用户名: 密码: 验证码:
本征和掺硼硅纳米晶的制备、性能及其在硅光子学领域的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅光子学是在硅上实现各种光学功能的技术,在生命科学、医学、信息、计算、传感、能源等领域有广泛的应用前景。其中最具吸引力的是:硅光子学可以最大程度地沿用现有的成熟的CMOS技术,在同一硅芯片上融合电子学和光子学,同时具有电子学的高计算容量和光子学的高通信带宽的优点,实现硅基单片集成。但是,其主要的限制因素是缺少硅基光源,即高效的发光二极管或硅激光器。考虑到体硅是间接禁带半导体的局限,研究者提出了很多策略来改善和实现硅基发光。在众多研究方案中,低维硅(纳米硅)由于量子限域效应和界面效应,成为非常有希望实现硅基发光的材料之一
     本论文系统研究了全硅基富硅氧化硅薄膜、掺硼富硅氧化硅薄膜的光电性能、物理机制和应用,致力于通过不同的方式得到高效的基于纳米硅的发光。取得主要创新结果如下:
     (1)利用等离子体增强化学气相沉积和后续高温热处理的方法,成功制备了高分布密度的硅(Si)纳米晶镶嵌于二氧化硅(Si02)基体的薄膜(富硅氧化硅薄膜)。通过氢钝化工艺,钝化了Si纳米晶/Si02界面非辐射态,提高了辐射效率。以优化的富硅氧化硅薄膜为有源层材料,结合微电子光刻工艺,成功制备了直径5-10μm的含Si纳米晶微盘谐振腔。当外在激光源的光注入使Si纳米晶自发辐射时,角对称微腔结构的全内反射效应使得宽的光滑的Si纳米晶发光带转化成在宽带上有一系列分立的尖锐的谐振峰的回音壁模式光谱。通过微区光致发光测试平台,获得了亚纳米线宽的回音壁模式谐振峰,在800nm处的品质因子高达3000,这在目前报导的Si纳米晶基微盘体系是最高值。我们指出,富硅氧化硅薄膜材料性能的优化(低损失,净材料增益),对品质因子的提高起关键作用。在Si纳米晶非均匀的宽增益谱范围,微盘谐振腔可能实现低阈值的激光行为。
     (2)首次通过连续波光谱,系统地研究了镶嵌在平面回音壁模式微谐振腔中的Si纳米晶的非线性动力学。观测到了特征线宽随激发功率增大而宽化的现象,指出这是由于激发载流子吸收损失引起的衰减。通过分析品质因子随激发功率的变化,得到了Si纳米晶的吸收横截面和激发载流子吸收相关损耗。观测到了模式峰位的非线性漂移,并对此建模得到了纳米晶材料的非线性折射率。理论结果还证实,观测到的谐振峰位的次线性蓝移和线性红移分别是由低泵浦功率下的激发载流子效应和高泵浦功率下的热光效应引起的。提取的Si纳米晶激发载流子折射率kEC=--1.07x10-23cm3和热光系数kT=1.46x10-4K-1,可以对光学有源微腔中的精细模式结构引入重要调制。
     (3)利用反应溅射结合共溅射和后续高温热处理的方法,制备了不同富硅量、不同掺硼量的掺硼富硅氧化硅薄膜。通过对化学成分、微结构的表征系统地研究了硼的掺杂对薄膜中镶嵌的Si纳米晶的影响。低富硅量(Si/O原子比~0.52)时,掺硼后的薄膜是亚纳米甚至原子尺度的Si聚集体;中等富硅量(Si/O原子比~0.67)时,掺硼后的薄膜是直径2-5nm的Si纳米晶镶嵌于SiO2基体中;高富硅量(Si/O原子比~1.1)时,掺硼后的薄膜是尺寸更大的Si纳米晶镶嵌于SiO2基体中,Si纳米晶的形状趋于椭圆,有重叠现象。通过X射线光电子谱Si2p和B1s心能级谱的研究,表明硼除了位于原子尺度/亚纳米尺度/纳米尺度Si中Si的替代位外,还存在于SiO2基体中或者Si聚集体与SiO2基体的界面处。
     (4)通过四探针电阻测试研究薄膜电学传导性能,观测到高富硅量薄膜掺硼后方块电阻率有4-5个数量级的下降。证实了硼原子对Si纳米晶实现了电学活性掺杂,从而显著提高了载流子浓度。中/低富硅量的掺硼富硅氧化硅薄膜经过高温热处理后,在室温下有强的白光光致发光,测得量子效率为几个百分点,这是Si基固态白光光源的一个重要探索成果。通过研究PL谱随富硅量、掺硼量、热处理温度的变化,揭示了发光中心位于纳米Si/亚纳米Si与基体的界面或基体中的原子尺度Si聚集体中,且发光中心是由硼促进形成的。硼含量相近时,中等富硅量的薄膜的发光强度高于低富硅量的薄膜,表明有进一步空间同时优化薄膜的电学和光学性能。综上,该体系有以下优点:由于制备的薄膜中所有元素都是“CMOS元素周期表”中的元素,与现有的微电子工艺兼容,制备成本低;通过调节富硅量、掺硼量和热处理温度,就能调节白光发光,工艺简单;硼的电学活性掺杂,可以改善薄膜的电学输运性能,更有利于实现硅基光电子集成。
Silicon photonics is a technology to implement various optical functionalities in silicon. It has found a wide variety of applications, including life sciences, medicine, communication, computing, sensing, energy, and so on. The main interest is associated with the possibility to merge electronics and photonics in the same chip. This is very appealing since it allows exploitation of both the high computation capability of electronics and the high communication bandwidth of photonics. However, to achieve monolithically integrated silicon photonics, the main limitation is the lack of any practical Si-based light sources:either efficient light emitting diodes (LEDs) or Si lasers. Taking into account the main limitation that bulk Si is an indirect band-gap semiconductor, strategies have been proposed to improve the light emission and to realize Si-based light source. Among all the strategies, low-dimensional silicon (nano-Si) is quite promising due to quantum-confinement effect and interface effect.
