用户名: 密码: 验证码:
映射法求解非线性系统模型解析解的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
波动是自然界中最常见的现象之一,波动问题遍及物理学、数学、力学、光学、化学、生物学、地理学、通信工程、机械工程、航空和航天技术等自然科学和技术的各个领域。随着科学技术水平的提高,人们发现自然科学和工程技术各个领域中普遍存在各自的非线性现象。许多非线性现象可用非线性系统的数学模型——非线性波动方程(即:非线性演化方程)来描述。人们通过求解这些非线性演化方程,寻找其解析解来揭示出各种非线性现象的奥秘和内在规律,为人类认识自然和改造自然服务。本学位论文的研究内容是改进和发展各种映射法,把它们用于各类非线性偏微分方程和随机偏微分方程的研究中,找出更多新的解析解。主要的工作如下:
     改进了椭圆方程映射法,并被我们用于(1+1)-维变系数Sawada-Kotere方程的研究中,获得了许多新的Jacobian椭圆函数多项式的解和双曲函数多项式的解,包括了单种Jacobian椭圆函数的多项式形式的解,单种双曲函数的多项式形式的解,两种Jacobian椭圆函数混合的多项式形式的解,两种双曲函数混合的多项式形式的解,不仅有实函数表达式解,而且有复函数表达式解。改进了变系数投影Riccati方程映射法,并被用于(2+1)-维简化的广义的Broer-Kaup系统研究中,文献(Huang DJ, Zhang HQ. Chaos, Solitons & Fractals2005;23:601)的方法仅是我们方法的一个特例,我们的方法不仅能获得被Huang方法得到的所有解析解,而且还有许多新的解析解。广义的Broer-Kaup系统解的范围也从实数集扩张到复数集。
     借助Exp-函数法,找到了广义Riccati方程的一个有理指数函数解,这个有理指数函数解包含现有各种Riccati方程映射法中给出的所有类型Riccati方程的各种类型的三角函数解和双曲函数解。为此,我们提出由广义Riccati方程和它的一个有理指数函数解和一个有理数解为基础,构造出一种新的Riccati方程映射法--有理指数映射法,它能把现有的各种Riccati方程映射法和tanh函数法完美地统一起来。我们把它用于求解耦合的mKdV方程的研究中,得到的耦合的mKdV方程有理指数解析解,如果给定这个有理指数解析解的各参数值,就能迅速写出耦合的mKdV方程所具有的各类三角函数和双曲函数解析解的具体形式。
     在上述的研究基础,一种双Riccati方程的有理指数映射法被提出,且分别被用于耦合的(1+1)-维Whitham-Broer-Kaup方程和(2+1)-维Broer-Kaup-Kupershmidt方程的研究中,分别得到了这两个方程的新的有理指数组合解的形式。
     提出把映射法拓展到非线性随机偏微分方程的研究领域,我们把Riccati方程映射法用于Wick型广义随机Korteweg-de Vries方程和Wick型随机mKdV方程的研究,借助厄米变换和白噪声理论,在白噪声条件下,得到了这个两个方程的双曲函数-指数函数型、三角函数-指数函数型和指数函数型三种类型的解析解。
     改进了变系数投影Riccati方程映射方法,推广到Wick型随机偏微分方程研究中。把该方法用于(2+1)-维Wick型广义随机Broer-Kaup系统的研究中,在白噪声环境下,获得了丰富的Wick型广义随机Broer-Kaup系统的解析解,不仅得到了该方程的实函数型解析解,而且得到了它的复函数型解析解。
     椭圆方程映射法也被应用于非线性随机偏微分方程研究领域。用椭圆方程映射法研究了两种不同类型的Wick型随机Korteweg-de Vries方程,获得了这两个随机方程的大量椭圆函数多项式的解析解,其中包括大量实函数型解析解和复函数型解析解。我们将Jacobian函数展开法看作一种特殊映射法,用于Wick型随机Korteweg-de Vries方程的研究,获得用椭圆方程映射法无法得到一些解析解,Jacobian函数展开法是对椭圆方程映射法的一个很好补充。
     本论文的创新点主要有:
     借助广义的Riccati方程的有理指数函数解,一种新的Riccati方程映射法--有理指数映射法被提出。有理指数映射法很好地把Riccati方程映射法和tanh函数法完美地统一起来。有理指数映射法能得到各种Riccati方程映射方法和tanh函数方法能够得到的所有结果,而且包含更多新的结果。
     改进了变系数投影Riccati方程映射法和椭圆方程映射法,在Riccati方程有理指数映射法基础上,提出了双Riccati方程的有理指数映射法,这些方法被用于多个非线性偏微分方程的研究中,获得了许多新的结果。
     将Riccati方程映射法、变系数投影Riccati方程映射法、椭圆方程映射法引入到Wick型非线性随机物理模型的研究中。在白噪声条件下,获得丰富的不同类型的精确的解析解,其中许多解析解是其他方法是无法得到的。
The wave is one of pervasive phenomena in the nature and it exists in many scopesof science and technology, such as physics, mathematics, mechanics, optics, chemistry,biology, communication engineering, mechanism engineering, engineering of aviationand space?ight and so on. With the development of science and technology, an increas-ing number of researchers realize that nonlinear phenomena widely exist in the variousfields of science and technology. A number of nonlinear phenomenon can be describedby the mathematical models—-the nonlinear systems which are nonlinear wave equa-tions (i.e. nonlinear evolution equations). To serve realizing nature and altering nature,the researchers expose the arcanum and the law themselves of various nonlinear phe-nomenon by investigating the solutions of the nonlinear evolution equations. The mainwork of this doctoral dissertation is modifying and developing various mapping methodsand seeking more new solutions of nonlinear partial di?erential equations and nonlinearstochastic partial di?erential equations. The main contents of this dissertation include:
     Modifying elliptic equation mapping method and applying it to the investigationof (1+1)-dimensional Sawada-Kotere equation with variable coe?cient, we obtain manysolutions with the polynomial of Jacobian functions and with the polynomial of hyper-bolic functions, which include the polynomials comprised by single Jacobian function,or by double Jacobian functions, or by single hyperbolic function, or by double hyper-bolic functions. They contain not only the solutions of real function but also complexfunction.
