用户名: 密码: 验证码:
无线电能传输系统能量建模及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
感应耦合电能传输(ICPT)技术是一种新兴的基于电磁感应原理,综合利用电力电子技术、磁场耦合技术及控制理论,实现用电设备以非电气接触方式从电网获取电能的技术,具有安全、便捷、易维护、可靠性高及环境亲和力强等优点。
     在ICPT系统中,由于原副边的松耦合特性,通常采用谐振的方式提高能量的传输效率与等级。根据负载的不同需求,无功补偿网络的电路拓扑形式多种多样,相对应的系统功率与频率控制策略也千差万别。如果采用传统的建模方式,系统电气参数与运行状态的任何一点微小的变化都可能造成系统模型产生很大的改变,对设计者来说又要列出高阶微分方程或高次阻抗变换方程进行模型重构,建模过程十分繁琐。ICPT系统是一种典型的多参数、强粘连的高频高阶非线性系统,系统各功能模块的控制行为必须高度统一于系统整体的控制模式,传统电路拓扑建立的系统模型和所设计的控制模式只能适应某一种特定无功补偿拓扑的ICPT系统,缺乏一般性,因此造成系统各功能模块之间兼容度差,可移植性低,极大的限制了该技术产业化的推广。
     针对上述问题,本文提出了旨在解决感应耦合电能传输系统一般性建模与控制问题的ICPT系统能量建模方法与相应的反射阻抗计算、频率稳定性控制、输出功率调节等控制策略并将所提出的建模方法与控制模式,应用到实际ICPT系统的分析与研究中。
     本文主要围绕以下几个方面展开研究工作:
     (1)针对ICPT系统传统建模方法严重依赖明确的无功补偿电路拓扑与系统的工作状态的缺陷,在分析了ICPT系统各关键组成部分建模与控制需求的基础上,提出了基于能量守恒定律的ICPT系统能量建模的方法;应用该方法将ICPT系统按功能模块划分为若干关键能量流节点,通过对各关键节点能量流动的方向与损耗的分析,建立了各节点的能量流输入输出方程,分别得到了ICPT系统电能变换部分、无功补偿部分和电磁耦合机构的能量模型,进而得到ICPT系统总体能量模型。根据系统各关键组成部分能量的损耗与流动情况作出了ICPT系统能量结构框图,并对其进行了分析。
     (2)从能量的角度出发,针对ICPT系统由于补偿网络拓扑种类繁多、负载性质与大小不确定等造成的系统阶数高、建模过程复杂和负载计算困难等问题,建立了基于等效负载理论的ICPT系统能量模型。通过对以TS型为代表的混联补偿型ICPT系统输出特性的分析,提出了一种适用于拾取端电路拓扑不确定的ICPT系统的反射阻抗计算策略,给出了计算公式与控制流程。最后通过仿真验证了理论分析的正确性。
     (3)针对ICPT系统负载的变化会使系统谐振频率漂移导致能量传输能力下降的问题,根据ICPT系统能量模型,提出了一种适用于任何无功补偿拓扑的基于能量流方向的ICPT系统谐振状态判据,并根据这一判据提出了一种基于能量模型的ICPT系统自调谐控制策略。最后以TS型ICPT系统为例,通过仿真与实验验证了理论分析的正确性。
     (4)针对ICPT系统电路拓扑繁多造成的建模困难和由于原副边电气隔离造成的检测困难等问题,分别提出了能量注入式ICPT系统输出功率控制策略和基于负载需求的拾取端周期性能量注入式输出功率控制策略。两种控制模式都根据能量流的输入输出关系建立系统模型和控制策略。提出了功率调节比的概念,并给出了计算公式。最后通过仿真和实验证明了理论分析的正确性。
     本文的创新性贡献在于:
     (1)针对ICPT系统无功补偿电路拓扑形式繁多,系统建模与求解困难的问题,提出了ICPT系统关键能量流节点的概念,根据各关键节点的能量流输入输出关系,提出了一种适用于拾取端电路拓扑不确定的ICPT系统能量建模方法。与传统的非线性建模方法相比,该建模方法极大地简化了系统的建模过程,并可推广到电力电子电能变换系统的稳态建模中。
     (2)针对ICPT系统高阶非线性和电气隔离特性所带来的负载计算与检测困难的问题,提出了一种适用于拾取端电路拓扑不确定的ICPT系统反射阻抗计算方法,并给出了相应的控制流程与计算公式。
     (3)针对ICPT系统负载的不确定性会造成系统谐振频率漂移,导致能量传输能力与效率下降的问题,基于ICPT系统能量流动的方向,提出了一种可适用于任何无功补偿拓扑的ICPT系统谐振状态判据和系统自调谐控制策略
Inductive Coupled Power Transfer (ICPT) is a novel techonology developed todeliver power contactlessly from power supply to one or more movable loads. It isbased on electromagnetic coupling theory and involving modern power electronics,control theory and magnetic coupling techniques. The main advantages of thistechnology are safe, flexible, easy to maintain, highly reliable and environmentallyfriendly.