     In this thesis, various approaches towards a Si-based light source based on nano-Si have been intensively investigated. The optoelectronic properties, the related physical mechanism and the applications of all-Si-based silicon-rich oxide (SRO) films and boron-doped silicon-rich oxide films have been systematically addressed. In the following, the primary achievements in this work are described.
     (1) High density of silicon nanocrystals (Si-NCs) embedded in silicon oxide film is achieved by plasma enhanced chemical vapor deposition (PECVD) technique and a successive high temperature annealing process. The passivation of nonradiative states and defects at the Si-SiO2interface is realized by performing H passivation of the Si-SiO2interface through standard forming gas annealing in order to increase the radiative yield without affecting the emission mechanism. Taken the optimized film as active layer combined with lithographic patterning and wet/dry etching processes, array of several thousands of5-10μm diameter microdisk resonators are formed. As Si-NCs posses a wide photoluminescence (PL) band in the visible and NIR region; when they are embedded in a dielectric microcavity, it is sufficient to observe whispering-gallery modes (WGMs) generated by optical injection via spontaneous emission of the Si-NCs. We report on subnanometer WGM resonances corresponding to quality factors (Q-factors) as high as3000around the wavelength of800nm, which to our knowledge are the highest among the previously reported values in Si-NC-based microdisk systems. We stress that the SRO material optimization (low-loss, positive material gain) should play a key role for further enhancement of the observed Q-factors of few thousands. Even with low while inhomogeneously broadened gain spectrum of Si-NC, microdisk resonators with similar Q-factors should be potential candidates to allow for a low-threshold laser action.
     (2) We report on a study of the recombination dynamics of Si-NCs embedded in a planar WGM resonator. Fundamental properties of exciton dynamics in Si-NCs, in particular their absorption cross-section and excited carrier-related losses, can be extracted from continuous-wave spectroscopy by analyzing the resonance linewidths at different excitation powers. Observation of nonlinear drifts of mode peak positions in the same experiment allows us to model the nonlinear refractive index of the nanocrystalline material. The theoretical results confirm that the observed sublinear blue and linear redshifts of resonance peak positions are induced by excited carrier effects and thermal heating at low and high pump powers, respectively. The extracted thermo-optic coefficient, kT=1.46×104K-1, and excited carrier refraction, kEC=-1.07×10-23cm3in Si-NCs, are of relevance since they may induce important modulation of the fine modal structure of an optically active cavity.
     (3) Boron-doped silicon-rich oxide films with a series value of Si excess and boron concentration are prepared by co-sputtering technique followed with the annealing treatment. The effect of boron-doping on the chemical composition and microstructure of Si-NCs embedded in silicon-oxide matrix are well studied. With low value of Si excess (Si/O atomic ratio~0.52), there are sub-nanometer scale Si or even atomic scale Si aggregates embedded in SiO2matrix. While for moderate value of Si excess (Si/O atomic ratio~0.67), there are Si-NCs with diameter of2-5nm embedded in SiO2matrix. And for high value of Si excess (Si/O atomic ratio~1.1), there are larger size Si-NCs embedded in SiO2matrix, which become elliptical-shaped and are overlapped. The investigation of X-ray photoelectron spectroscopy of Si2p and B1s core level spectra suggests that B atoms exist in Si substitutional sites of atomic scale or sub-nanometer scale or nanometer-scale Si as well as in silicon oxide matrix and/or in interface between matrix and Si aggregates.
     (4) For high values of Si excess, an almost4-5orders of magnitude decrease of the sheet resistance is achieved due to the significant increase of the carrier density by the electrically activated doping. For moderate and low values of Si excess, intense white photoluminescence from boron-doped silicon-rich oxide films is observed. The PL efficiency is of several percent, which is a promising result in Si-base solid state white light emitting. The influence of Si excess, boron concentrations, and annealing temperatures is examined with the aim of optimizing the PL efficiency and clarifying the PL mechanism. The interface region between sub-nanometer scale/nanometer-scale Si and SiO2matrix, or the atomic scale Si aggregates in SiO2matrix are most likely housing the luminescence centers which are formed by the promotion of boron and are active in white light emission properties. In particular, for moderate values of Si excess, our boron-doped silicon-rich oxide films possess both the intense white luminescence property and enhanced electroconductivity. In summary, this system has the following advantages:since all elements of the film (B, O, Si) are "CMOS periodic table" elements, the production is completely compatible with existing microelectronics technology and is of low cost; by adjusting the Si excess, boron content and annealing temperature, one can tune the white light emitting, which is a considerably simple fabrication process; the electrically activated boron doping can improve the electrical transport properties of the film, which makes it more suitable for Si-based optoelectronic integration.
引文
[1]Elliman R. The Synthesis of Silicon Nanocrystals by Ion Implantation[M]. Silicon Nanocrystals; Wiley-VCH Verlag GmbH & Co. KGaA.2010:223-245.
