用户名: 密码: 验证码:
再生混凝土结构抗震性能研究及混凝土结构损伤评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国城市化进程的加快,每年都会有大量的混凝土结构临近使用年限被拆除,或遭受地震等自然灾害被损毁,产生了大量的建筑废弃物。传统的废弃混凝土处理方法主要是运往郊外露天堆放或填埋,占用大量土地,破坏生态环境。另一方面,建筑业作为国民经济的支柱产业之一,混凝土的需求量也在保持高速增长。混凝土的配制需要砂石骨料,开山采石毁坏自然植被,引起水土流失,对自然资源的占用及环境的负面影响也日趋严重。将废弃混凝土块体经过回收、破碎、筛分后,按一定的比例与级配混合形成再生骨料,它可代替天然骨料制成新的建材产品。再生混凝土循环利用,符合国家“十二五”提出的节约资源、保护环境和可持续发展的战略思想,有助于建设资源节约型和环境友好型社会。
     目前再生骨料混凝土多用于公路工程的路基路面和建筑工程的非承重构件,为将其用于土木工程的主体承重结构,本文进行了再生混凝土基本力学性能试验研究、再生混凝土梁柱节点和两层单跨再生混凝土框架的抗震性能试验研究,可为再生混凝土结构的实际应用提供试验依据和理论基础。
     本文通过再生混凝土基本力学性能的相关试验,研究了再生混凝土立方体抗压强度、劈裂抗拉强度、抗折强度的影响因素及变化规律,并给出了再生混凝土各项强度指标之间关系式。对再生混凝土与普通混凝土的单轴受压性能、本构关系进行了对比试验研究,在对试验数据回归分析的基础上,提出了再生混凝土弹性模量的计算公式、应力-应变曲线的拟合公式。试验结果表明,再生骨料表面吸附旧水泥砂浆,再生骨料新、老砂浆之间界面过渡区存在孔隙率大,吸水率高,粘结强度低的特点,界面过渡区被认为是再生混凝土最薄弱部位,导致了再生混凝土的抗压强度、抗拉强度、抗折强度以及弹性模量等力学指标均要低于天然骨料混凝土
     制作了再生混凝土框架中节点、边节点和拐角节点等不同类型的梁柱组合体,进行了拟静力试验研究,了解节点的受力状态和破坏过程,对其滞回曲线、延性特征、耗能性能、强度退化和刚度退化等性能指标进行了研究。试验结果表明,再生混凝土节点在低周反复荷载作用下破坏过程与普通混凝土节点相似,其受力和破坏过程可分为初裂、通裂、极限、破坏四个阶段。由于废弃混凝土破碎生成的再生骨料,生产剥离过程中表面包裹有母体水泥砂浆,且骨料内部存在不同程度的缺陷和裂纹,造成再生混凝土中新拌水泥砂浆与再生骨料界面薄弱。再生混凝土节点核心区剪切破坏时,核心区菱形块体混凝土剥落,多沿再生骨料新老砂浆接合面呈酥松状破坏,表现出明显脆性性质,节点抗震性能弱于普通混凝土试件。
     对1榀两层单跨再生混凝十框架进行了拟动力和拟静力试验。拟动力试验时,采用不同加速度峰值的E1-Centro地震波激励加载,研究了框架的动力性能、受力特点、变形性能等抗震性能。试验表明,再生混凝土框架在小震和中震作用下具有足够的承载力和刚度,框架处于弹性工作状态,加载至框架屈服,卸载后残余变形较小。通过拟静力试验研究了框架在低周反复荷载作用下的破坏过程、承载能力、滞回曲线、耗能能力、延性系数、刚度退化等抗震性能指标。试验结果表明,再生混凝土结构具有良好的延性和耗能能力,通过合理设计可以用于抗震设防地区。
     在试验研究的基础上,分别采用不同的有限元软件ABAQUS和OpenSees,对再生混凝土节点和框架的抗震试验结果进行了数值模拟。此外,利用一个MATLAB编写的程序对再生混凝土框架的拟动力试验进行了模拟。节点和框架的拟静力试验模拟结果表明,在OpenSees中基于'SimpleJoint'的建模方法建立的模型,能够很好地模拟出节点或是框架在低周反复荷载作用下的滞回性能。而框架拟动力试验的模拟结果则说明Takeda恢复力模型用于对再生混凝土框架的非线性时程分析中效果良好。
     结构健康监测手段或损伤评估方法,是结构高效、安全工作的有力保障。而目前,混凝土结构健康监测手段或损伤评估方法较为匮乏。基于此,本文分别利用结构的频响函数和小波分解理论分别提出了两个可以用于确定结构整体损伤程度的指标。并且,利用前面相关的再生混凝土试件抗震性能试验数据验证了这些指标用于评估结构损伤的有效性。此外,还利用了布置在混凝土结构不同位置处的压电材料对混凝土结构中各种损伤及钢筋腐蚀程度进行相关试验。试验结果表明,利用预先埋置或是粘结在混凝土结构上的压电材料,对混凝土结构局部区域的损伤或钢筋腐蚀程度进行评估是可行的。
With the acceleration of urbanization, many such structures are near the end of their service lives and some are damaged by natural disasters in each year, therefore large amounts of construction waste is produced. Transporting waste concrete to landfills for burying, as a conventional disposal method, results in serious environment pollution and vast resource extravagance. On the other hand, the consumptions of concrete maintain rapid growth due to building industry is one of the pillar industries of economy. A lot of stone and rock resources are needed to produce the coarse aggregates in concrete, which can lead to many environmental issues like soil and water loss, vegetation deterioration and so on. Recycled aggregates (RAs) can be obtained by treating waste concrete with the following processes:recycling, crushing, screening and blending etc. Using RAs as aggregates to produce new concrete, i.e. Recycled Aggregate Concrete (RAC), is corresponding to the strategic thoughts proposed in the national "Twelfth Five-year Plan", like resource conservation, environmental protection and sustainable development, also helps the building of a resource conserving and environment friendly society.
     So far, RAC is used mainly in subgrade and pavement in highway construction, or some non-bearing structures of building construction. In order to apply RAC to main bearing structures of civil engineering, experiments were carried out for better understanding the mechanical properties of RAC, as well as the seismic performances of RAC beam-column joints and RAC frames. The test results can provide experimental theoretic basis for practical engineering application of RAC structures.
