2003, 3: 394-395.
    [184] Zhou Z. H., Zhou W. J., Wang S. L.,Wang G. X., Jiang L. H., Li H. Q., Song S. Q., Liu J. G., Sun G. Q., Xin Q., Preparation of highly active 40wt.% Pt/C cathode electrocatalysts for DMFC via different routes [J]. Cata. Today 2004, 93: 523-528.
    [185] Kim T., Park J. N., Lee W. H., Preparation of platinum-based electrode catalysts for low temperature fuel cell [J]. Cata. Today 2003, 87: 237-245.
    [186] Bock C., Paquet C., Couillard M., Botton G. A., MacDougall B. R., Size-selected synthesis of PtRu nano-catalysts: reaction and size control mechanism [J]. J. Am. Chem. Soc. 2004, 126: 8028-8037.
    [187] Pozio A., Silva R. F., Francesco D. M., Cardelini F., Giorgi L., A novel route to prepare stable Pt-Ru/C electrocatalysts for polymer-electrolyte fuel cell[J]. Electrochim. Acta 2002, 48: 255-262.
    [188] Liu Z. L., Lee J. Y., Chen W. X., Han M., Gan L. M., Physical and electrochemical characterizations of microwave-assisted polyol preparation of carbon-supported PtRu nanoparticle [J]. Langmiur 2004, 20: 181-187.
    [189] Liu Z. L., Ling X. Y., Su X. D., Lee J. Y., Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell [J]. J. Phy. Chem. B 2004, 108: 8234-8240.
    [190] Chen W. X., Liu Z. L., Su X. D., Preparation of Pt-Ru nanoparticles supported on carbon nanotubes by microwave-assisted heating polyol process [J]. Mater. Lett. 2004, 58: 3166-3169.
    [191] Yang B., Lu Q. Y., Wang Y., Zhuang L., Lu J., Liu P. Simple and low-cost preparation method forhighly dispersed PtRu/C catalysts [J]. Chem. Mater. 2003, 15: 3552-3557.
    [192] Verde Y., Alonso G., Ramos V., Zhang H., acobson A. J., Keer A., Pt/C obtained from carbn with different treatments and (NH4)2PtCl6 as Pt precursor [J]. App. Cata. A– Gen. 2004, 277: 201-207.
    [193] Kawaguchi T., Sugimoto W., Murakami Y., Takasu Y., Particle growth behavior of carbon-supported Pt, Ru, PtRu catalysts prepared by an impregnation reductive-pyrolysis method for direct methanol fuel cell anodes [J]. J. Cata. 2005, 229: 176-184.
    [194] Deivaraj T. C., Lee J. Y., Preparation of carbon-supported PtRu nanoparticles for direct methanol fuel cell applicatons– A comparative study [J]. J. Power Source 2005, 142: 43-49.
    [195] Bonnemann H., Brinkmann R., Britz P., Endruschat U., Mortel R., Paulus U. A. , Feldmeyer G. J., Schmidt T. J., Gasteiger H. A., Behm R.J. Nanoscopic Pt-bimetal colloids as precursors for PEM fuel cell catalysts [J]., J. New Mater. Electrochem. Sys. 2000, 3: 199-206.
    [196] Prabhuram J., Wang X., Hui C. L., Hsing I. M., Synthesis and characterization of surfactant-stabized Pt/C nanocatalysts for fuel cell applications [J]. J. Phy. Chem. B 2003, 107: 11057-11064.
    [197] Tang Z. C., Geng D. S., Lu G. X., Size-controlled synthesis of colloidal platinum nanoparticles and their activity for the electrocatalytic oxidation of carbon monoxide [J]. J. colloid Interface Sci. 2005, 287: 159-166.
    [198] Guo J. W., Zhao T. S., Prabhuram. J.,Wong C. W., Preparation and the physical electrochemical properties of a Pt/C nanocatalyst stabilized by citric acid for polymer electrolyte fuel cells [J]. Electrochim. Acta 2005, 50: 1973-1983
    [199] Sarma L. S., Lin T. D. Tsai Y. W., Chem J. M., Hwang B. J., Carbon-supported Pt-Ru catalysts prepared by Nafion stabilized alcohol-reduction method for application in direct methanol fuel cells [J]. J. Power Source 2005, 139: 44-54.