     In ICPT system, due to loosely coupled characteristic between primary side andsecondary side, resonant mode will be adopted to improve efficiency and level of powertransfer. According to different demands of loads, different reactive powercompensation circuit topologies and control mode will be adopted. Any tinny changecaused by operating state and system parameter will lead to great changes in systemmodel if traditional modeling approaches be adopted, it is very inconvenient fordesigners that the system model have to be restructured. ICPT system is a typicalnonlinear, high-frequency, multi-parameters system and there are strong adhesionbetween different parameters. Control behaviors in different functional modules must behighly unified the overall system control mode. While the system model established bytraditional modeling approaches and control mode just adapt special system, lackinggenerality. So, poor compatibility and low portability between different modules isgreatly limits the development of ICPT tehnology.
     In view of the above questions, the paper proposed energy modeling and relevantcontrol strategy just like reflection impedance identification, frequency stability control,output power control and so on, which was aimed at solving general modeling approachand control mode for ICPT system.
     The main works of the paper include:
     1. Aimed at the defects that traditional system modeling depends on specific circuittopology and operating state in ICPT system, the paper analysed the demands ofmodeling and control in every key part in ICPT system, proposed a energy modelingapproach based on law of conservation of energy. In this modeling approach, ICPTsystem was divided by several energy flow key points according to different fuctionmodules, loss and direction in every energy flow key point was analysed; energy inputand output formule was established; energy model of electrical energy transformer, reactive power compensation circuit and electromagnetic coupling mechanism wereestablished, the system model and schematic diagram was presented.
     2. Aimed at loads in ICPT system are difficult to detected and identified caused bycharacteristic of high-order, non-linear and electric isolation, from the point of view ofenergy, established the ICPT system energy model. Analysed series-parallel reactivepower compensation circuit topology, a load identification approach suitable for anytopology in ICPT system was proposed, control flow and computational formula werealso presented. The theoretical analysis was verified according to simulation andexperiment results.
     3. Aimed at low efficiency and level of power transfer caused by resonancefrequency drifting because of uncertainly loads, a criterion of system operating state andself tuning control strategy based on energy model was proposed, the criterion andcontrol strategy is suitable for any ICPT system. TS reactive power compensationcircuit was made an example and theoretical analysis was verified according tosimulation and experiment results.
     4. Aimed at loads in ICPT system are difficult to detected and identified caused bycharacteristic of high-order, non-linear and electric isolation, the paper separatelyproposed ICPT system output power control strategy by energy injection and pick-upcircuit periodic energy injection output power control strategy based on loads demands.The design of control strategy and establish of system model according to therelationships of energy flow between input and output, to adapt any reactive powercompensation circuit topologies in ICPT system. Concept of power regulation duty ratiowas proposed, computational formulas was presented. Simulation and experimentresults verified the theoretical analysis.