     The basic properties of RAC such as compressive strength, split strength, flexural strength etc. and the changes of these basic mechanic indices at early age were investigated through experiments, and the relationships between various strength parameters were also presented in this thesis. Besides, uniaxial compressive performances and constitutive relations of RAC and natural aggregate concrete (NAC) were studied by comparison tests, and the expression of RAC's elastic modulus as well as the fitting formula of RAC's stress-strain curve were given based on these test results. The experiment results also showed that the main causes of RAC's inferior strength compared with NAC is the old mortar attached to the surface of RAs. Due to the existence of old mortar, the interfacial transition zone (ITZ) between RAs and new mortar has such features as high porosity, high water absorption and low bond strength, which cause this ITZ to become a weak point in RAC.
     Different types of beam to column connections include interior connections, exterior connections and knee connections were fabricated and tested under the cyclic loadings. The performance indices of these RAC connections were evaluated, including the stress condition, failure process, hysteretic curves, ductility characteristics, energy dissipation, strength and stiffness degradation etc. The failure process of a RAC joint can be mainly divided into the following four stages:initial cracking stage, thorough cracking stage, ultimate stage and failure stage, which is similar to a NAC joint. In RAC, the ITZ between RAs and new mortar is a weak region because of the existence of old mortar attached to the surface of RAs as well as the defects and cracks inside the RAs. When shear failure occurred at the joint core of a RAC connection, rhomb shaped concrete spalls can be observed in the joint core. Most of the cracking appeared at the ITZ between RAs and new mortar, and showed the obvious characteristic of brittleness. The seismic performances of RAC connections are worse than NAC connections.
     In this study, a RAC frame was subjected to a series of pseudo-dynamic tests, and then quasi-static tests. In the pseudo-dynamic test stage, the frame was subjected to the selected input motion which is the El-Centro (1940NS) ground acceleration time history, and the seismic performances of this RAC frame such as dynamic behavior, strength characteristic, deformation property were studied. The pseudo-dynamic test results showed that the RAC frame exhibited good seismic performances for resisting small earthquakes and the residual deformations were quite small after the frame was yielded. During the quasi-static test stage, the seismic performances of the RAC frame like the failure process, bearing capacity, hysteretic curves, energy dissipation, ductility, strength and stiffness degradation etc. were studied, and the test results indicated that RAC frames possess good seismic performances. It is possible to design RAC frames and apply them in practical structures in some seismic areas by proper design.
     Based on these experimental studies, different finite element programs, like ABAQUS and OpenSees were adopted in this research for simulating the quasi-static tests of both RAC joints and the RAC frame. Furthermore, a MATLAB based program was used in this paper for the simulation of RAC frame's pseudo-dynamic test. The simulation results indicated that the 'SimpleJoint' based model can simulate the responses of the RAC joints and frame when they're subjected to low reverse loadings, while the simulation results of the frame's pseudo-dynamic test showed that Takeda restoring force model is appropriate for RAC structures'nonlinear time history analysis.