     We have improved variable-coe?cient projective Riccati equation mappingmethod and applied it to the research of (2+1)-dimensional simplified generalized Broer-Kaup system, and found Huang’s method (Huang DJ, Zhang HQ. Chaos, Solitons &Fractals 2005;23:601) is only a special case of our method. We can derive not only allsolutions previously obtained by Huang’s method, but also many new solutions. Therange of the solution is also expanded from real number field to complex number filed.
     With the help of Exp-function method, we deduce a rational-exponent solution toa generalized Riccati equation. The rational-exponent solution include all solutions oftrigonometric function and hyperbolic function for various Riccati equations. Using thegeneralized Riccati equation and its rational-exponent solution along with its rational so-lution, we construct a new Riccati equation method which is called rational-exponentmapping method. the new method can unify all kinds of Riccati equation mappingmethod and tanh-function method ideally. The rational-exponent mapping method isused to investigate the coupling mKdV equation and many rational-exponent solutionsare derived by us. If all parameters of rational-exponent solution are given, we canrapidly write various solutions of trigonometric function and hyperbolic function of thecoupling mKdV equation.
     Based on above results, the multiple Riccati equation rational-exponent mapping method is proposed and applied to the coupling (1+1)-dimensional Whitham-Broer-Kaup equation and the (2+1)-dimensional Broer-Kaup-Kupershmidt system. The com-bined solutions of rational-exponent function and rational function of above equationsare obtained.
     We propose to expand Riccati equation mapping method to the researching fieldof nonlinear stochastic partial di?erential equation and apply it to Wick-type general-ized stochastic Korteweg-de Vries equation and Wick-type generalized stochastic mKdVequation. With Hermite transformation and white noise theory, we deduce three kinds ofsolutions of hyperbolic-exponential type, trigonometric-exponential type and exponen-tial type for the Wick-type generalized stochastic Korteweg-de Vries equation and theWick-type generalized stochastic mKdV equation in white noise.
     A modified variable-coe?cient projective Riccati equation method is extendedfrom nonlinear partial di?erential equation to nonlinear stochastic partial di?erentialequation. Applying it to (2+1)-dimensional Wick-type generalized stochastic Broer-Kaup system, we get abundant solutions to Wick-type generalized stochastic Broer-Kaupsystem in white noise. They have not only real function solutions but also complex func-tion solutions.
     Elliptic equation mapping method is used to investigate nonlinear stochastic par-tial di?erential equation. Solving two kinds of Wick-type stochastic Korteweg-de Vriesequations with the elliptic equation mapping method, we derive many Jacobian func-tions solutions to the two stochastic Korteweg-de Vries equations, which include manyreal function solutions and complex function solutions. Taking Jacobian elliptic functionexpansion method as a special case of elliptic equation mapping method and applying itto a stochastic Korteweg-de Vries equation, we obtain many new Jacobian elliptic func-tion solutions which can not be deduced by elliptic equation mapping method. It meansthat Jacobian elliptic function expansion method is complementarity for elliptic equationmapping method.
     The innovations of this dissertation are as follows:
     By the aid of a rational-exponent solution and a rational-function solution for ageneralized Riccati equation, a generalized Riccati equation method which is calledrational-exponent mapping method is constructed. the new mapping method can unifyall kinds of Riccati equation mapping method and tanh-function method ideally. Therational-exponent mapping method can obtain not only all solutions derived by variousRiccati equation mapping method and tanh-function method, but also more new results.We improved variable-coe?cient projective Riccati equation method and modifiedelliptic equation mapping method. Based on The rational-exponent mapping method,a multiple Riccati equation rational-exponent mapping method is also proposed. Thesemethods are applied to many nonlinear partial di?erential equation and many new resultsare obtained.