    [2]Gourbilleau F, Ternon C, Dufour C, Portier X, Rizk R. Formation of Si-nc by Reactive Magnetron Sputtering[M]. Silicon Nanocrystals; Wiley-VCH Verlag GmbH & Co. KGaA.2010: 275-295.
    [3]Karakuscu A, Soraru GD. Si and SiC Nanocrystals by Pyrolysis of Sol-Gel-Derived Precursors[M]. Silicon Nanocrystals; Wiley-VCH Verlag GmbH & Co. KGaA.2010:297-308.
    [4]Mangolini L, Kortshagen U. Nonthermal Plasma Synthesis of Silicon Nanocrystals[M]. Silicon Nanocrystals; Wiley-VCH Verlag GmbH & Co. KGaA.2010:309-348.
    [5]Gelloz B. Silicon Nanocrystals in Porous Silicon and Applications[M]. Silicon Nanocrystals; Wiley-VCH Verlag GmbH & Co. KGaA.2010:349-393.
    [6]Ehbrecht M, Kohn B, Huisken F, Laguna MA, Paillard V. Photoluminescence and resonant Raman spectra of silicon films produced by size-selected cluster beam deposition[J]. Physical Review B,1997,56(11):6958-6964.
    [7]Brus L. Chemical approaches to semiconductor nanocrystals[J]. Journal of Physics and Chemistry of Solids,1998,59(4):459-465.
    [8]Mutti P, Ghislotti G, Bertoni S, Bonoldi L, Cerofolini GF, Meda L, Grilli E, Guzzi M. Room-temperature visible luminescence from silicon nanocrystals in silicon implanted SiO2 layers[J]. Applied Physics Letters,1995,66(7):851-853.
    [9]Gourbilleau F, Portier X, Ternon C, Voivenel P, Madelon R, Rizk R. Si-rich/SiO2 nanostructured multilayers by reactive magnetron sputtering[J]. Applied Physics Letters,2001,78(20): 3058-3060.
    [10]Iacona F, Franzo G, Spinella C. Correlation between luminescence and structural properties of Si nanocrystals[J]. Journal of Applied Physics,2000,87(3):1295-1303.
    [11]Soraru GD, Modena S, Bettotti P, Das G, Mariotto G, Pavesi L. Si nanocrystals obtained through polymer pyrolysis[J]. Applied Physics Letters,2003,83(4):749-751.
    [12]Bisi O, Ossicini S, Pavesi L. Porous silicon:a quantum sponge structure for silicon based optoelectronics[J]. Surface Science Reports,2000,38(1):1-126.
    [13]Sychugov I, Juhasz R, Valenta J, Linnros J. Narrow Luminescence Linewidth of a Silicon Quantum Dot[J]. Physical Review Letters,2005,94(8):087405.
    [14]Daldosso N, Luppi M, Ossicini S, Degoli E, Magri R, Dalba G, Fornasini P, Grisenti R, Rocca F, Pavesi L, Boninelli S, Priolo F, Spinella C, Iacona F. Role of the interface region on the optoelectronic properties of silicon nanocrystals embedded in SiO2[J]. Physical Review B, 2003,68(8):085327.
    [15]Yurtsever A, Weyland M, Muller DA. Three-dimensional imaging of nonspherical silicon nanoparticles embedded in silicon oxide by plasmon tomography[J]. Applied Physics Letters, 2006,89(15):151920.
    [16]Iacona F, Bongiorno C, Spinella C, Boninelli S, Priolo F. Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films[J]. Journal of Applied Physics,2004,95(7):3723-3732.
    [17]Xie M, Yuan Z, Qian B, Pavesi L. Silicon nanocrystals to enable silicon photonics Invited Paper[J]. Chin Opt Lett,2009,7(4):319-324.
    [18]Electron states and optical properties in confined silicon structures[M]. Light Emitting Silicon for Microphotonics. Berlin; Springer-Verlag Berlin.2003:37-74.
    [19]Moreno JA, Garrido B, Pellegrino P, Garcia C, Arbiol J, Morante JR, Marie P, Gourbilleau F, Rizk R. Size dependence of refractive index of Si nanoclusters embedded in SiO2[J]. Journal of Applied Physics,2005,98(1):013523.
    [20]Daldosso N, Melchiorri M, Pavesi L, Pucker G, Gourbilleau F, Chausserie S, Belarouci A, Portier X, Dufour C. Optical losses and absorption cross-section of silicon nanocrystals[J]. Journal of Luminescence,2006,121(2):344-348.
    [21]Pellegrino P, Garrido B, Garcia C, Arbiol J, Morante JR, Melchiorri M, Daldosso N, Pavesi L, Scheid E, Sarrabayrouse G. Low-loss rib waveguides containing Si nanocrystals embedded in SiO2[J]. Journal of Applied Physics,2005,97(7):074312.
    [22]Navarro-Urrios D, Pitanti A, Daldosso N, Gourbilleau F, Rizk R, Pucker G, Pavesi L. Quantification of the carrier absorption losses in Si-nanocrystal rich rib waveguides at 1.54 μm[J]. Applied Physics Letters,2008,92(5):051101.
    [23]Ghulinyan M, Navarro-Urrios D, Pitanti A, Lui A, Pucker G, Pavesi L. Whispering-gallery modes and light emission from a Si-nanocrystal-based single microdisk resonator[J]. Optics Express,2008,16(17):13218-13224.
    [24]Light emission of Er3+in silicon[J]. Light Emitting Silicon for Microphotonics,2003,194: 179-225.