     Health monitoring techniques and damage condition assessment measures are effectively guarantee structures safe and efficient work. Now, it is lack of health monitoring techniques and damage condition assessment measures for concrete structures. Accordingly, two damage indices were developed based on frequency response function and wavelet transform, respectively. Both of the two damage indices could be used for estimating the damage condition of structure as a whole. Meanwhile, these damage indices' feasibilities for damage assessment were validated by using the former seismic experiment data. Furthermore, this paper also presents an experimental investigation on detecting defects or damages in concrete structures based on piezoelectric materials, and the results indicated that the embedded or adhesive piezoelectric materials in concrete structures can be used as both actuators and receivers or sensors and it is feasible to use them to detect different types of defect or corrosion in some local area of concrete structures.
引文
[1]张学兵,方志,匡成钢等.制备工艺对再生骨料混凝土性能的影响[J].工业建筑.2012,42(2):101-106.
    [2]王罗春,赵由才.建筑垃圾处理与资源化[M].化学工业出版社.2004.
    [3]肖建庄.再生混凝土[M].中国建筑工业出版社.2008.
    [4]Shi Jianguang, Yue Zhou. Estimation and Foreasting of Concrete Debris Amount in China[J]. Resources, Conservation and Recycling.2006 49(2):147.
    [5]Gholamreza Fathifazl. Structural Performance of Steel Reinforced Recycled Concrete Members[D]. Ottawa:Corleton University,2008:1-18.
    [6]肖建庄,孙振平,李佳斌等.废弃混凝土破碎再生工艺研究[J].建筑技术.2005,36(2):141-144.
    [7]侯景鹏,史巍,宋玉普.再生混凝土技术研究开发与应用推广[J].建筑技术.2002,33(1):15-17.
    [8]李惠强,杜婷,吴贤国.建筑垃圾资源化循环再生骨料混凝土研究[J].华中科技大学学报.2001,29(6):83-84.
    [9]张李黎.再生混凝土材料性能试验研究[D].合肥工业大学,2009.
    [10]吕智英.混凝土再生骨料的研究动态与发展趋势[J].混凝土.2010(6):77-82.
    [11]肖建庄,李佳斌.再生混凝土技术研究最新进展与评述[J].混凝土.2003(10):17-20.
    [12]Federal Highway Administration "Recycled Concrete Aggregate." Federal Highway Administration National Review.. 2008.
    [13]王璨,杨鼎宜,刘艳南.再生混凝土的研究[J].建筑技术开发.2003(5).
    [14]T.C. Hansen, H. Narud, Strength of Recycled Concrete Made from Crushed Concrete Coarse aggregate, Concrete International [J].1983,5 (1):79-83.
    [15]S. Hasaba, M. Kawamura, K. Torik, K. Takemoto. Drying shrinkage and durability of the concrete made of recycled concrete aggregate, Transactions of the Japan Concrete Institute[J]. 1981,3:55-60.
    [16]B. Topcu, S. Sengel. Properties of concretes produced with waste concrete aggregate. Cement Concrete Research[J].2004,34(8):1307-1312.
    [17]Malhotra, V.M. Use of recycled concrete as aggregate. CANMET Report 76-18.1976, Canada, Energy Mines and Resources, Canada, Ottawa.
    [18]Buck, A.D. Recycled Concrete as A Source of Aggregate. ACI Journal[J].1977, No.74-22: 212-219.
    [19]Ravindrarajah, R.Sri. Effects of Using Recycled Concrete as Aggregate on the Engineering Properties of Concrete. National Symposium on the Use of Recycled Materials in Engineering Construction:1996; Programme & Proceedings. Barton, ACT:Institution of Engineers, Australia,1996:147-152. National conference publication (Institution of Engineers, Australia); no.96/06.
    [20]Dhir, R. K. Limbachiya, M. Leelawat, C. T.,'Suitability of recycled concrete aggregate for use BS 5328 designated mixes', Proc. Inst. Civ. Engrs & Bldgs,1999,134, Aug.,257-274.
    [21]P.J. Nixon. Recycled concrete as an aggregate for concrete-a review, Materials and Stractures[J].1978,11(5):371-378.
    [22]B.C.SJ. Study on recycled aggregate concrete. Building Contractors Society of Japan, Committee on Disposal and Re-use of Concrete Construction Waste. Summary in Concrete Journal[J].1978,16(7):18-31.