     Riccati equation method, variable-coe?cient projective Riccati equation method, elliptic equation mapping method, Jacobian elliptic function expansion method etc. areextended from the field of nonlinear partial di?erential equation to nonlinear stochasticpartial di?erential equation. In white noise, we obtain abundant solutions to many Wick-type stochastic partial di?erential equations while some of them can not be derived byother method.
引文
[1] RUSSELL J S. Report on waves, in”14th meeting of the British Association Reports”[M].York, London: John Murry, 1844.
    [2] KORTEWEG D J, VRIES G D. On the chang of form of long waveadvancing in a rectangularcanal and on a new-type of long stationary waves[J]. Philosophical Magazine, 1895, 36:422–443.
    [3] FERMI E, PASTA J, ULAM S. Studies of nonlinear Problems[M]. Vol. 2. Chicago: Universityof Chicago Press, 1962: 978.
    [4] TODA M. Wave Propagation in An harmonic Lattices[J]. Journal of the Physical Society ofJapan, 1967, 23(3):501–506.
    [5]郭柏灵,庞小峰.孤立子[M].北京:科学出版社, 1987.
    [6]庞小峰.孤子物理学[M].成都:四川科学技术出版社, 2003.
    [7] HASEGAWA A, TAPPET F. Transmission of stationary nonlinear optical pulses in dispersivedielectric fibers .I. anomalous dispersion[J]. Apply Physics Letters, 1973, 23(3):142–144.
    [8] HASEGAWA A, TAPPET F. Transmission of stationary nonlinear optical pulses in dispersivedielectric fibers.II. normal dispersion[J]. Apply Physics Letters, 1973, 23(4):171–172.
    [9] MOLLENAUER L F, STOLEN R H, GORDON J P. Expermental observation of picosecondpulse narrowing and soliton in optical fibers[J]. Physical Review Letters, 1980, 45(13):1095–1098.
    [10] EMPLIT P, HAMAIDE J, REYNAUD F, et al. Pisecond steps and dark pulses through nonlin-ear single mode fibers[J]. Optics Communications, 1987, 62(6):374–379.
    [11] KROKEL D, HALAS N J, GIULIANI G, et al. Dark-pulse propagation in optical fibers[J].Physical Review Letters, 1988, 60(1):29–32.
    [12] WEINER A, HERITAGE J P, HAWKINS R J, et al. Experimental observation of the funda-mental dark soliton in optical fibers[J]. Physical Review Letters, 1988, 61:2445–2448.
    [13] ZALTHAROV V E, SHABAT A B. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media (Di?erential equation solution forplane self focusing and one dimensional self modulation of waves interacting in nonlinearmedia)[J]. Soviet Physics-JETP, 1972, 34:62–69.
    [14] KODAMA Y, HASEGAWA A. Nonlinear pulse propagation in a monomode dielectricguide[J]. IEEE Journal of Quantum Electronics, 1987, QE-23(5):510–524.
    [15] SASA N, SATSUMA J. New-type of soliton solutions for a higher-order nonlinear Schro¨dingerequation[J]. Journal of the Physical Society of Japan, 1991, 60(2):409–417.
    [16] XU B, WANG W. Traveling-wave method for solving the modified nonlinear Schro¨dingerequation describing soliton propagation along optical fibers[J]. Physical Review E, 1995,51(2):1493–1498.
    [17] PORSEZIAN K, NAKKEERAN K. Optical solitons in presence of kerr dispersion and self-Frequency shift[J]. Physical Review Letters, 1996, 76(21):3955–3958.
    [18] GEDALIN M, SCOTT T C, BAND Y B. Optical solitary wave in the higher order nonlinearSchro¨dinger equation[J]. Physical Review Letters, 1997, 78(3):448–451.
    [19] XU Z Y, LI L L, LI Z H, et al. Soliton interaction under the in?uence of higher-order efects[J].Optics Communications, 2002, 210:375–384.
    [20] WADATI M. Stochastic Korteweg-de Vries equation[J]. Journal of the Physical Society ofJapan, 1983, 52:2642–2648.
    [21] GARDNER C, GREENE J, KRUSKAL M, et al. Method for solving the Korteweg-de Vriesequation[J]. Physical Review Letters, 1967, 19(19):1095–1097.
    [22] Ba¨CKLUND A. Om ytor med konstant negativ kro¨kning[J]. Lunds Universitets A˙rsskrift,1883, 19:1–48.
    [23] DARBOUX G. Sur une proposition relative auxe′quations line′airese′[J]. Comptes Rendus del’Acade′mie des Sciences, 1882, 94:1456–1459.
    [24]谷超豪,胡和生,周子翔.孤立子理论中的达布变换及其几何应用[M].上海:上海科学技术出版公司, 1999.
    [25] HIROTA R. Exact solution of the Korteweg-de Vries equation for multiple collision of soli-tons[J]. Physical Review Letters, 1971, 27:1192–1194.
    [26] LOU S. On the coherent structures of the Nizhnik-Novikov-Veselovequation[J]. Physics Let-ters A, 2000, 277:94–100.