    [25]Garrido B, Garcia C, Seo SY, Pellegrino P, Navarro-Urrios D, Daldosso N, Pavesi L, Gourbilleau F, Rizk R. Excitable Er fraction and quenching phenomena in Er-doped SiO2 layers containing Si nanoclusters[J]. Physical Review B,2007,76(24):245308.
    [26]Daldosso N, Navarro-Urrios D, Melchiorri M, Garcia C, Pellegrino P, Garrido B, Sada C, Battaglin G, Gourbilleau F, Rizk R, Pavesi L. Er-Coupled Si Nanocluster Waveguide[J]. Selected Topics in Quantum Electronics, IEEE Journal of,2006,12(6):1607-1617.
    [27]Pavesi L, Dal Negro L, Mazzoleni C, Franzo G, Priolo F. Optical gain in silicon nanocrystals[J]. Nature,2000,408(6811):440-444.
    [28]Spano R, Daldosso N, Cazzanelli M, Ferraioli L, Tartara L, Yu J, Degiorgio V, Jordana E, Fedeli JM, Pavesi L. Bound electronic and free carrier nonlinearities in Silicon nanocrystals at 1550nm[J]. Optics Express,2009,17(5):3941-3950.
    [29]Dal Negro L, Cazzanelli M, Pavesi L, Ossicini S, Pacifici D, Franzo G, Priolo F, Iacona F. Dynamics of stimulated emission in silicon nanocrystals[J]. Applied Physics Letters, 2003,82(26):4636-4638.
    [30]Dal Negro L, Cazzanelli M, Daldosso N, Gaburro Z, Pavesi L, Priolo F, Pacifici D, Franzo G, Iacona F. Stimulated emission in plasma-enhanced chemical vapour deposited silicon nanocrystals[J]. Physica E-Low-Dimensional Systems & Nanostructures,2003,16(3-4): 297-308.
    [31]Khriachtchev L, Rasanen M, Novikov S, Pavesi L. Systematic correlation between Raman spectra, photoluminescence intensity, and absorption coefficient of silica layers containing Si nanocrystals[J]. Applied Physics Letters,2004,85(9):1511-1513.
    [32]Chen H, Shin JH, Fauchet PM. Ultrafast photoluminescence dynamics of nitride-passivated silicon nanocrystals using the variable stripe length technique[J]. Applied Physics Letters, 2007,91(17):173121.
    [33]Martinez A, Blasco J, Sanchis P, Galan JV, Garcia-Ruperez J, Jordana E, Gautier P, Lebour Y, Hernandez S, Guider R, Daldosso N, Garrido B, Fedeli JM, Pavesi L, Marti J. Ultrafast All-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths[J]. Nano Letters,2010,10(4):1506-1511.
    [34]Gelloz B, Koshida N. Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode[J]. Journal of Applied Physics,2000,88(7):4319-4324.
    [35]Marconi A, Anopchenko A, Wang M, Pucker G, Bellutti P, Pavesi L. High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling[J]. Applied Physics Letters,2009,94(22):221110.
    [36]Beard MC, Knutsen KP, Yu PR, Luther JM, Song Q, Metzger WK, Ellingson RJ, Nozik AJ. Multiple exciton generation in colloidal silicon nanocrystals[J]. Nano Letters,2007,7(8): 2506-2512.
    [37]Prezioso S, Hossain SM, Anopchenko A, Pavesi L, Wang M, Pucker G, Bellutti P. Superlinear photovoltaic effect in Si nanocrystals based metal-insulator-semiconductor devices[J]. Applied Physics Letters,2009,94(6):062108.
    [38]Rayleigh. Further applications of Bessel's functions of high order to the whispering gallery and allied problems[J]. Philosophical Magazine,1914,27(157-62):100-109.
    [39]Vahala KJ. Optical microcavities[J]. Nature,2003,424(6950):839-846.
    [40]Armani DK, Kippenberg TJ, Spillane SM, Vahala KJ. Ultra-high-Q toroid microcavity on a chip[J]. Nature,2003,421(6926):925-928.
    [41]Boyd RW, Heebner JE. Sensitive disk resonator photonic biosensor[J]. Applied Optics, 2001,40(31):5742-5747.
    [42]Kippenberg TJ, Kalkman J, Polman A, Vahala KJ. Demonstration of an erbium-doped microdisk laser on a silicon chip[J]. Physical Review A,2006,74(5):051802.
    [43]Purcell EM. Spontaneous emission probabilities at radio frequencies[J]. Physical Review, 1946,69(11-1):681-681.
    [44]Kleppner D. Inhibited Spontaneous Emission[J]. Physical Review Letters,1981,47(4):233-236.
    [45]Ching SC, Lai HM, Young K. Dielectric microspheres as optical cavities-thermal spectrum and density of states[J]. Journal of the Optical Society of America B-Optical Physics, 1987,4(12):1995-2003.
    [46]Ching SC, Lai HM, Young K. Dielectric microspheres as optical cavities-Einstein A-coefficient and B-coefficient and level shift[J]. Journal of the Optical Society of America B-Optical Physics,1987,4(12):2004-2009.
    [47]Lai HM, Leung PT, Young K. Electromagnetic decay into a narrow resonance in an optical cavity[J]. Physical Review A,1988,37(5):1597-1606.
    [48]Kurizki G, Kofman AG, Kozhekin A, Harel G Control of atomic state decay in cavities and microspheres[J]. New Journal of Physics,2000,2:28.1-28.21.
    [49]Dalton BJ, Barnett SM, Garraway BM. Theory of pseudomodes in quantum optical processes[J]. Physical Review A,2001,64(5):053813.