    [23]K. Ramamurthy. Properties of recycled aggregate concrete [J].The Indian Concrete Journal,1998(1):49-53.
    [24]S. Mandal, A. Gupta. Strength and durability of recycled aggregate concrete [A]. IABSE Symposium Melbourne [C]. Melbourne, Australia,2002.
    [25]K. Yoda, T. Yoshikane. Recycled cement and recycled concrete in Japan [A]. Proceedings of the Second International RILEM Symposium and Demolition and Reuse of Concrete and Masonry [C]. Tokyo, Japan,1988:527-536.
    [26]A. R. M. Ridzuan et al. The influence of recycled aggregate concrete on the early compressive strength and drying shrinkage of concrete [A]. Proceedings of the Internatinal Conference on Structural Engineering, Mechanics and Computation [C]. Cape Town, South Africa,2001;1415-1421.
    [27]R.M. Salem. Strength and durability characteristics of recycled aggregate concrete [D]. University of Tennessee, Knoxville,1996.
    [28]李佳彬,肖建庄,孙振平.再生混凝土骨料的基本特性及其对再生混凝土基本性能的影响[J].建筑材料学报,2004,7(4).
    [29]肖建庄,李佳彬,孙振平.再生混凝土抗压强度研究[J].同济大学学报,2004,32(12):1558-1561.
    [30]李佳彬,肖建庄,黄健.再生粗骨料取代率对混凝土抗压强度的影响[J].建筑材料学报,2006,9(3):297-301.
    [31]A. Herinchsen, B. Jensen. Styrkeegenskaber for beton med genanvendelsesesmaterialer [R]. Internal report,1989.
    [32]I.B. Topcu. Physical and mechanical properties of concrete produced with waste concrete [J]. Cement and Concrete Research,1997,27(12):1817-1823.
    [33]M. Ruh1, G. Atkinson. The influence of recycled aggregate concrete on the stress-strain relation of concrete [J]. Darmstadt Concrete,1999,14.
    [34]宋灿.再生混凝土抗压力学性能及微观结构分析[D].哈尔滨:哈尔滨工业大学(导师:邹超英)2003.
    [35]陈宗平,薛建阳,余兴国等.再生混凝土轴心抗压强度试验研究[J].混凝土,2011,9:4-11.
    [36]J.Z. Xiao, J.B. Li, Ch. Zhang. Mechanical properties of recycled aggregate concrete under uni-axial loading [J]. Cement and Concrete Research,2005,35:1187-1194.
    [37]李佳彬.再生混凝土基本力学性能研究[D].上海:同济大学(导师:肖建庄),2004.
    [38]李旭平.再生混凝土基本力学性能研究(Ⅰ)-单轴受压性能[J].建筑材料学报,2007,10(5):564-598.
    [39]M. Kawamura et al. Reuse of recycled concrete aggregate for pavement [A]. Proceedings of the Second International RILEM Symposium on Demolition and Reuse of Concrete and Masonry [C]. Tokyo, Japan,1988:726-735.
    [40]S.H. Ahmad. Properties of concrete made with North Carolina recycled coarse and fine aggregates [R]. Department of Civil Engineering, North Carolina State University, June 2004.
    [41]T. Mukai, M. Kikuchi. Study on the properties of concrete containing recycled concrete aggregates [R]. Cement Association of Japan,32nd Review.
    [42]T.Ikeda, S. Yamane. Strength of concrete containing recycled aggregate [A]. Proceedings of the Second International RILEM Symposium on Demolition and Reuse of Concrete and Masonry [C]. Tokyo, Japan,1988:585-594.
    [43]R. Ravindrarajah, C.T. Tam. Recycled concrete as fine and coarse aggregates in concrete [J]. Magazine of Concrete Research.1987,39(141):214-220.
    [44]J.J.A. Gerardu, C.F. Hendriks. Recycling of road and pavement materials in the Netherlands [M]. Rijkswaterstaat Communications, The Hague, Netherlands,1985.
    [45]S.M. Gupta. Strength characteristics of concrete made with demolition waste as coarse aggregate [A]. Proceedings of the International Conference on Recent Development in Structural Engineering [C],2001:364-378.
    [46]朋改非,沈大钦,朱海英等.同配合比条件下再生骨料混凝土与基准混凝土的力学性能比较研究[J].混凝土,2006,2:34-38.
    [47]肖建庄,兰阳.再生混凝土单轴受拉性能试验研究[J].建筑结构学报,2006,9(2):154-158.
    [48]肖建庄,李佳彬.再生混凝土强度指标间换算关系的研究[J].建筑材料学报,2005,8(2):197-201.