     The innovative contributions of this paper are:
     1. Aimed at ICPT system is difficult to modeling and solve caused by variedreactive power compensation circuit topologies, the paper proposed the concept ofenergy flow key points in ICPT system, according to the relationships between energyinput and output in every key point, a modeling approach based on energy conservationsuitable for any reactive power compensation circuit in ICPT system was proposed.Compared to traditional modeling approaches, the modeling process based on energyconservation was greatly simplified. This modeling approach also could be used inenergy conversion system.
     2. Aimed at loads in ICPT system are difficult to detected and identified caused by characteristic of high-order, non-linear and electric isolation, a load identificationapproach suitable for any topology in ICPT system was proposed, control flow andcomputational formula were also presented.
     3. Aimed at low efficiency and level of power transfer caused by resonancefrequency drifting because of uncertainly loads, a criterion of system operating state andself tuning control strategy based on energy flow direction was proposed, the criterionand control strategy is suitable for any ICPT system.
引文
[1] Raabe S, Elliott G A J, Covic G A, et al. A Quadrature Pickup for Inductive Power TransferSystems[C].2007.
    [2] Covic G A, Boys J T, Kissin M L G, et al. A Three-Phase Inductive Power Transfer Systemfor Roadway-Powered Vehicles[J]. Industrial Electronics, IEEE Transactions on.2007,54(6):3370-3378.
    [3] Van Boheemen E L, Boys J T, Covic G A. Dual-tuning IPT Systems for Low BandwidthCommunications[C].2007.
    [4]夏晨阳,孙跃,苏玉刚,等.基于AC/DC变换的宽压自适应电源研究[Z].杭州:2008.
    [5] Boys J T, Huang C Y, Covic G A. Single-phase unity power-factor inductive power transfersystem[C].2008.
    [6] Boys J T, Kazmierkowski M P, Lomonova E A, et al. Introduction to the Special Section onContactless Energy Transfer Systems[J]. Industrial Electronics, IEEE Transactions on.2013,60(1):239-241.
    [7]唐春森.非接触电能传输系统软开关工作点研究及应用[D].重庆大学,2009.
    [8]夏晨阳.感应耦合电能传输系统能效特性的分析与优化研究[D].重庆大学,2010.
    [9]孙跃,王智慧,苏玉刚,等.电流型CPT系统传输功率调节方法[J].重庆大学学报.2009,32(12):1386-1391.
    [10]戴欣,孙跃,苏玉刚,等.感应电能传输系统参数计算与恒流控制[J].重庆大学学报.2011,34(6):98-104.
    [11] Liu X, Hui S Y R. An Analysis of a Double-layer Electromagnetic Shield for a UniversalContactless Battery Charging Platform[C].2005.
    [12] Liu X, Hui S Y R. Equivalent circuit modeling of a multilayer planar winding arraystructure for use in a universal contactless battery charging platform[C].2005.
    [13] Liu X, Chan P W, Hui S Y R. Finite element simulation of a universal contactless batterycharging platform[C].2005.
    [14] Su,Y.P.,Xun Liu,S Y R. Mutual Inductance Canlculation of Movable Planar Coils onParallel Surfaces [J]. Power Electronics, IEEE Transactions on.2009,24(4):1115-1123.
    [15] Zhong W X, Liu X, Hui S Y R. Analysis on a single-layer winding array structure forcontactless battery charging systems with free-positioning and localized chargingfeatures[C].2010.
    [16] Choi W P, Ho W C, Liu X, et al. Comparative study on power conversion methods forwireless battery charging platform[C].2010.
    [17] Choi W P, Ho W C, Liu X, et al. Bidirectional communication techniques for wirelessbattery charging systems portable consumer electronics[C].2010.
    [18] Su Y P, Xun L, Lee C K, et al. Relationship of quality factor and hollow winding structureof Coreless Printed Spiral Winding (CPSW) inductor[C].2010.
    [19] Zhong W X, Xun L, Hui S Y R. A Novel Single-Layer Winding Array and Receiver CoilStructure for Contactless Battery Charging Systems With Free-Positioning and LocalizedCharging Features[J]. Industrial Electronics, IEEE Transactions on.2011,58(9):4136-4144.
    [20] Hao L L, Aiguo H, Covic G A. Development of a discrete energy injection inverter forcontactless power transfer[C].2008.