    [200] Petrow H. G., Finely particulated colloidal platinum compound and sol for producing the same, and method of preparation of fuel cell electrodes and the like employing the same [P], U.S. Pat. No. 4,044,193.
    [201] Huang J S, Hou H Q, You T Y. Highly efficient electrocatalytic oxidation of formic acid by electrospun carbon nanofiber-supported PtxAu100-x bimetallic electrocatalyst[J]. Electrochem Commun 2009, 11: 1281–1284.
    [202] Park I S, Lee K S, Choi J H, et al. Surface structure of Pt-modified Au nanoparticles and electrocatalytic activity in formic acid electro-oxidation[J]. J. Phys. Chem. C 2007, 111: 19126-19133.
    [203] LinY H, Cui X L. Platinum/Carbon Nanotube Nanocomposite Synthesized in Supercritical Fluid as Electrocatalysts for Low-Temperature Fuel Cells[J]. J. Phys Chem B 2005, 109: 14410-14415.
    [204] Zaragoza-Mart′?n F, Sope?na-Escario D, Morall′on E, et al. Pt/carbon nanofibers electrocatalysts for fuel cells Effect of the support oxidizing treatment[J]. Journal of Power Sources 2007, 171: 302–309.
    [205] Kim Y S, Nam S H, Shim H S, et al. Electrospun bimetallic nanowires of PtRh and PtRu with compositional variation for methanol electrooxidation[J]. Electrochem Commun 2008, 10: 1016–1019.
    [206] Zhang X., Chan K. Y., Microemulsion synthesis and electrocatalystic properties of platinum-cobaltnanoparticles [J]. J. Mater. Chem. 2002, 12: 1203-1206.
    [207] Zhang X., Chan K. Y. Water-in-oil microemulsion synthesis of platinum-ruthenium nanoparticle, their characterization and electrocatalytic properties [J]. Chem. Mater. 2002, 15: 451-459.
    [208] Liu Z., Lee J., Han M., Chen W., Gan L., Synthesis and characterization of PtRu/C catalysts from microemulsions and emulsions [J]. J. Mater. Chem. 2002, 12: 2453.-2458.
    [209] Ge J J, ZhangY W, Liu Ch P, et al. Hydrogen vanadate as an effective stabilizer of Pd nanocatalysts for formic acid electroxidation [J]. J. Phys. Chem. C 2008, 112: 17214–17218.
    [210] Alden L R, Han D K, Matsumoto F, et al. Intermetallic PtPb nanoparticles prepared by sodium naphthalide reduction of metal-organic precursors: electrocatalytic oxidation of formic acid[J]. Chem. Mater. 2006, 18: 5591-5596A
    [211] Wang L, Guo Sh J, Zhai J F, et al. Facile Synthesis of platinum nanoelectrocatalyst with urchinlike morphology[J]. J. Phys. Chem. C 2008, 112: 13372–13377
    [212] Wang Sh Y, Kristian N, Jiang S,et al. Controlled deposition of Pt on Au nanorods and their catalytic activity towards formic acid oxidation[J]. Electrochemistry Communications 2008, 10: 961–964
    [213] Kazuaki Y., Yasuo N., The deposition of ultrafine platinum particles on carbon black by surface ion exchange—increase in loading amount [J]. Mater. Chem. Phys. 2003, 82: 921-928.
    [214] Toebes M. L., Vander L. M. K., Tang L. M., Bitter J. H., De Jong K. P., Preparation of carbon nanofiber supported platinum and rithenum catalysts: comparison of ion adsorption and homogeneous deposition precipitation [J]. J. Phy. Chem. B 2004, 108: 11611-11619.
    [215] Deivaraj T. C., Chen W., Lee J. Y., Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol [J]. J. Mater. Chem. 2003, 13: 2555-2560.
