用户名: 密码: 验证码:
认知无线电中基于时—频—空三维空洞的机会接入研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在认知无线电网络中,次用户(SU)通过对频谱空洞的利用,可以在不影响主用户(PU)正常使用的情况下,使用空闲的频段接入网络,解决频谱资源紧张和频谱利用率低的问题。如何充分地发掘和利用频谱空洞,有效地接入频谱,是认知无线电技术的一个关键问题。由于传统的机会接入方案没有充分利用整个频谱空洞,论文通过研究时一频一空三维空洞,分析空间空洞与时频空洞特性的区别,对空间空洞的利用进行建模和量化,在此基础上,分别围绕小尺度和大尺度网络下的机会接入问题展开研究。
     在小尺度网络中,由于网络半径较小,各个SU检测到的频谱机会因而比较相近,空间上的接入机会不明显,SU需要更有效地利用时间和频率上的空洞。本论文首先提出一种分布式SU接入方案,可以允许SU在多个信道上寻找空闲的接入机会,并优化了有效吞吐量。为进一步提高频谱利用率,论文随后提出了一种SU间有效合作的接入方案,给出了合作吞吐量的上、下界,由于充分利用了时间和频率的空洞机会,该合作方案的归一化系统吞吐量能够趋近于1。公平性是保证系统有效运行和用户满意度的重要参数,本论文研究了分布式接入方案在多个用户同时接入的场景下的公平性问题,提出了一种快速追赶策略以改进原方案的公平性。
     在大尺度认知无线电网络中,SU周围频谱情况不尽相同,这产生了空间上的空洞机会,发射功率的控制是利用好空间空洞的关键。同时,获得PU的空间信息是进行功率控制的前提条件。然而,传统无线网络的定位算法并不适用于主用户的定位。本论文提出了一种非测距的高阶几何定位算法,通过利用更多的SU进行定位,改善了非测距类算法的定位精度。在此基础上,又提出了一种可以间接测距的二维和三维空间定位的算法,基于平均检测概率的估计,仅仅利用感知结果,就间接地实现了测距算法的定位效果。该算法非常接近Cramer-Rao下界,具有很好的定位性能。最后,论文针对分布式和中心节点控制网络分别提出了一种基于PU空间位置的机会接入方案,定位算法的误差也在方案设计中有所考虑。该方案有利于抓住大尺度网络的空间接入机会,进而提高SU网络的性能。
In cognitive radio networks,in order to tackle the problems of spectrum scarcity and underutilization, the secondary users can utilize the spectrum holes to access the network without causing harmful interference to the primary system. One of the key issues in cognitive radio is the effective detection and access to the spectrum holes. However, the conventional opportunistic access schemes have not fully utilized the whole spectrum hole, by restricting only to temporal and frequency dimensions.Thus, in this dissertation, the opportunities in temporal,frequency and spatial dimensions are explored with mathematical modeling and quantitative analysis.The features of spatial spectrum holes and temporal-frequency spectrum holes are also differentiated. Furthermore, the opportunistic access problems have been investigated based on the utilizations of spectrum holes with three dimensions, for both small-scale and large-scale cognitive radio networks.
     In small-scale cognitive radio networks,the spectrum opportunities surrounding the secondary users exhibit great similarities due to the node adjacency. As a result, the spatial spectrum holes are very limited and the secondary users should seek to an effective exploration of temporal and frequency opportunities.In this dissertation, a distributed opportunistic access scheme is proposed, which allows the secondary users to search for the access opportunities in multiple channels.Furthermore, the effective throughput is also optimized. To further improve the spectrum utilization, a cooperative access scheme is then proposed and the upper and lower bounds on the cooperative throughput are also calculated. The proposed scheme utilizes the spectrum holes efficiently and thus is able to yield a near-optimal system throughput. In addition, fairness is an important issue on characterizing system operation efficiency and user satisfaction.Hence, the fairness issues are also analyzed when multiple secondary users compete to access the spectrum.In particular, a fast catch-up strategy is then proposed to improve the fairness of the original algorithm.
     In large-scale cognitive radio networks, the different spectrum environments surrounding the secondary users create vast spatial potentials for access.The effective utilization of the spatial spectrum holes relies heavily on transmit power control, where the knowledge of the position information of the primary users becomes instrumental.However, the conventional localization algorithms for wireless networks are not applicable to localize the primary users.Accordingly, this dissertation proposes a high-order range-free localization algorithm, which improves the localization accuracy of range-free algorithm by taking advantage of much more surrounding secondary users.Furthermore, a semi range-based localization algorithm is proposed, by virtue of the estimation of the average detection probabilities through the binary detection results.This algorithm is then extended to the 3-dimensional localization so as to fulfill more practical requirments.More importantly, analytical and simulation results show that this approach performs closely to the Cramer-Rao lower bound and thus provides excellent localization accuracy. Finally, we shall propose an opportunistic spectrum access scheme with channel selection and power control mechanisms for distributed and centralized networks,respectively, where localization errors are also considered in the scheme design.The proposed algorithm is proved to greatly enhance the performance of the secondary system by effectively utilizing the spatial opportunities.