    [27] KONOPELCHENKO B G, SIDORENKO J, STRAMPP W. (1+1)-dimensional integrablesystems as symmetry constraints of (2+1)-dimensional systems[J]. Physics Letters A, 1991,157:17–21.
    [28] WANG M. The solitary wave solutions for variant Boussinesq equations[J]. Physics LettersA, 1995, 199:169–172.
    [29] LIU S, FU Z, LIU S, et al. Jacobi elliptic function expansion method and periodic wavesolutions of nonlinear wave equations[J]. Physics Letters A, 2001, 289(1-2):69–74.
    [30] HE J H, WU X H. Exp-function method for nonlinear wave equations[J]. Chaos Solitons &Fractals, 2006, 30(3):700–708.
    [31] HE J H, ABDOU M A. New periodic solutions for nonlinear evolution equations using Exp-function method[J]. Chaos Solitons & Fractals, 2007, 34(5):1421–1429.
    [32] LOU S, NI G. The relations among a special type of solutions in some (D+1)-dimensionalnonlinear equations[J]. Journal of Mathematical Physica, 1989, 30:1614–1620.
    [33] MA W. An exact solution to two-dimensional Korteweg-de Vries-Burgers equation[J]. Journalof Physics A: Mathematical and General, 1993, 26(1):L17–L20.
    [34] LIU Q, ZHU J M, WU H Y. The elliptic equation mapping method and its application toStochastic Korteweg-de Vries equation[J]. Journal of the Physical Society of Japan, 2006,75(1):014002.
    [35] FAN E G. Uniformly constructing a series of explicit exact solutions to nonlinear equations inmathematical physics[J]. Chaos Solitons & Fractals, 2003, 16(5):819–839.
    [36] FAN E G. An algebraic method for finding a series of exact solutions to integrable and non-integrable nonlinear evolution equations[J]. Journal of Physics a-Mathematical and General,2003, 36(25):7009–7026.
    [37] LIU Q, ZHU J M. Exact Jacobian elliptic function solutions and hyperbolic function solutionsfor Sawada-Kotere equation with variable coe?cient[J]. Physics Letters A, 2006, 352(3):233–238.
    [38] LIU Q, ZHU J M, HONG B H. New exact Jacobian elliptic function solutions for Wick-typestochastic KdV equation[J]. Chaos Solitons & Fractals, 2007, 31(1):205–210.
    [39] MA W, FUCHSSTEINER B. Explicit and exact solutions to a Kolmogorov-Petrovskii-Piskunov equation[J]. International Journal of Non-Linear Mechanics, 1996, 31(3):329–338.
    [40] FAN E G. Extended tanh-function method and its applications to nonlinear equations[J].Physics Letters A, 2000, 277(4-5):212–218.
    [41] FAN E G. Soliton solutions for a generalized Hirota-Satsuma coupled KdV equation and acoupled MKdV equation[J]. Physics Letters A, 2001, 282(1-2):18–22.
    [42] FAN E G. Using symbolic computation to exactly solve a new coupled MKdV system[J].Physics Letters A, 2002, 299(1):46–48.
    [43] YAN Z Y. New explicit travelling wave solutions for two new integrable coupled nonlinearevolution equations[J]. Physics Letters A, 2001, 292(1-2):100–106.
    [44] YAN Z Y. The Riccati equation with variable coe?cients expansion algorithm to find moreexact solutions of nonlinear di?erential equations[J]. Computer Physics Communications,2003, 152(1):1–8.
    [45] ELWAKIL S A, EL-LABANY S K, ZAHRAN M A, et al. Modified extended tanh-functionmethod for solving nonlinear partial di?erential equations[J]. Physics Letters A, 2002, 299(2-3):179–188.
    [46] ARAI A. Exact solutions of multi-component nonlinear Schro¨dinger and Klein-Gordon equa-tions in two-dimensional space-time[J]. Journal of Physics A: Mathematical and General,2001, 34(20):4281.
    [47] CHEN Y, ZHENG X D, LI B, et al. New exact solutions for some nonlinear di?erentialequations using symbolic computation[J]. Applied Mathematics and Computation, 2004,149(1):277–298.
    [48] CHEN Y, YAN Z Y, ZHANG H. New explicit solitary wave solutions for (2+1)-dimensionalBoussinesq equation and (3+1)-dimensional KP equation[J]. Physics Letters A, 2003, 307(2-3):107–113.
    [49] ALI A H A. The modified extended tanh-function method for solving coupled MKdV andcoupled Hirota-Satsuma coupled KdV equations[J]. Physics Letters A, 2007, 363(5-6):420–425.
    [50] CAO L N, WANG D S, CHEN L X. Symbolic computation and q-deformed function solutionsof (2+1)-dimensional breaking soliton equation[J]. Communications in Theoretical Physics,2007, 47(2):270–274.
    [51] LI B A, CHEN Y, XUAN H N, et al. Symbolic computation and construction of soliton-likesolutions for a breaking soliton equation[J]. Chaos Solitons & Fractals, 2003, 17(5):885–893.