    [216] Zhao H B, Li L, Yang J, et al. Co@Pt–Ru core-shell nanoparticles supported on multiwalled carbon nanotube for methanol oxidation[J]. Electrochemistry Communications 2008, 10: 1527–1529.
    [217] Pozio A, Francesco M D, Cemmi A, et al. Comparison of high surface Pt/C catalysts by cyclic voltammetry[J]. J Power Sources 2002, 105: 13–19.
    [218] Wang Z B, Yin G P, Zhang J, et al. Investigation of ethanol electrooxidation on a Pt–Ru–Ni/C catalyst for a direct ethanol fuel cell[J]. J Power Sources 2006, 160: 37–43.
    [219] Frakowiak E, DelPeux S, Jurewiez K, etal. Enhanced capacitance of carbon nanotubes through chemical activation. Chem Phys Lett. 2002, 361: 35-41.
    [220] Pifiero R E, Amor6s C D, Solano A L, etal. High surface area carbon nanotubes prepared bychemical activation[J]. Carbon. 2002, 40: 1597-1617.
    [221] Jiang Q, Qu M Z,Zhang B L,etal. Preparation of activated carbon nanotubes[J]. Carbon. 2002, 40: 2743-2745.
    [222]杨美华.非晶态NiB/CNTs合金催化剂性能的研究.南昌大学硕士学位论文,2004.
    [223]刘博,刘云芳,迟伟东,沈曾民,胡琳.不同碱和酸处理对碳纳米管结构和形貌的影响.碳素技术. 2008,27:1-6.
    [224] Li W, Liang C , Xin Q , et al. Preparation and characterization of multiwalled carbon nanotubesupported platinumfor cathode catalysts of direct methanol fuel cells [J]. J Phys Chem B, 2003, 107 (26) :6292– 6299.
    [225]马跃辉,王炜,俞丹,何瑾馨.壳聚糖负载纳米Pd活化膜的原位生成及催化作用.印染. 2008,14:9-13.
    [226] Chen G, Xia D G, Nie Z R, Wang Z Y, Wang L, Zhang L, and Zhang J J. Facile Synthesis of Co-Pt Hollow Sphere Electrocatalyst. Chem. Mater. 2007, 19: 1840-1844.
    [227] Guo S J, Fang Y X, Dong S J, and Wang E K. High-Efficiency and Low-Cost Hybrid Nanomaterial as Enhancing Electrocatalyst: Spongelike Au/Pt Core/Shell Nanomaterial with Hollow Cavity. J. Phys. Chem. C 2007, 111: 17104-17109.
    [228] Sun Z P, Zhang X G, Liang Y Y, Li H L. Highly dispersed Pd nanoparticles on covalent functional MWNT surfaces for methanol oxidation in alkaline solution. Electrochemistry Communications. 2009, 11: 557–561.
    [229] Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M. A metal-free polymeric photocatalyst for hydrogen production from water undervisible light. Nature Materials. 2009, 8 (1): 76-80.
    [230] Wang X C, Chen X F, Thomas A, Fu X Z, Antonietti M. Metal-Containing Carbon Nitride Compounds: A New Functional Organic–Metal Hybrid Material. Adv. Mater. 2009, 21: 1609-1612.
    [231] Wang Z B, Yin G P, Zhang J, et al. Investigation of ethanol electrooxidation on a Pt–Ru–Ni/C catalyst for a direct ethanol fuel cell[J]. J Power Sources 2006, 160: 37–43.
    [232] Jiang S J, Ma Y W, Jian G Q, Tao H S, Wang X Z, Fan Y N, Lu Y N, Hu Z and Chen Y. Facile Construction of Pt–Co/CNx Nanotube Electrocatalysts and Their Application to the Oxygen Reduction Reaction. Adv. Mater. 2009, 21: 4953-4956.
    [233] Bashyam, R.; Zelenay, P. A class of non-precious metal composite catalysts for fuel cells. Nature. 2006, 443, 63-66.