    [49]王军龙,肖建庄.钢纤维再生混凝土的抗折强度试验研究[J].工业建筑,2007,37(1):82-86.
    [50]黄书岭.再生混凝土断裂性能的试验研究及分析[D].郑州:郑州大学硕士学位论文(导师:张雷顺,李平先),2005.
    [51]S. Frondistou-Yannas. Waste concrete as aggregate for new concrete. ACI Journal Proceedings,1977,74(8):373-374.
    [52]R.S. Ravindrarajah, Y.J. Loo, C.T. Tam. Strength evaluation of recycled aggregate concrete by insitu tests [J]. Materials and Structures,1998,21:289-295.
    [53]T.C. Hansen, E. Boegh. Elasticity and drying shrinkage of recycled aggregate concrete [J]. ACI Journal,1985,82(5):648-652.
    [54]F. Lopez-Gayarre, P. Serna, A. Domingo-Cabo, M.A. Serrano-Lopez, Lopez-Colina C (2009) Influence of recycled aggregate quality and proportioning criteria on recycled concrete properties [J]. Waste Manage,29(12):3022-3028.
    [55]肖建庄,杜江涛.不同来源再生混凝土单轴受压应力应变全曲线[J].建筑材料学报,2008,11(1).
    [56]T.M. Witesides, H.S. Sweet. Effect of mortar saturation in concrete freezing and thawing testing [C]. Proceedings of Highway Research Board.1950,30:204-216.
    [57]S. Hasaba, M. Kawamura. Drying shrinkage and durability of the concrete made of recycled concrete aggregate [J]. Trans.of the Japan Concrete Institute,1981,3, pp.55.
    [58]C.F. Hendriks. The use of concrete and masonry waste as aggregates for concrete production in the Netherlands, EDA/RILEM demo-recycling conference [A]. Proceedings Ⅱ're-use of concrete and brick materials'[C].Rotterdam, European Demolition Association, Wassenaarseweg80,2596 CZ Den Haag, the Netherlands,3 June 1985.
    [59]A. Gokce, S. Nagataki, T. Saeki, M. Hisada. Freezing and thawing resistance of air-entrained concrete incorporating recycled coarse aggregate:The role of air content in demolished concrete [J]. Cement and Concrete Research,2004,34(5):799-806.
    [60]Dillmann R. Concrete with recycled concrete aggregate [A]. Proceedings of the International Symposium on Sustainable Construction:Use of Recycled Concrete Aggregate [C]. London, UK:1998:239-253.
    [61]覃银辉,邓寿昌,张学兵等.再生混凝土的抗冻性能[J].混凝土,2005,12:49-52.
    [62]刘学艳,刘彦龙.混凝土再生利用的试验研究[J].森林工程,2002,18(2):56-57.
    [63]李占印.再生骨料混凝土性能的试验研究[D].西安建筑科技大学.2003年.
    [64]张顺雷,.再生混凝土抗冻耐久性试验研究[J].工业建筑.2005,35(2):64-66,45.
    [65]G Rottler. Dauerhaftigkeit von recycling betonnen bei frost-tausalz-beanspruchung [D]. Diplomarbeit, Institute for Massivbau and Baustoffechnologie, Universitat Karlsruhe,1985.
    [66]Z. Roumiana, B. Francois, et al. Assessment of the surface permeation properties of recycled aggregate concrete [J]. Cement and Concrete Composites,2003,25(2):223-232.
    [67]F.T. Olorunsogo, N. Padayachee. Performance of recycled aggregate concrete monitored by durability indexes [J]. Cement and Concrete Research,2002,32:179-185.
    [68]M.C. Limbachiya, T. Leelawat, R.K. Dhir. Use of recycled concrete aggregate in high-strength concrete [J]. Materials and Structures,2000,33(10):574-580.
    [69]Rasheeduzzafar, A. Khan. Recycled concrete a source of new aggregate for concrete [J]. Cement, Concrete and Aggregates (ASTM),1984,6(1):17-27.
    [70]肖开涛.再生混凝土的性能及改性研究[D].武汉:武汉理工大学(导师:林宗寿),2004.
    [71]肖开涛,林宗寿,万惠文等.再生混凝土氯离子渗透性研究[J].山东建材,2004,25(1):31-33.
    [72]S.C. Kou, C.S. Poon, D. Chan. Properties of steam cured recycled aggregate fly ash concrete [A]. Proceedings of the International Conference on Sustainable waste management and recycling:Construction and demolition waste [C].2004.
    [73]M.C. Limbachiya, T. Leelawat, R.K. Dhir. Use of recycled concrete aggregate in high-strength concrete [J]. Materials and Structures,2002,33(10):574-580.