    [21] Kissin M L G, Covic G A, Boys J T. Estimating the output power of flat pickups in complexIPT systems[C].2008.
    [22] Li H L, Hu A P, Covic G A. FPGA controlled high frequency resonant converter forcontactless power transfer[C].2008.
    [23] Covic G A, Boys J T, Tam A M W, et al. Self tuning pick-ups for inductive powertransfer[C].2008.
    [24] Stielau O H, Covic G A. Design of loosely coupled inductive power transfer systems[C].2000.
    [25] Hu A P, Chao L, Hao L L. A Novel Contactless Battery Charging System for SoccerPlaying Robot[C].2008.
    [26] Budhia M, Covic G, Boys J. A new IPT magnetic coupler for electric vehicle chargingsystems[C].2010.
    [27] Ho S L, Junhua W, Fu W N, et al. A Comparative Study Between Novel Witricity andTraditional Inductive Magnetic Coupling in Wireless Charging[J]. Magnetics, IEEETransactions on.2011,47(5):1522-1525.
    [28] Jonah O, Georgakopoulos S V. Optimal helices for wireless power transfer via magneticresonance[C].2012.
    [29] Nishimura M, Kawamura A, Kuroda G, et al. High Efficient Contact-less PowerTransmission System for the High Speed Trains[C].2005.
    [30] Ayano H, Yamamoto K, Hino N, et al. Highly efficient contactless electrical energytransmission system[C].2002.
    [31] Sallan J, Villa J L, Llombart A, et al. Optimal Design of ICPT Systems Applied to ElectricVehicle Battery Charge[J]. Industrial Electronics, IEEE Transactions on.2009,56(6):2140-2149.
    [32] Villa J L, Sallan J, Sanz Osorio J F, et al. High-Misalignment Tolerant CompensationTopology For ICPT Systems[J]. Industrial Electronics, IEEE Transactions on.2012,59(2):945-951.
    [33] Eun-Soo K, Hwan-Kook S, Joo-Hun K, et al. Efficiency characteristics of a half-bridgeseries resonant converter for the contact-less power supply[C].2008.
    [34] Sanghoon C, Yong-Hae K, Seung-Youl K, et al. Circuit-Model-Based Analysis of aWireless Energy-Transfer System via Coupled Magnetic Resonances[J]. IndustrialElectronics, IEEE Transactions on.2011,58(7):2906-2914.
    [35] Seungyoung A, Joungho K. Magnetic field design for high efficient and low EMF wirelesspower transfer in on-line electric vehicle[C].2011.
    [36] Zou L, Larsen T. Dynamic power control circuit for implantable biomedical devices[J].Circuits, Devices&Systems, IET.2011,5(4):297-302.
    [37] Zhen N L, Chinga R A, Tseng R, et al. Design and Test of a High-Power High-EfficiencyLoosely Coupled Planar Wireless Power Transfer System[J]. Industrial Electronics, IEEETransactions on.2009,56(5):1801-1812.
    [38] Zaheer M, Patel N, Hu A P. Parallel tuned contactless power pickup using saturable corereactor[C].2010.
    [39] Bhutkar R, Sapre S. Wireless Energy Transfer Using Magnetic Resonance[C].2009.
    [40] Fotopoulou K, Flynn B W. Wireless Power Transfer in Loosely Coupled Links: CoilMisalignment Model[J]. Magnetics, IEEE Transactions on.2011,47(2):416-430.
    [41] Moradewicz A J, Kazmierkowski M P. Contactless Energy Transfer System WithFPGA-Controlled Resonant Converter[J]. Industrial Electronics, IEEE Transactions on.2010,57(9):3181-3190.
    [42] Hasanzadeh S, Vaez-Zadeh S. Enhancement of overall coupling coefficient and efficiencyof contactless energy transmission systems[C].2011.
    [43] Dionigi M, Mongiardo M. CAD of wireless resonant energy links (WREL) realized bycoils[C].2010.