    [52] XUAN H N, ZHANG D F, WANG C J. Families of non-travelling wave solutions to a gen-eralized variable coe?cient two-dimensional KdV equation using symbolic computation[J].Chaos Solitons & Fractals, 2005, 23(1):171–174.
    [53] BAI C L, ZHAO H. Generalized extended tanh-function method and its application[J]. ChaosSolitons & Fractals, 2006, 27(4):1026–1035.
    [54] DAI C Q, WANG Y Y. Combined wave solutions of the (2+1)-dimensional generalizedNizhnik-Novikov-Veselov system[J]. Physics Letters A, 2008, 372(11):1810–1815.
    [55] LIU Q. Various types of exact solutions for stochastic mKdV equation via a modified mappingmethod[J]. Europhysics Letters, 2006, 74(3):377–383.
    [56] LIU Q. Some exact solutions for stochastic mKdV equation[J]. Chaos Solitons & Fractals,2007, 32(3):1224–1230.
    [57] LIU Q. Uniformly constructing a series of exact solutions for (2+1)-dimensional stochasticBroer-Kaup system[J]. Chaos Solitons & Fractals, 2008, 36(4):1037–1043.
    [58] LIU Q, JIA D L, WANG Z H. Three types of exact solutions to Wick-type generalizedstochastic Korteweg-de Vries equation[J]. Applied Mathematics and Computation, 2010,215(10):3495–3500.
    [59] CHEN Y, WANG Q. Multiple Riccati equations rational expansion method and complexitonsolutions of the Whitham-Broer-Kaup equation[J]. Physics Letters A, 2005, 347(4-6):215–227.
    [60] WANG Q, CHEN Y. A multiple Riccati equations rational expansion method and novel solu-tions of the Broer-Kaup-Kupershmidt system[J]. Chaos Solitons & Fractals, 2006, 30(1):197–203.
    [61] HUANG D J, ZHANG H Q. Variable-coe?cient projective Riccati equation method and itsapplication to a new (2+1)-dimensional simplified eneralized Broer-Kaup system[J]. ChaosSolitons & Fractals, 2005, 23(2):601–607.
    [62] LIU Q, ZHU J M, HONG B H. A modified variable-coe?cient projective Riccati equationmethod and its application to (2+1)-dimensional simplified generalized Broer-Kaup system[J].Chaos Solitons & Fractals, 2008, 37(5):1383–1390.
    [63] LIU Q, LAN J C, WU H Y, et al. A series of exact solutions for (2+1)-dimensional Wick-typestochastic generalized Broer-Kaup system via a modified variable-coe?cient projective Riccatiequation mapping method[J]. Applied Mathematics and Computation, 2010, 217(2):629–638.
    [64] LIU Q, SHEN S, WANG Z. The rational solutions to a generalized Riccati equation and theirapplication[J]. International Journal of Modern Physics B,已录用.
    [65] WADATI M, AKUTSU Y. Stochastic Korteweg-de Vries equation with and without damp-ing[J]. Journal of the Physical Society of Japan, 1984, 53:3342–3350.
    [66] WADATI M. Deformation of solitons in random media[J]. Journal of the Physical Society ofJapan, 1990, 59:4201–4203.
    [67] BOUARD A D, DEBUSSCHE A. On the stochastic Korteweg-de Vries equation[J]. Journalof Functional Analysis, 1998, 154:215–251.
    [68] BOUARD A D, DEBUSSCHE A. White noise driven Korteweg-de Vries equation[J]. Journalof Functional Analysis, 1999, 169:532–258.
    [69] DEBUSSCHE A, PRINTEMS J. Numerical simulation of the stochastic Korteweg-de Vriesequation[J]. Physica D, 1999, 134:200–226.
    [70] DEBUSSCHE A, PRINTEMS J. E?ect of a localized random forcing term on the Korteweg-deVries equation[J]. Journal of Computational Analysis and Applications, 2001, 3:183–206.
    [71] KONOTOP V, VáZQUEZ L. Nonlinear random waves[M]. Singapore: World Scientific, 1994.
    [72] PRINTEMS J. The stochastic Korteweg-de Vries equationin L(R2)[J]. Journal of Di?erentialEquations, 1999, 153:338–373.
    [73] XIE Y C. Exact solutions for stochastic KdV equations[J]. Physics Letters A, 2003, 310(2-3):161–167.
    [74] XIE Y C. An auto-Backlund transformation and exact solutions for Wick-type stochas-tic generalized KdV equations[J]. Journal of Physics a-Mathematical and General, 2004,37(19):5229–5236.
    [75] XIE Y C. Exact solutions for stochastic mKdV equations[J]. Chaos Solitons & Fractals, 2004,19(3):509–513.
    [76] XIE Y C. Exact solutions of the Wick-type stochastic Kadomtsev-Petviashvili equations[J].Chaos Solitons & Fractals, 2004, 21(2):473–480.
    [77] XIE Y C. Positonic solutions for Wick-type stochastic KdV equations[J]. Chaos Solitons &Fractals, 2004, 20(2):337–342.
    [78] XIE Y C. Exact solutions for Wick-type stochastic coupled KdV equations[J]. Physics LettersA, 2004, 327(2-3):174–179.