    [74]陈云钢.界面改性剂对再生混凝土性能改善效果的初步研究[D].上海:同济大学(导师:肖建庄,孙振平),2006.
    [75]孙浩.粗集料和掺合料对再生混凝土性能的影响研究[D].上海:同济大学(导师:王培铭).2006.
    [76]S. Mandal, S. Chakraborty, A. Gupta. Some studies on durability of recycled aggregate concrete [J]. The Indian Concrete Journal,2002,pp.385.
    [77]S. Mandal, A. Gupta. Strength and durability of recycled aggregate concrete [A]. IABSE Symposium Melbourne, Austrialia 2002, pp.1-8.
    [78]N. Otsuki, S. Miyazato, W. Yodsudjai. Influence of recycled aggregate on interfacial transition zone, strength, chloride, penetration and carbonation [J]. Journal of Materials in Civil Engineering,2003,15(5):443-451.
    [79]R.K. Dhir, M.C. Limbachiya. Suitability of recycled aggregate for use in BS 5328 designated mixes [A].Proceedings of the International Conference on Sustainable waste management and recycling:Construction and demolition waste [C].2004.
    [80]杨庆国,易志坚,李祖伟等.路面旧水泥混凝土的再生利用[J].中国公路,2002,18:54-55.
    [81]W.K. Fung. Durability of concrete using recycled aggregates [A]. SCCT Annual Concrete Seminar [C].2005.
    [82]T. Hiroshi, N. Atsushi, O. Junichi and I. Keiichi. High quality recycled aggregate concrete (HiRCA) processed by decom-pression and rapid release [J]. ACI Special publications,2001.
    [83]J.S. Ryu. An experimental study on the effect of recycled aggregate on concrete properties [J]. Magazine of Concrete Research,2003,34(11):1975-1980.
    [84]K. Amnon. Properties of concrete made with recycled aggregate from partially hydrated old concrete [J]. Cement and Concrete Research,2003,33(5):703.
    [85]A. Shayan, A. Xu. Performance and properties of structural concrete made with recycled concrete aggregate [J]. ACI Materials Journal,2003,100(5):371.
    [86]陈云钢.界面改性剂对再生混凝土性能改善效果的初步研究[D].上海:同济大学(肖建庄,孙振平),2006.
    [87]M. L. Salomon, H. Paulo. Durability of recycled aggregates concrete:a safe way to sustainable development [J]. Cement and Concrete Research,2004,34(11):1975-1980.
    [88]Jianzhuang Xiao, Bin Lei. On the carbonation behavior of recycled aggregate concrete[A]. Proceedings of the International Symposium on Innovation & Sustainability of Structures in Civil Engineering[C]. Nov.28-30,2007, Shanghai, China, pp.897-904.
    [89]雷斌,肖建庄.再生混凝土碳化性能试验研究[J].建筑材料学报,2008,11(2).
    [90]K. Ishill et al. Flexible characteristic of RC beam with recycled coarse aggregate[A]. Proceedings of the 25# JSCE Annual Meeting[C]. Kanto Branch 1998:pp.886-887.
    [91]T. Mukai, M. Kikuchi. Properties of Reinforced Concrete Beams Containing Recycled Aggregate [A]. Proceedings,2nd International Symposium RILEM of Demolition and Reuse of Concrete and Masonry [C]. Ed. Erik K. Lauritzen,1993:331-343.
    [92]M. Ippei, S. Masaru, S. Takahisa et al. Flexural properties of reinforced recycled concrete beams[A]. Conference on the Use of Recycled Materials in Building and Structures[C]. November 2004 Barcelona, Spain.
    [93]兰阳.再生混凝土梁受弯与受剪性能研究[D].上海:同济大学(导师:肖建庄),2004.
    [94]宋新伟.再生混凝土梁受弯性能试验研究[D].郑州:郑州大学(导师:李平先),2006.
    [95]肖建庄,兰阳.再生粗骨料混凝土梁抗弯性能试验研究[J].特种结构,2006,23(1):9-12.
    [96]GB50010-2002.混凝土结构设计规范[S].
    [97]黄清.再生混凝土受弯构件正截面性能试验研究与有限元分析[D].哈尔滨:哈尔滨工业大学(导师:邹超英).
    [98]B. C. Han et al. Shear capacity of reinforced concrete beams made with recycled aggregate [R]. ACI Special Publication, Vol.200, June 2001.
    [99]Margaret M. O'Mahony. An Analysis of the Shear Strength of Recycled Aggregates [J]. Materials and Structures,1997,30:599-606.