    [44] Zenkner H, Khan-Ngern W. High power density and high efficient wireless energy transferby resonance coupling[C].2010.
    [45] Ramrakhyani A K, Mirabbasi S, Mu C. Design and Optimization of Resonance-BasedEfficient Wireless Power Delivery Systems for Biomedical Implants[J]. Biomedical Circuitsand Systems, IEEE Transactions on.2011,5(1):48-63.
    [46] Sato F, Matsuki H, Kikuchi S, et al. A new meander type contactless power transmissionsystem-active excitation with a characteristics of coil shape[J]. Magnetics, IEEETransactions on.1998,34(4):2069-2071.
    [47] Hu A P, Boys J T, Covic G A. Frequency analysis and computation of a current-fedresonant converter for ICPT power supplies[C].2000.
    [48] Ping S, Hu A P, Malpas S, et al. Switching Frequency Analysis of Dynamically DetunedICPT Power Pick-ups[C].2006.
    [49] Eun-Soo K, Hwan-Kook S, Joo-Hun K, et al. Efficiency characteristics of a half-bridgeseries resonant converter for the contact-less power supply[C].2008.
    [50] Mcdonough M, Shamsi P, Fahimi B. Dynamic modeling of ICPT considering misalignmentand speed of vehicle[C].2011.
    [51] Swain A K, Neath M J, Madawala U K, et al. A Dynamic Multivariable State-Space Modelfor Bidirectional Inductive Power Transfer Systems[J]. Power Electronics, IEEETransactions on.2012,27(11):4772-4780.
    [52] Keeling N, Covic G A, Hao F, et al. Variable tuning in LCL compensated contactless powertransfer pickups[C].2009.
    [53] Kissin M, Chang-Yu H, Covic G A, et al. Detection of the Tuned Point of aFixed-Frequency LCL Resonant Power Supply[J]. Power Electronics, IEEE Transactions on.2009,24(4):1140-1143.
    [54] Chan-I C, Covic G A, Boys J T. Regulator capacitor selection for series compensated IPTpickups[C].2008.
    [55] Raabe S, Boys J T, Covic G A. A high power coaxial inductive power transfer pickup[C].2008.
    [56] Budhia M, Covic G A, Boys J T. Design and optimisation of magnetic structures for lumpedInductive Power Transfer systems[C].2009.
    [57] Budhia M, Vyatkin V, Covic G A. Powering flexible manufacturing systems with intelligentcontact-less power transfer[C].2008.
    [58]孙跃,卓勇,苏玉刚,等.非接触电能传输系统拾取机构方向性分析[J].重庆大学学报(自然科学版).2007,30(4):87-90,112.
    [59]苏玉刚,王智慧,孙跃,等.非接触供电移相控制系统建模研究[J].电工技术学报.2008,23(7):92-97.
    [60]苏玉刚,唐春森,孙跃,等.非接触供电系统多负载自适应技术[J].电工技术学报.2009,24(1):153-157.
    [61]苏玉刚,王小飞,唐春森,等.非接触电能传输系统双模控制式交直交变换器[J].重庆大学学报.2010,33(8):12-16.
    [62]王智慧,孙跃,苏玉刚,等.适用于非接触电能传输系统的新型AC/DC/AC变换器[J].电工技术学报.2010,25(1):84-89.
    [63]孙跃,王琛琛,唐春森,等. CPT系统能量与信号混合传输技术[J].电工电能新技术.2010,29(4):10-13,22.
    [64]唐春森,孙跃,戴欣,等.感应电能传输系统多谐振点及其自治振荡稳定性分析[J].物理学报.2011,60(4):738-746.
    [65]王智慧,孙跃,戴欣,等. DC-AC型非接触电能传输系统变换器设计[J].重庆大学学报.2011,34(2):38-43.
    [66] Tang S C, Hui S Y R, Chung H. Coreless printed circuit board (PCB) transformers withhigh power density and high efficiency[J]. Electronics Letters.2000,36(11):943-944.
    [67] Majid A, Kotte H B, Saleem J, et al. High frequency half-bridge converter usingmultilayered coreless Printed Circuit Board step-down power transformer[C].2011.