    [50]Aoki T, Dayan B, Wilcut E, Bowen WP, Parkins AS, Kippenberg TJ, Vahala KJ, Kimble HJ. Observation of strong coupling between one atom and a monolithic microresonator[J]. Nature, 2006,443(7112):671-674.
    [51]Arnold S, Liu CT, Whitten WB, Ramsey JM. Room-temperature microparticle-based persistent spectral hole burning memory[J]. Optics Letters,1991,16(6):420-422.
    [52]Mukaiyama T, Takeda K, Miyazaki H, Jimba Y, Kuwata-Gonokami M. Tight-Binding Photonic Molecule Modes of Resonant Bispheres[J]. Physical Review Letters,1999,82(23):4623-4626.
    [53]Rakovich YP, Donegan JF, Gerlach M, Bradley AL, Connolly TM, Boland JJ, Gaponik N, Rogach A. Fine structure of coupled optical modes in photonic molecules[J]. Physical Review A,2004,70(5):051801.
    [54]Zhang ZY, Yang L, Liu V, Hong T, Vahala K, Scherer A. Visible submicron microdisk lasers[J]. Applied Physics Letters,2007,90(11):111119.
    [55]Xia F, Sekaric L, Vlasov Y. Ultracompact optical buffers on a silicon chip[J]. Nat Photon, 2007,1(1):65-71.
    [56]Schliesser A, Riviere R, Anetsberger G, Arcizet O, Kippenberg TJ. Resolved-sideband cooling of a micromechanical oscillator[J]. Nat Phys,2008,4(5):415-419.
    [57]Benson O, Yamamoto Y. Master-equation model of a single-quantum-dot microsphere laser[J]. Physical Review A,1999,59(6):4756-4763.
    [58]Kozlovsky AV, Oraevsky AN. Quantum-dot microlaser operating on the whispering gallery mode-A source of squeezed (sub-Poissonian) light[J]. Journal of Experimental and Theoretical Physics,2000,91(5):938-944.
    [59]Pelton M, Yamamoto Y. Ultralow threshold laser using a single quantum dot and a microsphere cavity[J]. Physical Review A,1999,59(3):2418-2421.
    [60]Oraevsky AN, Scully MO, Sarkisyan TV, Bandy DK. Using whispering gallery modes in semiconductor microdevices[J]. Laser Physics,1999,9(5):990-1003.
    [61]Matsko AB, Ilchenko VS. Optical resonators with whispering-gallery modes-Part Ⅰ:Basics[J]. Ieee Journal of Selected Topics in Quantum Electronics,2006,12(1):3-14.
    [62]Ilchenko VS, Matsko AB. Optical resonators with whispering-gallery modes-Part Ⅱ: Applications[J]. Ieee Journal of Selected Topics in Quantum Electronics,2006,12(1):15-32.
    [63]Armani AM, Armani DK, Min B, Vahala KJ, Spillane SM. Ultra-high-Q microcavity operation in H2O and D2O[J]. Applied Physics Letters,2005,87(15):151118.
    [64]McCall SL, Levi AFJ, Slusher RE, Pearton SJ, Logan RA. Whispering-gallery mode microdisk lasers[J]. Applied Physics Letters,1992,60(3):289-291.
    [65]Michler P, Kiraz A, Zhang LD, Becher C, Hu E, Imamoglu A. Laser emission from quantum dots in microdisk structures[J]. Applied Physics Letters,2000,77(2):184-186.
    [66]Srinivasan K, Stintz A, Krishna S, Painter O. Photoluminescence measurements of quantum-dot-containing semiconductor microdisk resonators using optical fiber taper waveguides[J]. Physical Review B,2005,72(20):205318.
    [67]Zhang R-J, Seo S-Y, Milenin AP, Zacharias M, Gosele U. Visible range whispering-gallery mode in microdisk array based on size-controlled Si nanocrystals[J]. Applied Physics Letters, 2006,88(15):153120.
    [68]Gardner DS, Brongersma ML. Microring and microdisk optical resonators using silicon nanocrystals and erbium prepared using silicon technology[J]. Optical Materials,2005,27(5): 804-811.
    [69]Kekatpure RD, Brongersma ML. Fundamental photophysics and optical loss processes in Si-nanocrystal-doped microdisk resonators[J]. Physical Review A,2008,78(2):023829.
    [70]Pitanti A, Ghulinyan M, Navarro-Urrios D, Pucker G, Pavesi L. Probing the Spontaneous Emission Dynamics in Si-Nanocrystals-Based Microdisk Resonators[J]. Physical Review Letters,2010,104(10):103901.
    [71]Ghulinyan M, Pitanti A, Pucker G, Pavesi L. Whispering-gallery mode micro-kylix resonators[J]. Optics Express,2009,17(11):9434-9441.
    [72]Kanzawa Y, Fujii M, Hayashi S, Yamamoto K. Preparation and Raman study of B-doped Si microcrystals[J]. Materials Science and Engineering:A,1996,217-218(0):155-158.
    [73]Sato K, Fukata N, Hirakuri K. Doping and characterization of boron atoms in nanocrystalline silicon particles[J]. Applied Physics Letters,2009,94(16):161902.
    [74]Fujii M, Mimura A, Hayashi S, Yamamoto Y, Murakami K. Hyperfine Structure of the Electron Spin Resonance of Phosphorus-Doped Si Nanocrystals[J]. Physical Review Letters, 2002,89(20):206805.