    [100]张雷顺,张晓磊,闫国新.再生混凝土无腹筋梁斜截面受力性能试验研究[J].郑州大学学报,2006,27(2):18-23.
    [101]G. Di Niro, E. Dolara, and R. Cairns. Properties of Hardened RAC for structural Purposes. Sustainable Construction. Use of Recycled Concrete Aggregate [C]. R. K. Dhir, N. A. Henderson, and M. C, Limbachiy eds., Thomas Telford, London.1998:177-187.
    [102]沈宏波.再生混凝土柱受力性能试验研究[D].上海:同济大学(导师:肖建庄),2006.
    [103]张宏达.再生混凝土框架承载力可靠度分析[D].上海:同济大学(导师:肖建庄),2007.
    [104]Y. F. Yang, L. H. Han. Experimental behavior of recycled aggregate concrete filled steel tubular columns [J]. Journal of Construction Steel Research,2006,62(12):1310-1324.
    [105]杨有福.钢管再生混凝土构件力学性能和设计方法若干问题的探讨[J].工业建筑,2006,36(11):1-5,10.
    [106]吴凤英,杨有福.钢管再生混凝土轴压短柱力学性能初探[J].福州大学学报(自然科学版),2005,33(10):305-308,315.
    [107]K. Konno, Y. Sato, Y. Kakuta, et al. Property of recycled concrete column encased by steel tube subjected to axial compression[J]. Transactions of the Japan Concrete Institute,1997, 19(2):231-238.
    [108]K. Konno, Y. Sato, T. Ueda, et al. Mechanical property of recycled concrete under lateral confinement [J]. Transactions of the Japan Concrete Institute,1998,20(3):287-292.
    [109]V. Corinaldesi, G. Moriconi. Behavior of beam-column joints made of sustainable concrete under cyclic loading[J]. Journal of Materials in Civil Engineering,2006,5:650-658.
    [110]肖建庄,朱晓晖.再生混凝土框架节点抗震性能研究[J].同济大学学报(自然科学版),2005,33(4):436-440.
    [111]朱晓晖.再生混凝土框架节点抗震性能研究[D].上海:同济大学(导师:张健荣,肖建庄),2004.
    [112]贾胜伟,李晓文,刘超.再生混凝土框架中间节点延性及耗能分析[J].新型建筑材料,2008,8:7-10.
    [113]Jianzhuang Xiao, Yaodong Sun, H. Falkner. Seismic performance of frame structures with recycled aggregate concrete [J]. Engineering Structures,2006,28 (1):1-8.
    [114]孙跃东.再生混凝土框架抗震性能研究[D].上海:同济大学(导师:周德源,肖建庄),2007.
    [115]ACI Committee 318. Building code requirements for structral concrete (ACI318-02) and commentary (ACI318R-02) (American Concrete Institute, Detroit),2002.
    [116]CEB-FIP. Mode code for concrete structures design (Paris),1990.
    [117]DG/TJ 08-2018-2007.再生混凝土应用技术规程[S].
    [118]唐九如.钢筋混凝土框架节点抗震[M].南京:东南大学出版社,1988.
    [119]李爱群,丁幼亮.工程结构抗震分析[M].北京:高等教育出版社,2009.
    [120]Yutaka Yamazaki, Masayoshi Nakashima and Takashi Kaminosono. Realiability of pseudodynamic test in earthquake response simulation [J]. ASCE Journal of Structural Engineering,1988,115(8):2098-2112.
    [121]M. J. N. Priestley, F. Seible and G.Gian Michele Calvi. Seismic design and retrofit of bridges [M]. New York:John Wiley & Sons, Inc.,1996.
    [122]过镇海.混凝土的强度和变形—试验基础和本构关系[M].北京:清华大学出版社,1997.
    [123]Abaqus Inc. Abaqus user manual. Version 6.9.2009.
    [124]王金昌,陈页开.Abaqus在土木工程中的应用[M].杭州:浙江大学出版社,2006.
    [125]Sidroff F. Description of anisotropic damage application to elasticity [C]. Physical non-liearities in structural analysis, International Union of Theoretical and Applied Mechanics. Berlin,1981.
    [126]Mitra N. An analytical study of reinforced concrete beam-column joint behavior under seismic loading [D]. Washington:University of Washington,2007.
    [127]El-Metwally S. E., Chen W. F. Moment-rotation modeling of reinforced concrete beam-column connections [J]. ACI Structural Journal,1988,54(4).
    [128]Alath S., Kunnath S. K. Modeling inelastic shear deformation in RC beam-column joints [C]. Boulder, USA:ASCE,1995.