    [68] Hui S Y R, Tang S C, Chung H. Optimal operation of coreless PCB transformer-isolatedgate drive circuits with wide switching frequency range[C].1999.
    [69] Li R, Zhu Y. The structure and analysis of coreless printed circuit board transformers[C].2003.
    [70]武瑛,严陆光,徐善纲.新型无接触电能传输系统的稳定性分析[J].中国电机工程学报.2004,24(5):63-66.
    [71]武瑛,严陆光,黄常纲,等.新型无接触电能传输系统的性能分析[J].电工电能新技术.2003,22(4):10-13,43.
    [72]武瑛,严陆光,徐善纲.运动设备无接触供电系统耦合特性的研究[J].电工电能新技术.2005,27(3):5-8,80.
    [73]周雯琪,马皓,何湘宁.感应耦合电能传输系统不同补偿拓扑的研究[J].电工技术学报.2009,24(1):133-139.
    [74]周雯琪,马皓,何湘宁.基于动态方程的电流源感应耦合电能传输电路的频率分析[J].中国电机工程学报.2008,28(3):119-124.
    [75]韩腾,卓放,闫军凯,等.非接触电能传输系统频率分叉现象研究[J].电工电能新技术.2005,24(2):44-47,76.
    [76]盛松涛,杜贵平,张波.感应耦合式无接触电能传输系统设计[J].通信电源技术.2007,24(5):33-36.
    [77]张峰,王慧贞,姜田贵.电压型松耦合全桥谐振变换器原理分析与实现[J].电力电子技术.2007,41(4):28-30.
    [78]张峰,王慧贞,秦海鸿,等.松耦合全桥谐振变换器的原理分析与实现[J].电力电子技术.2007,41(2):16-18.
    [79]程啟华,王莉.非接触式供电系统耦合回路建模与特性分析[J].电源技术.2011,35(6):708-710,724.
    [80]李宗峰,徐磊.非接触通用供电平台多负载解谐控制方法研究[J].现代电子技术.2009,32(3):133-136.
    [81]李时杰.串联谐振逆变器在无接触电能传输技术中的研究与应用[D].河北工业大学,2003.
    [82]董慧芬.感应电能传输技术的研究[D].河北工业大学,2002.
    [83]刘志宇,都东,齐国光.感应充电技术的发展与应用[J].电力电子技术.2004,38(3):92-94.
    [84]刘志宇.感应充电实验系统研究[D].清华大学,2004.
    [85]孙跃,朱军峰,王智慧,等. CPT系统输出稳压控制技术[J].重庆工学院学报(自然科学版).2008,22(3):1-4,8.
    [86]孙跃,戴欣,苏玉刚,等.广义状态空间平均法在CMPS系统建模中的应用[J].电力电子技术.2004,38(3):86-88.
    [87]张敏.松耦合感应电能传输技术的研究[D].重庆大学,2005.
    [88]孙跃,李良,戴欣,等.电流型全桥软开关变换器的离散映射建模与仿真[J].电工技术学报.2005,20(6):20-24.
    [89]周雯琪.感应耦合电能传输系统的特性与设计研究[D].浙江大学电气工程学院浙江大学,2008.
    [90]杜贵平,盛松涛,张波,等.感应耦合式无接触电能传输系统建模及仿真[Z].杭州:2008.
    [91]翟渊,孙跃,戴欣,等.磁共振模式无线电能传输系统建模与分析[J].中国电机工程学报.2012(12):155-160.
    [92]毛赛君.非接触感应电能传输系统关键技术研究[D].南京航空航天大学,2006.
    [93]徐磊.并联谐振型非接触通用供电平台设计与实现[D].郑州大学,2006.
    [94]徐晔,马皓.串联补偿电压型非接触电能传输变换器的研究[J].电力电子技术.2008,42(3):4-5,11.
    [95]孙跃,陈国东,戴欣,等.非接触电能传输系统恒流控制策略[J].重庆大学学报(自然科学版).2008,31(7):766-769.