    [79] XIE Y C. Vague convergence of semimartingale random measures[J]. Stochastic Analysis andApplications, 2004, 22(2):315–332.
    [80] XIE Y C. On the estimations of smooth densities for integro-di?erential operators[J]. Stochas-tic Analysis and Applications, 2004, 22(1):211–236.
    [81] XIE Y C. Exact solutions for the Wick-type stochastic 2-dimensional KdV equations withdissipation[J]. Physics Letters A, 2005, 340(5-6):403–410.
    [82] XIE Y C. Convergence of stochastic integrals with respect to Hilbert-valued semimartin-gales[J]. Journal of the Mathematical Society of Japan, 2005, 57(3):735–751.
    [83] WEI C M, REN Y H, XIA Z Q. Symmetry reductions and soliton-like solutions for stochasticMKdV equation[J]. Chaos Solitons & Fractals, 2005, 26(5):1507–1513.
    [84] WEI C M, XIA Z Q. Exact soliton-like solutions for stochastic combined Burgers-KdV equa-tion[J]. Chaos Solitons & Fractals, 2005, 26(2):329–336.
    [85] WEI C M, XIA Z Q, TIAN N S. Jacobian elliptic function expansion solutions of nonlinearstochastic equations[J]. Chaos Solitons & Fractals, 2005, 26(2):551–558.
    [86] WEI C M, XIA Z Q, YU L Y. Stochastic exact solutions to (2+1)-dimensional stochasticBorer-Kaup equation[J]. Chaos Solitons & Fractals, 2005, 26(5):1475–1483.
    [87] WEI C M, XIA Z Q, TIAN N S. New exact soliton-like solution for a generalized stochasticKdV equation[J]. Acta Physica Sinica, 2005, 54(6):2463–2467.
    [88] WEI C M, XIA Z Q, TIAN N S. Exact solutions to generalized Wick-type stochasticKadomtsev-Petviashvili equation[J]. Chaos Solitons & Fractals, 2006, 29(5):1178–1187.
    [89] WEI C M, WANG J J. Travelling wave solutions to the generalized stochastic KdV equation[J].Chaos Solitons & Fractals, 2008, 37(3):733–740.
    [90] LAX P. Integrals of nonlinear equations of evolution and solitary wave[J]. Communicationson Pure and Applied Mathematics, 1968, 21:467–490.
    [91] ABLOWITZ M, SEGUR H. Soliton and the Inverse Scattering Transform[M]. Siam: Philadel-phia, 1981.
    [92] ABLOWITZ M, CLARKSON P. Solitons, nonlinear evolution equations and inverse scatter-ing[M]. Cambridge: Cambridge Unibersity Press, 1991.
    [93]谷超豪.孤立子理论与应用[M].杭州:浙江科学技术出版社, 1990.
    [94] BIANCHI L. Sopra i sistemi tripli ortogonali di Weingarten[J]. Annali di Matematica, 1885,13:177–234.
    [95] CALOGERO F, DEGASPERIS A. Spectral Transform and Solitons[M]. Amsterdam and NewYork: North-Holland, 1982.
    [96] GROMAK V. Ba¨cklund transformations of Painleve′equations and their applications[M]. NewYork: Springer, 1999.
    [97] ROGERS C, SCHIEF W. Ba¨cklund and Darboux Transformations: Geometry and ModernApplications in Soliton Theory[M]. Cambridge and New York: Cambridge University Press,2002.
    [98] WAHLQUIST H, ESTABROOK F. Ba¨cklund transformations for solutions of the Korteweg-deVries equation[J]. Physical Review Letters, 1973, 31:1386–1390.
    [99] SIDDIQ M, HASSAN M, SALEEM U. On Darboux transformation of the supersymmetricsine-Gordon equation[J]. Journal of Physics a-Mathematical and General, 2006, 39(23):7313–7318.
    [100] LI H Z, TIAN B, LI L L, et al. Darboux transformation and new solutions for the Whitham-Broer-Kaup equations[J]. Physica Scripta, 2008, 78(6):065001.
    [101] ZHANG H Q, TIAN B, XU T, et al. Lax pair and Darboux transformation for multi-componentmodified Korteweg-de Vries equations[J]. Journal of Physics a-Mathematical and Theoretical,2008, 41(35):355210.
    [102] LI W M, GENG X G. Darboux transformation of a di?erential-di?erence equation and itsexplicit solutions[J]. Chinese Physics Letters, 2006, 23(6):1361–1364.
    [103] DENG S F. Darboux transformations for the isospectral and nonisospectral mKP equation[J].Physica a-Statistical Mechanics and Its Applications, 2007, 382(2):487–493.
    [104] HIROTA R. Direct method of finding exact solutions of nonlinear evolution equations[M].New York: Springer, 1976: 40–68.
    [105] HIROTA R. Direct methods in soliton theory[M]. New York: Springer, 1980: 157–176.
    [106] HIETARINTA J. Hirota’s bilinear method and integrability[M]. Dordrecht: Kluwer, 1990:459–478.