    [129]Uma S. R., Prasad A. M. Analytical modeling of RC beam-column connections under cyclic load [C]. Acapulco, Mexico,1996.
    [130]Biddah A. and Ghobarah A. Modelling of shear deformation and bond slip in reinforced concrete joints[J]. Structural Engineering and Mechanics,1999,7(4):413-432.
    [131]Elmorsi M. Analytical modeling of reinforced concrete beam column connections for seismic loading [D]. Ontario:McMaster University,2000.
    [132]Fleury F, Reynouard J M, Merebet O. Multi-component model of reinforced concrete joints for cyclic loading[J]. Journal of Engineering Mechanics,2000,126(8):804-811.
    [133]Youssef M, Ghobarah A. Modeling of rc beam-column joints and structural walls[J]. Journal of Earthquake Engineering,2001,5(1):93-111.
    [134]Lowes L N, Altoontash A. Modeling Reinforced-Concrete Beam-Column Joints Subjected to Cyclic Loading[J]. Journal of Structural Engineering,2003,129(12):1686-1697.
    [135]Altoontash A, Deierlein G G A versatile model for beam--column joints[C]. Seattle, Washington,2003.
    [136]Lafave J M, Shin M. Closure to "Modeling Reinforced-Concrete Beam-Column Joints Subjected to Cyclic Loading" by Laura N. Lowes and Arash Altoontash[J]. Journal of Structural Engineering,2005,131(6):993-994.
    [137]Tajiri S, Shiohara H, Kusuhara F. A New Macro Element of Reinforced Concrete Beam-Column Joint for Elasto-Plastic Plane Frame Analysis[C]. San Francisco, California, 2006.
    [138]Mitra N., Lowes L. N.. Evaluation, Calibration, and Verification of a Reinforced Concrete Beam-Column Joint Model[J]. Journal of Structural Engineering,2007,133:105-120.
    [139]张沛洲.多龄期钢筋混凝土结构抗震性能分析[D].大连:大连理工大学,2012.
    [140]Vecchio F. J., Collins M. P. The Modified Compression Field Theory for Reinforced Concrete Elements Subjected to Shear[J]. ACI STRUCTURE JOURNAL,1986,83(2): 219-231.
    [141]Mander J B, Priestley M J N, Park R. Theoretical Stress-Strain Model for Confined Concrete[J]. Journal of Structural Engineering,1988,114(8):1804-1826.
    [142]Scohlaich J, Schafer K, Jennewein M. Towards a Consistent Design of Reinforced Concrete Structures[J]. PCI Journal,1987,3(32):74-150.
    [143]宋孟超.钢筋混凝土梁柱节点核心区模型化方法研究[D].重庆:重庆大学,2009.
    [144]Command Manual-OpenSeesWiki.2010.
    [145]Humar J.1. Dynamics of Structures[M]. Leiden:CRC press,2012.
    [146]Shunsuke Otani. Hysteresis models of reinforced concrete for earthquake response analysis[J]. Journal of Faculty of Engineering, University of Tokyo,1981,556(2):407-441.
    [147]Doebling S.W., Farrar C. R., Prime, M. B., and Shevitz D. W. Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics:a literature review[R]. Los Alamos National Laboratory (LA-13070-MS), 1996.
    [148]盛宏玉.结构动力学[M].合肥:合肥工业大学出版社,2005.
    [149]David L. Recent advances in wavelet analyses:part 1. A review of concepts[J]. Journal of Hydrology,2005,314:275-288.
    [150]Daubechies I. Ten lectures on wavelet[M].Philadelphia:Captital city press,1992.
    [151]关履泰.小波方法与应用[M].北京:高等教育出版社,2007.
    [152]成礼智,王红霞,罗永.小波的理论与应用[M].北京:科学出版社,2004.
    [153]Mallat S. A theory of multiresolution signal decomposition:the wavelet representation. IEEE Trans. Pattern Anal. Machine Intel, Theory,1989,11(7):674-693.
    [154]金伟良,赵羽习.混凝土结构耐久性研究的回顾与发展,浙江大学学报,2002,36(4):371-380.
    [155]Song G., Gu H., Mo Y. Smart aggregates:multi-functional sensors for concrete structures-a tutorial and a review[J]. Smart Materials and Structures,2008,17(3):33001.
    [156]王彬.MATLAB数字信号处理[M].北京:机械工业出版社,2010.
    [157]Reinhardt H.W., Grosse C.U. Continuous monitoring of setting and hardening of mortar and concrete[J]. Construction and Building Materials,2004,18(3):145-154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700