    [96]孙跃,祝兵权,戴欣. CPT系统输出电压主动控制技术[J].电源技术.2011,35(1):75-78.
    [97]戴欣,孙跃.感应电能传输系统能量注入控制方法研究[J].电子科技大学学报.2011,40(1):69-72,89.
    [98]杨民生.非接触感应耦合电能传输与控制技术及其应用研究[D].湖南大学,2012.
    [99]张志东,孙雨耕,刘洋,等.无线传感器网络能量模型[J].天津大学学报.2007,40(9):1029-1034.
    [100]陈凌,蒋家羚,范志超,等.低周疲劳寿命预测的能量模型探讨[J].金属学报.2006,42(2):195-200.
    [101]戚赟徽,黄海鸿,刘光复,等.基于动态生命周期的能量分析方法[J].机械工程学报.2007,43(8):129-134.
    [102]厉剑,王殊,鄢舒,等.火灾探测的能量模型及其应用[J].华中科技大学学报(自然科学版).2002,30(1):44-46.
    [103]林祥日.鱼类生物能量学研究进展[J].淡水渔业.2010,40(6):75-79.
    [104]王弘,王昌凌.基于能量模型的曲面展开通用算法[J].计算机辅助设计与图形学学报.2001,13(6):556-560.
    [105]张博,S Lee J. H.,白春华. C2H4-O2混合气体直接起爆的临界能量[J].爆炸与冲击.2012(2):113-120.
    [106]李忠明.理疗、针灸激光最佳功率和照射时间的定量分析[J].激光杂志.1999,20(2):48-49.
    [107]罗方林,叶虹.能量因数及功率直流变换器建模[J].电工技术学报.2004,19(8):53-60.
    [108] Sira-Ramirez H. Sliding motions in bilinear switched networks[J]. Circuits and Systems,IEEE Transactions on.1987,34(8):919-933.
    [109] Wong R C, Owen H A, Wilson T G. An Efficient Algorithm for the Time-DomainSimulation of Regulated Energy-Storage DC-to-DC Converters[J]. Power Electronics, IEEETransactions on.1987, PE-2(2):154-168.
    [110] Vorperian V. Simplified analysis of PWM converters using model of PWM switch.Continuous conduction mode[J]. Aerospace and Electronic Systems, IEEE Transactions on.1990,26(3):490-496.
    [111] Sanders S R, Noworolski J M, Liu X Z, et al. Generalized averaging method for powerconversion circuits[J]. Power Electronics, IEEE Transactions on.1991,6(2):251-259.
    [112] Hamill D C, Deane J H B, Jefferies D J. Modeling of chaotic DC-DC converters by iteratednonlinear mappings [J]. Power Electronics, IEEE Transactions on.1992,7(1):25-36.
    [113] Kazimierczuk M K, Geise R S, Reatti A. Small-signal analysts of a PWM boost DC-DCconverter with a non-symmetric phase integral-lead controller[C].1995.
    [114] Czarkowski D, Pujara L R, Kazimierczuk M K. Robust stability of state-feedback control ofPWM DC-DC push-pull converter[J]. Industrial Electronics, IEEE Transactions on.1995,42(1):108-111.
    [115]罗萍,甄少伟,李彦麟,等.不同调制模式下Boost变换器DCM模态的能量模型与稳定性分析[J].中国电机工程学报.2008,28(6):49-54.
    [116] Wong R C, Owen H A, Wilson T G. An Efficient Algorithm for the Time-DomainSimulation of Regulated Energy-Storage DC-to-DC Converters[J]. Power Electronics, IEEETransactions on.1987, PE-2(2):154-168.
    [117] Cheng K W E. Storage energy for classical switched mode power converters[J]. ElectricPower Applications, IEE Proceedings-.2003,150(4):439-446.
    [118] Ping L, Zhaoji L, Bo Z. A novel improved PSM mode in DC-DC converter based on energybalance[C].2006.
    [119]余明杨.变压器隔离全桥开关变换器的建模与应用技术研究[D].中南大学,2007.