    [75]Pi XD, Gresback R, Liptak RW, Campbell SA, Kortshagen U. Doping efficiency, dopant location, and oxidation of Si nanocrystals[J]. Applied Physics Letters,2008,92(12):123102.
    [76]Mimura A, Fujii M, Hayashi S, Kovalev D, Koch F. Photoluminescence and free-electron absorption in heavily phosphorus-doped Si nanocrystals [J]. Physical Review B,2000,62(19): 12625-12627.
    [77]Fujii M, Hayashi S, Yamamoto K. Photoluminescence from B-doped Si nanocrystals[J]. Journal of Applied Physics,1998,83(12):7953-7957.
    [78]Mimura A, Fujii M, Hayashi S, Yamamoto K. Quenching of photoluminescence from Si nanocrystals caused by boron doping[J]. Solid State Communications,1999,109(9):561-565.
    [79]Imakita K, Ito M, Fujii M, Hayashi S. Nonlinear optical properties of Phosphorous-doped Si nanocrystals embedded in phosphosilicate glass thin films[J]. Optics Express,2009,17(9): 7368-7376.
    [80]Imakita K, Ito M, Naruiwa R, Fujii M, Hayashi S. Enhancement of ultrafast nonlinear optical response of silicon nanocrystals by boron-doping[J]. Optics Letters,2012,37(11):1877-1879.
    [81]Imakita K, Ito M, Naruiwa R, Fujii M, Hayashi S. Ultrafast third order nonlinear optical response of donor and acceptor codoped and compensated silicon quantum dots[J]. Applied Physics Letters,2012,101(4):041112.
    [82]Imakita K, Tsuchihashi Y, Naruiwa R, Fujii M, Sun HT, Qiu JR, Hayashi S. Ultrafast nonlinear optical responses of bismuth doped silicon-rich silica films[J]. Applied Physics Letters, 2012,101(19):191106.
    [83]Ossicini S, Degoli E, Iori F, Luppi E, Magri R, Cantele G, Trani F, Ninno D. Simultaneously B-and P-doped silicon nanoclusters:Formation energies and electronic properties[J]. Applied Physics Letters,2005,87(17):173120.
    [84]Fujii M, Yamaguchi Y, Takase Y, Ninomiya K, Hayashi S. Photoluminescence from impurity codoped and compensated Si nanocrystals[J]. Applied Physics Letters,2005,87(21):211919.
    [85]Fukata N, Mitome M, Bando Y, Seoka M, Matsushita S, Murakami K, Chen J, Sekiguchi T. Codoping of boron and phosphorus in silicon nanowires synthesized by laser ablation[J]. Applied Physics Letters,2008,93(20):203106.
    [86]Hao XJ, Cho EC, Flynn C, Shen YS, Park SC, Conibeer G, Green MA. Synthesis and characterization of boron-doped Si quantum dots for all-Si quantum dot tandem solar cells[J]. Solar Energy Materials and Solar Cells,2009,93(2):273-279.
    [87]Hao XJ, Cho EC, Scarder G, Shen YS, Bellet-Amalric E, Bellet D, Conibeer G, Green MA. Phosphorus-doped silicon quantum dots for all-silicon quantum dot tandem solar cells[J]. Solar Energy Materials and Solar Cells,2009,93(9):1524-1530.
    [88]Norris DJ, Efros AL, Erwin SC. Doped Nanocrystals[J]. Science,2008,319(5871):1776-1779.
    [89]Turnbull D. Formation of crystal nuclei in liquid metals[J]. Journal of Applied Physics, 1950,21(10):1022-1028.
    [90]Dalpian GM, Chelikowsky JR. Self-purification in semiconductor nanocrystals[J]. Physical Review Letters,2006,96(22):226802.
    [91]Erwin SC, Zu L, Haftel MI, Efros AL, Kennedy TA, Norris DJ. Doping semiconductor nanocrystals[J]. Nature,2005,436(7047):91-94.
    [92]Liu X, Xu G, Sui Y, He Y, Bao X. Electron spin resonance in doped nanocrystalline silicon films[J]. Solid State Communications,2001,119(6):397-401.
    [93]Chen XB, Pi XD, Yang DR. Critical Role of Dopant Location for P-Doped Si Nanocrystals[J]. Journal of Physical Chemistry C,2011,115(3):661-666.
    [94]Pi X, Chen X, Ma Y, Yang D. Optical absorption and emission of nitrogen-doped silicon nanocrystals[J]. Nanoscale,2011,3(11):4584-4588.
    [95]Pi XD, Chen XB, Yang DR. First-Principles Study of 2.2 nm Silicon Nanocrystals Doped with Boron[J]. Journal of Physical Chemistry C,2011,115(20):9838-9843.
    [96]Chen XB, Pi XD, Yang DR. Silicon nanocrystals doped with substitutional or interstitial manganese[J]. Applied Physics Letters,2011,99(19):193108.
    [97]Xu Q, Luo J-W, Li S-S, Xia J-B, Li J, Wei S-H. Chemical trends of defect formation in Si quantum dots:The case of group-Ⅲ and group-V dopants[J]. Physical Review B,2007,75(23): 235304.
    [98]Cantele G, Degoli E, Luppi E, Magri R, Ninno D, Iadonisi G, Ossicini S. First-principles study of n-and p-doped silicon nanoclusters[J]. Physical Review B,2005,72(11):113303.
    [99]Ossicini S, Iori F, Degoli E, Luppi E, Magri R, Poli R, Cantele G, Trani F, Ninno D. Understanding Doping In Silicon Nanostructures[J]. Selected Topics in Quantum Electronics, IEEE Journal of,2006,12(6):1585-1591.