    [107] MIWA J, JIMBO M, DATE E. Solitons: Di?erential Equations, Symmetries and Infinite Di-mensional Algebras[M]. Cambridge and New York: Cambridge University Press, 2000.
    [108] NIMMO J. Hirota’s method[M]. Manchester: Manchester University Press, 1990: 75–96.
    [109] OHTA Y, SATSUMA J, TAKAHASHI D, et al. An elementary introduction to Sato theory[J].Progress in Theoretical physics, Supplementum, 1988, 94:210–241.
    [110] LOU S, RUAN H. Revisiation of the localized excitations of the (2+1)-dimensional KdVequation[J]. Journal of Physics A: Mathematical and General, 2001, 34:305–316.
    [111] LOU S. (2+1)-dimensional compacton solutions with and without completely elastic interac-tion properties[J]. Journal of Physics A: Mathematical and General, 2002, 35:10619–10628.
    [112] LOU S, TANG X, CHEN C. Fractal solutions of the Nizhnik-Novikov-Veselov equation[J].Chinese Physics Letters, 2002, 19:769–771.
    [113] ZHANG J, WU F. Ba¨cklund transformation and multiple soliton solutions for the (3+1)-dimensional JM equation[J]. Chinese Physics, 2002, 11:425–428.
    [114] ZHANG J, LAI X. New Variable Separated Solutions and Ghoston Structure for the (2+1)-Dimensional Sine-Gordon System[J]. Chinese Physics Letters, 2004, 21:1449–1452.
    [115]张解放,韩平. (2+1)维非线性Burgers方程变量分离解和新型孤子结构[J].物理学报,2002, 51:705–710.
    [116]张解放,黄文华,郑春龙.一个新的(2+1)维非线性演化方程的相干结构[J].物理学报,2002, 51:2676–2682.
    [117] TANG X, LOU S. Abundant coherent structures of the dispersive long-wave equation in (2+1)-dimensional spaces[J]. Chaos Solitons & Fractals, 2002, 14:1451–1456.
    [118] HU H, LOU S, LIU Q. Darboux transformation and variable separation approach: the Nizhnik-Novikov-Veselov equation[J]. Chinese Physics Letters, 2003, 20:1413–1415.
    [119] LIN J, QIAN X. The interactions of localized coherent structures for a (2+1)-dimensionalsystem[J]. Physics Letters A, 2003, 313:93–100.
    [120] ZHANG S, LOU S, QU C. Variable separation and exact solutions to generalized nonlineardi?usion equations[J]. Chinese Physics Letters, 2002, 19:1741–1744.
    [121] ZHANG S, LOU S. Variable Separation and Derivative-Dependent Functional Separable Solu-tions to Generalized KdV Equation[J]. Communications in Theoretical Physics, 2003, 40:401–406.
    [122] QU C, ZHANG S, ZHANG Q. Integrability of Models Arising from Motions of PlaneCurves[J]. Zeitschrift Fur Naturforschung Section a-a Journal of Physical Sciences, 2003,58a:75–83.
    [123] KONOPELCHENKO B G, DUBROVSKY V G. Some new integrable nonlinear evolutionequations in 2 + 1 dimensions[J]. Physics Letters A, 1984, 102:15–17.
    [124] CHENG Y, LI Y. The constraint of the KP equation and its special solutions[J]. Physics LettersA, 1991, 157:22.
    [125] CHENG Y. Constraint of integrable systems: from higher to lower dimensions[J]. PhysicsLetters A, 1992, 166:217.
    [126] WANG M. Exact solutions for the RLW-Burgers equation[J]. Mathematica Application, 1995,8:51–55.
    [127] WANG M L. Exact solutions for a compound KdV-Burgers equation[J]. Physics Letters A,1996, 213(5-6):279–287.
    [128] WANG M L, ZHOU Y B, LI Z B. Application of a homogeneous balance method to exactsolutions of nonlinear equations in mathematical physics[J]. Physics Letters A, 1996, 216(1-5):67–75.
    [129] FU Z T, LIU S K, LIU S D, et al. New Jacobi elliptic function expansion and new periodicsolutions of nonlinear wave equations[J]. Physics Letters A, 2001, 290(1-2):72–76.
    [130] SHEN S F, PAN Z L. A note on the Jacobi elliptic function expansion method[J]. PhysicsLetters A, 2003, 308(2-3):143–148.
    [131] CHEN Y, WANG Q. Extended Jacobi elliptic function rational expansion method and abun-dant families of Jacobi elliptic function solutions to (1+1)-dimensional dispersive long waveequation[J]. Chaos Solitons & Fractals, 2005, 24(3):745–757.
    [132] LIU Q. A modified Jacobi elliptic function expansion method and its application to Wick-typestochastic KdV equation[J]. Chaos Solitons & Fractals, 2007, 32(3):1215–1223.
    [133] EBAID A. Exact solitary wave solutions for some nonlinear evolution equations via Exp-function method[J]. Physics Letters A, 2007, 365(3):213–219.