    [120]赵红茹.电子功率谐振变换器建模与控制的研究[D].华南理工大学,2004.
    [121]姜学东.开关功率变换器中的非线性现象及其分析与控制研究[D].安徽大学,2009.
    [122] Wu H H, Boys J, Covic G, et al. An AC processing pickup for IPT systems[C].2009.
    [123] Raabe S, Covic G A, Boys J T, et al. Practical considerations in the design of multiphasepick-ups for contactless power transfer systems[C].2009.
    [124] Wu H H, Feng M Z, Boys J T, et al. A wireless multi-drop IPT security camera system[C].2009.
    [125] Chang-Yu H, Boys J T, Covic G A, et al. Practical considerations for designing IPT systemfor EV battery charging[C].2009.
    [126] Elliott G, Raabe S, Covic G A, et al. Multiphase Pickups for Large Lateral ToleranceContactless Power-Transfer Systems[J]. Industrial Electronics, IEEE Transactions on.2010,57(5):1590-1598.
    [127] Chang-Yu H, Boys J T, Covic G A, et al. Implementation and evaluation of an IPT batterycharging system in assisting grid frequency stabilisation through Dynamic DemandControl[C].2010.
    [128] Budhia M, Covic G, Boys J. Magnetic design of a three-phase Inductive Power Transfersystem for roadway powered Electric Vehicles[C].2010.
    [129] Li H L, Hu A P, Covic G A. A power flow control method on primary side for a CPTsystem[C].2010.
    [130] Keeling N A, Covic G A, Boys J T. A Unity-Power-Factor IPT Pickup for High-PowerApplications[J]. Industrial Electronics, IEEE Transactions on.2010,57(2):744-751.
    [131] Kissin M L G, Boys J T, Covic G A. Interphase Mutual Inductance in Polyphase InductivePower Transfer Systems[J]. Industrial Electronics, IEEE Transactions on.2009,56(7):2393-2400.
    [132] Li H L, Hu A P, Covic G A, et al. Optimal coupling condition of IPT system for achievingmaximum power transfer[J]. Electronics Letters.2009,45(1):76-77.
    [133]孙跃,夏晨阳,戴欣,等.多拾取机构下ICPT系统传输功率和效率的建模与仿真[Z].重庆:2010.
    [134]孙跃,夏晨阳,苏玉刚,等.导轨式非接触电能传输系统功率和效率的分析与优化[J].华南理工大学学报(自然科学版).2010,38(10):123-129.
    [135] Wu H H, Covic G A, Boys J T, et al. Analysis and design of an AC processing pickup forIPT systems[C].2009.
    [136] Li H L, Hu A P, Covic G A, et al. A new primary power regulation method for contactlesspower transfer[C].2009.
    [137] Ping S, Hu A P, Malpas S, et al. A Frequency Control Method for Regulating WirelessPower to Implantable Devices[J]. Biomedical Circuits and Systems, IEEE Transactions on.2008,2(1):22-29.
    [138] Wu H H, Covic G A, Boys J T, et al. A Series-Tuned Inductive-Power-Transfer PickupWith a Controllable AC-Voltage Output[J]. Power Electronics, IEEE Transactions on.2011,26(1):98-109.
    [139] Hu A P, Hussmann S. Improved power flow control for contactless moving sensorapplications[J]. Power Electronics Letters, IEEE.2004,2(4):135-138.
    [140] Boys J T, Covic G A, Green A W. Stability and control of inductively coupled powertransfer systems [J]. Electric Power Applications, IEE Proceedings-.2000,147(1):37-43.
    [141] Kelley A W, Owens W R. Connectorless power supply for an aircraft-passengerentertainment system[J]. Power Electronics, IEEE Transactions on.1989,4(3):348-354.
    [142] Hu A P. Selected resonant converters for IPT power supplies[D]. Auckland: The Universitiyof Auckland,2001.
    [143]崔明浩,卓放,王兆安.非接触感应电能传输系统中负载电压控制方案研究.[C]2006.
    [144]冯慈璋,马西奎.工程电磁场导论,[M]北京,高等教育出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700