    [100]Stegner AR, Pereira RN, Klein K, Lechner R, Dietmueller R, Brandt MS, Stutzmann M, Wiggers H. Electronic Transport in Phosphorus-Doped Silicon Nanocrystal Networks[J]. Physical Review Letters,2008,100(2):026803.
    [101]Sumida K, Ninomiya K, Fujii M, Fujio K, Hayashi S, Kodama M, Ohta H. Electron spin-resonance studies of conduction electrons in phosphorus-doped silicon nanocrystals[J]. Journal of Applied Physics,2007,101(3):033504.
    [102]Delerue C, Lannoo M, Allan G, Martin E, Mihalcescu I, Vial JC, Romestain R, Muller F, Bsiesy A. Auger and Coulomb Charging Effects in Semiconductor Nanocrystallites[J]. Physical Review Letters,1995,75(11):2228-2231.
    [103]Kanzawa Y, Fujii M, Hayashi S, Yamamoto K. Doping of B atoms into Si nanocrystals prepared by rf cosputtering[J]. Solid State Communications,1996,100(4):227-230.
    [104]Fano U. Effects of Configuration Interaction on Intensities and Phase Shifts[J]. Physical Review,1961,124(6):1866-1878.
    [105]Cerdeira F, Fjeldly TA, Cardona M. Effect of Free Carriers on Zone-Center Vibrational Modes in Heavily Doped p-type Si. Ⅱ. Optical Modes[J]. Physical Review B,1973,8(10):4734-4745.
    [106]Cerdeira F, Fjeldly TA, Cardona M. Interaction between electronic and vibronic Raman scattering in heavily doped silicon[J]. Solid State Communications,1973,13(3):325-328.
    [107]Cerdeira F, Fjeldly TA, Cardona M. Raman study of the interaction between localized vibrations and electronic excitations in boron-doped silicon[J]. Physical Review B,1974,9(10): 4344-4350.
    [108]Fukata N, Chen J, Sekiguchi T, Okada N, Murakami K, Tsurui T, Ito S. Doping and hydrogen passivation of boron in silicon nanowires synthesized by laser ablation[J]. Applied Physics Letters,2006,89(20):203109.
    [109]Fukata N, Matsushita S, Okada N, Chen J, Sekiguchi T, Uchida N, Murakami K. Impurity doping in silicon nanowires synthesized by laser ablation[J]. Applied Physics A,2008,93(3): 589-592.
    [110]Sato K, Niino K, Fukata N, Hirakuri K, Yamauchi Y. The synthesis and structural characterization of boron-doped silicon-nanocrystals with enhanced electroconductivity[J]. Nanotechnology,2009,20(36):365207.
    [111]Lopez M, Garrido B, Garcia C, Pellegrino P, Perez-Rodriguez A, Morante JR, Bonafos C, Carrada M, Claverie A. Elucidation of the surface passivation role on the photoluminescence emission yield of silicon nanocrystals embedded in SiO2[J]. Applied Physics Letters, 2002,80(9):1637-1639.
    [112]Forouhi AR, Bloomer I. Optical dispersion relations for amorphous semiconductors and amorphous dielectrics[J]. Physical Review B,1986,34(10):7018-7026.
    [113]Kovalev D, Diener J, Heckler H, Polisski G, Kunzner N, Koch F. Optical absorption cross sections of Si nanocrystals[J]. Physical Review B,2000,61(7):4485-4487.
    [114]Xie M, Pitanti A, Ghulinyan M, Yang DR, Pucker G, Pavesi L. Continuous wave spectroscopy of nonlinear dynamics of Si nanocrystals in a microdisk resonator[J]. Physical Review B, 2011,84(24):245312.
    [115]Daldosso N, Pavesi L. Nanosilicon photonics[J]. Laser & Photonics Reviews,2009,3(6): 508-534.
    [116]Kekatpure RD, Brongersma ML. Quantification of Free-Carrier Absorption in Silicon Nanocrystals with an Optical Microcavity[J]. Nano Letters,2008,8(11):3787-3793.
    [117]Redding B, Creazzo T, Marchena E, Shi S, Prather DW. Coupling Si nanocrystal microdisk emission to whispering-gallery modes in a concentric SiO2 ring[J]. Optics Letters,2009,34(9): 1384-1386.
    [118]Elliman RG, Forcales M, Wilkinson AR, Smith NJ. Waveguiding properties of Er-implanted silicon-rich oxides[J]. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms,2007,257:11-14.
    [119]Dumke WP. Interband Transitions and Maser Action[J]. Physical Review,1962,127(5): 1559-1563.
    [120]Soref RA, Bennett BR. Electrooptical effects in silicon[J]. Ieee Journal of Quantum Electronics,1987,23(1):123-129.
    [121]Xu QF, Lipson M. Carrier-induced optical bistability in silicon ring resonators[J]. Optics Letters,2006,31(3):341-343.
    [122]Johnson TJ, Borselli M, Painter O. Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator[J]. Optics Express,2006,14(2):817-831.
    [123]Prakash GV, Cazzanelli M, Gaburro Z, Pavesi L, Iacona F, Franzo G, Priolo F. Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition[J]. Journal of Applied Physics,2002,91(7):4607-4610.
    [124]Seo SY, Lee J, Shin JH, Kang ES, Bae BS. The thermo-optic effect of Si nanocrystals in silicon-rich silicon oxide thin films[J]. Applied Physics Letters,2004,85(13):2526-2528.