    [134] ZHANG S. Exp-function method for solving Maccari’s system[J]. Physics Letters A, 2007,371(1-2):65–71.
    [135] ZHANG S. Application of Exp-function method to a KdV equation with variable coe?-cients[J]. Physics Letters A, 2007, 365(5-6):448–453.
    [136] ZHANG M, ZHANG W J. Construction of solitonary and periodic solutions to some nonlinearequations using EXP-function method[J]. Journal of Zhejiang University-Science A, 2007,8(4):660–664.
    [137] ZHU S D. Exp-function method for the discrete mKdV lattice[J]. International Journal ofNonlinear Sciences and Numerical Simulation, 2007, 8(3):465–468.
    [138] ZHU S D. Exp-function method for the Hybrid-Lattice system[J]. International Journal ofNonlinear Sciences and Numerical Simulation, 2007, 8(3):461–464.
    [139] KHANI F, HAMEDI-NEZHAD S, MOLABAHRAMI A. A reliable treatment for nonlinearSchr odinger equations[J]. Physics Letters A, 2007, 371(3):234–240.
    [140] HOLDEN H, ?SENDAL B, UB?E J, et al. Stochastic partial di?erential equations[M].Boston: BirhKa¨user, 1996.
    [141] LI B, CHEN Y, XUAN H N, et al. Generalized Riccati equation expansion method and its ap-plication to the (3+1)-dimensional Jumbo-Miwa equation[J]. Applied Mathematics and Com-putation, 2004, 152(2):581–595.
    [142] MA H C, WANG Y, QIN Z Y. New exact complex traveling wave solutions for (2+1)-dimensional BKP equation[J]. Applied Mathematics and Computation, 2009, 208(2):564–568.
    [143] LI W T, ZHANG H Q. Generalized multiple Riccati equations rational expansion method withsymbolic computation to construct exact complexiton solutions of nonlinear partial di?erentialequations[J]. Applied Mathematics and Computation, 2008, 197(1):288–296.
    [144] ZHU S D. The generalizing Riccati equation mapping method in non-linear evolution equa-tion: application to (2+1)-dimensional Boiti-Leon-Pempinelle equation[J]. Chaos Solitons &Fractals, 2008, 37(5):1335–1342.
    [145] XIE F D, ZHANG Y, LU Z S. Symbolic computation in non-linear evolution equation: appli-cation to (3+1)-dimensional Kadomtsev-Petviashvili equation[J]. Chaos Solitons & Fractals,2005, 24(1):257–263.
    [146] HUANG W H. A polynomial expansion method and its application in the coupled Zakharov-Kuznetsov equations[J]. Chaos Solitons & Fractals, 2006, 29(2):365–371.
    [147] WAZZAN L. A modified tanh-coth method for solving the general Burgers-Fisher and theKuramoto-Sivashinsky equations[J]. Communications in Nonlinear Science and NumericalSimulation, 2009, 14(6):2642–2652.
    [148] WAZZAN L. A modified tanh-coth method for solving the KdV and the KdV-Burgers’equa-tions[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(2):443–450.
    [149] OZER T. New exact solutions to the CDF equations[J]. Chaos Solitons & Fractals, 2009,39(3):1371–1385.
    [150] WANG T Y, REN Y H, ZHAO Y L. Exact solutions of (3+1)-dimensional stochastic Burgersequation[J]. Chaos Solitons & Fractals, 2006, 29(4):920–927.
    [151] ZHENG C L. Comments on”The generalizing Riccati equation mapping method in nonlin-ear evolution equation: Application to (2+1)-dimensional Bolti-Leon-Pempinelle equation”[J].Chaos Solitons & Fractals, 2009, 39(3):1493–1495.
    [152] WU Y T, GENG X G, HU X B, et al. A generalized Hirota-Satsuma coupled Korteweg-deVries equation and Miura transformations[J]. Physics Letters A, 1999, 255(4-6):259–264.
    [153] LOU S Y. (2+1)-dimensional compacton solutions with and without completely elastic interac-tion properties[J]. Journal of Physics a-Mathematical and General, 2002, 35(49):10619–10628.
    [154] LOU S Y, HU X B. Infinitely many Lax pairs and symmetry constraints of the KP equation[J].Journal of Mathematical Physics, 1997, 38(12):6401–6427.
    [155] ZHANG S L, WU B, LOU S Y. Painleve analysis and special solutions of generalized Broer-Kaup equations[J]. Physics Letters A, 2002, 300(1):40–48.
    [156] LINDSTR?M T, ?SENDAL B, UB?E J. Wick multiplication and Ito-Skorohod stochasticdi?rential equations[M]. London: Cambridge Univ. Press, 1992: 183–206.
    [157] SKOROHOD A. On a generalization of a stochastic integral[J]. Theory of Probability and ItsApplications, 1975(20):219–233.
    [158] CHANDRASEKHARAN K. Elliptic Function[M]. Berlin: Springer, 1978.
    [159] PATRICK D. Elliptic Function and Elliptic Curves[M]. Cambridge: Cambridge UniversityPress, 1973.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700