    [234] Oliveira M M, Zarbin A J G. Carbon Nanotubes Decorated with both Gold Nanoparticles and Polythiophene. J. Phys. Chem. C 2008, 112 (48): 18783-18786.
    [235] Wen, Z. H.; Liu, J.; Li, J. H. Core-Shell Pt-C Nanoparticles Embedding in Mesoporous Carbon as Methanol Tolerant Cathode Catalyst in Direct Methanol Fuel Cell Adv. Mater. 2008, 20: 743-747.
    [236] Chen, M. H.; Gao, L. Synthesis and characterization of Ag nanoshells by a facile sacrificial template route through in situ replacement reaction. Inorg. Chem. 2006, 45: 5145-5149.
    [237] Wang X M, Xia Y Y. Synthesis, characterization and catalytic activity of an ultrafine Pd/C catalyst for formic acid electrooxidation[J]. Electrochimica Acta 2009, 54: 7525–7530.
    [238] Lin Y H, Cui X L.Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells[J]. J. Phys. Chem. B 2005, 109: 14410-14415.
    [239] Lin Y H, Cui X L. PtRu/carbon nanotube nanocomposite synthesized in supercritical fluid: A novel electrocatalyst for direct methanol fuel cells[J]. Langmuir 2005, 21: 11474-11479.
    [240] Joo S H, Choi S J, Oh I, eta1. Ordered nanoporous arrays of carbon supporting high dispersions ofplatinum nanoparticles [J]. Nature 2001, 412: 169-172.
    [241] Kroto H W, Heath J R, O’Brien S C, Curl R F and Smalley R E. C60: buckminsterfullerene. Nature (London), 1985, 318: 162–163.
    [242] Ohno T R, Chen Y, Harvey S E, Weaver J H, Haufler R E and Smalley R E. C60 bonding and energy-level alignment on metal and semiconductor surfaces. Phys. Rev. B, 1991, 44: 13747-13755.
    [243] Roth C, Hussain I, Bayati M, Nichols R J and Schiffrin D J. Fullerene-linked Pt nanoparticle assemblies. Chem. Commun, 2004, 13, 1532-1533.
    [244] Kuzume A, Herrero E, Feliu J M, Nicholsa R J and Schiffrin D J. Fullerene monolayers adsorbed on high index gold single crystal surfaces. Phys. Chem. Chem. Phys. 2004, 6: 619– 625.
    [245] Lee G H, Shim J H, Kang H, Nam K M, Song H and Park J T. Monodisperse Pt and PtRu/C60 hybrid nanoparticles for fuel cell anode catalysts. Chem. Commun, 2009, 33:5036–5038.
    [246] Liu F J, Huang L M, Wen T C, Gopalan A, Large-area network of polyaniline nanowires supported platinum nanocatalysts for methanol oxidation. Synthetic Metals, 2007, 157, 651–658.
    [247] Milla′na W M, Thompsona T T, Arriagab L G, Smita M A, Characterization of composite materials of electroconductive polymer and cobalt as electrocatalysts for the oxygen reduction reaction. Int. J. Hydrogen Energy, 2009, 34, 694-702.
    [248] Pieta P, Grodzka E, Winkler K, Warczak M, Sadkowski A, Zukowska G Z, Venukadasula G M,| D’Souza F and Kutner W. Conductive, Capacitive, and Viscoelastic Properties of a New Composite of the C60-Pd Conducting Polymer and Single-Wall Carbon Nanotubes. J. Phys. Chem. B 2009, 113, 6682–6691.
    [249] Yuan X X, Zeng X, Zhang H J, Ma Z F and Wang C Y. Improved Performance of Proton Exchange Membrane Fuel Cells with p-Toluenesulfonic Acid-Doped Co-PPy/C as Cathode Electrocatalyst.JACS, 2010, 132: 1754–1755.
    [250] Selvaraj V and Alagar M. Pt and Pt-Ru nanoparticles decorated polypyrrole/multiwalled carbon nanotubes and their catalytic activity towards methanol oxidation. Electrochem Commun, 2007, 9: 1145-1153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700