    [125]Pitanti A, Navarro-Urrios D, Prtljaga N, Daldosso N, Gourbilleau F, Rizk R, Garrido B, Pavesi L. Energy transfer mechanism and Auger effect in Er3+ coupled silicon nanoparticle samples[J]. Journal of Applied Physics,2010,108(5):053518.
    [126]M'Ghaieth R, Maaref H, Mihalcescu I, Vial JC. Auger effect as the origin of the fast-luminescent band of freshly anodized porous silicon[J]. Physical Review B,1999,60(7): 4450-4453.
    [127]Kachurin GA, Cherkova SG, Volodin VA, Marin DM, Tetel'baum DI, Becker H. Effect of boron ion implantation and subsequent anneals on the properties of Si nanocrystals[J]. Semiconductors,2006,40(1):72-78.
    [128]Helms CR. Materials Characterization[M]//ANTOGNETTI P, ANTONIADIS D, DUTTON R, OLDHAM W. Process and Device Simulation for MOS-VLSI Circuits; Springer Netherlands. 1983:210-263.
    [129]Wong CY, Lai FS. Ambient and dopant effects on boron diffusion in oxides [J]. Applied Physics Letters,1986,48(24):1658-1660.
    [130]Normand P, Tsoukalas D, Guillemot N, Chenevier P. A pile-up phenomenon during arsenic diffusion in silicon-on-insulator structures formed by oxygen implantation[J]. Journal of Applied Physics,1989,66(8):3585-3589.
    [131]Xie M, Li D, Chen L, Wang F, Zhu X, Yang D. The location and doping effect of boron in Si nanocrystals embedded silicon oxide film[J]. Applied Physics Letters,2013,102(12):123108.
    [132]Iijima Y, Tazawa T. Application of total reflection X-ray photoelectron spectroscopy to boron and phosphorus on Si wafer surface measurement[J]. Spectrochimica Acta Part B-Atomic Spectroscopy,2004,59(8):1273-1276.
    [133]Yerci S, Dogan I, Seyhan A, Gencer A, Turan R. Characterization of Si Nanocrystals[M]. Silicon Nanocrystals; Wiley-VCH Verlag GmbH & Co. KGaA.2010:583-611.
    [134]Hua FJ, Swihart MT, Ruckenstein E. Efficient surface grafting of luminescent silicon quantum dots by photoinitiated hydrosilylation[J]. Langmuir,2005,21(13):6054-6062.
    [135]Ma J, Wei S-H, Neale NR, Nozik AJ. Effect of surface passivation on dopant distribution in Si quantum dots:The case of B and P doping[J]. Applied Physics Letters,2011,98(17):173103.
    [136]Park S, Cho E, Song D, Conibeer G, Green MA. n-Type silicon quantum dots and p-type crystalline silicon heteroface solar cells[J]. Solar Energy Materials and Solar Cells, 2009,93(6-7):684-690.
    [137]Fujii M, Yamaguchi Y, Takase Y, Ninomiya K, Hayashi S. Control of photoluminescence properties of Si nanocrystals by simultaneously doping n- and p-type impurities[J]. Applied Physics Letters,2004,85(7):1158-1160.
    [138]Zhang X, Brynda M, Britt RD, Carroll EC, Larsen DS, Louie AY, Kauzlarich SM. Synthesis and characterization of manganese-doped silicon nanoparticles:Bifunctional paramagnetic-optical nanomaterial[J]. Journal of the American Chemical Society,2007,129(35): 10668-10669.
    [139]Piscanec S, Cantoro M, Ferrari AC, Zapien JA, Lifshitz Y, Lee ST, Hofmann S, Robertson J. Raman spectroscopy of silicon nanowires[J]. Physical Review B,2003,68(24):241312.
    [140]Cerdeira F, Buchenau.Cj, Cardona M, Pollak FH. Stress-induced shifts of first-order Raman frequencies of diamond and zinc-blende-type semiconductors[J]. Physical Review B,1972,5(2): 580-593.
    [141]Yoshikawa M, Murakami M, Matsuda K, Matsunobe T, Sugie S, Okada K, Ishida H. Characterization of Si nano-polycrystalline films at the nanometer level using resonant Raman scattering[J]. Journal of Applied Physics,2005,98(6):063531.
    [142]Balberg I. Electrical transport mechanisms in three dimensional ensembles of silicon quantum dots[J]. Journal of Applied Physics,2011,110(6):061301.
    [143]Roschuk T, Li J, Wojcik J, Mascher P, Calder ID. Lighting Applications of Rare Earth-Doped Silicon Oxides[M]. Silicon Nanocrystals; Wiley-VCH Verlag GmbH & Co. KGaA.2010: 487-506.
    [144]Cueff S, Labbe C, Dierre B, Fabbri F, Sekiguchi T, Portier X, Rizk R. Investigation of emitting centers in SiO2 codoped with silicon nanoclusters and Er3+ ions by cathodoluminescence technique[J]. Journal of Applied Physics,2010,108(11):113504.
    [145]Lopez-Estopier R, Aceves-Mijares M, Yu Z, Zuniga C, Falcony C. Photo- and Cathodo-luminescence of hydrogenated Silicon Rich Oxide:proceedings of the Electrical Engineering, Computing Science and Automatic Control,2008 CCE 2008 5th International Conference on, 12-14 Nov.2008,2008[C].
    [146]Fitting HJ, Kourkoutis LF, Salh R, Zamoryanskaya MV, Schmidt B. Silicon nanocluster aggregation in SiO2:Si layers[J]. physica status solidi (a),2010,207(1):117-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700