引文
[1]Cabric D,Mishra S M, Willkomm D,Broderson R, et al.A cognitive radio approach for usage of virtual unlicensed spectrum.Proc.IST Mobile Wireless Commun.Summit, Germany,2005:19-23.
    [2]NTIA (National Telecommunications and Information Administration). U.S.frequency allocations. [EB/OL].(2002) http://www.ntia.doc.gov/osmhome/allo chrt.pdf
    [3]Federal Communications Commission, Spectrum Policy Task Force, ET Docket no.02-135 Memorandum opinion and order [EB/OL].(2002) http://fjallfoss. fcc.gov/edocs_public/attachmatch/FCC-02-135A1.pdf.
    [4]Tang H. Some physical layer issues of wide-band cognitive radio system. Proc.IEEE DySPAN`05,USA,2005:151-159.
    [5]Mitola III J. Cognitive radio for flexible mobile multimedia communications. Proc. IEEE Mobile Multimedia Communications (MoMuC'99),USA,1999:3-10.
    [6]Mitola III J. Cognitive radio:An integrated agent architecture for software defined radio. PhD Dissertation, Royal Inst. Technol.(KTH), Stockholm, Sweden,2000.
    [7]O'Daniell Neel J. Analysis and design of cognitive radio networks and distributed radio resource management algorithms. Ph.D.Thesis of Virginia Polytechnic Institute and State University,2006:1-385.
    [8]DARPA XG WG, The XG Architectural Framework V1.0,2003.
    [9]DARPA XG WG, The XG Vision RFC V1.0,2003.
    [10]Haykin S.Cognitive radio:Brain-empowered wireless communications. IEEE J. Selected Areas in Commun.,2005,23(2):201-220.
    [11]Thomas R W,DaSilva L A and MacKenzie A B.Cognitive networks. Proc.IEEE DySPAN `05,USA,2005:352-360.
    [12]Mangold S,Shankar S,Berlemann L. Spectrum agile radio:A society of machines with value-orientation. Proc.European Wireless Conference, Cyprus,2005:539-546.
    [13]Weiss T, Jondral F. Spectrum pooling:An innovative strategy for the enhancement of spectrum efficiency. IEEE Commun.Mag.,2004,42:S8-S14.
    [14]Cordeiro C.IEEE 802.22:the first worldwide wireless standard based on cognitive radios. Proc.IEEE DySPAN,USA,2005:328-337.
    [15]IEEE 802.11h, Spectrum and Transmit Power Management Extensions in the 5 GHz Band in Europe [EB/OL],http://standards.ieee.org/getieee802/download/802.11h-2003.pdf, 2003.
    [16]IEEE 802.11,Part Ⅱ:Wireless LAN medium access control (MAC) and physical layer (PHY) specifications [EB/OL],http://standards.ieee.org/getieee 802/download/802.11-1999.pdf,1999.
    [17]IEEE LAN MAN Standards Committee, IEEE draft standard for local and metropolitan area network-part 16:Air interface for fixed broadband wireless access systems-medium access control modification and additional physical layer specifications for 2-11 GHz [EB/OL].(2002) http://standards.ieee.org/reading/ieee/interp/802.16.html.
    [18]IEEE 802.16h, Improved Coexistence Mechanisms for License-Exempt Operation, http://www.ieee802.org/16/private/drafts/le/P80216h_D9.zip,2009.
    [19]Cabric D,Mishra S M and Brodersen R W. Implementation issues in spectrum sensing for cognitive radios. Proc.38th Asilomar Conference on Signals, Systems and Computers, USA,2004:772-776.
    [20]Kim Y M, Zheng G, Sohn S H, and Kim J M. An alternative energy detection using sliding window for cognitive radio system. Proc.10th International Conference on Advanced Communication Technology, Korea,2008:481-485.
    [21]Sahai A, Hoven N and Tandra R. Some fundamental limits on cognitive radio.Allerton Conf. on Commun.,Control and Computing'04, USA,2004:772-776.
    [22]Cabric D and Brodersen R W. Physical layer design issues unique to cognitive radio systems. Proc. IEEE Personal Indoor and Mobile Radio Communications (PIMRC)'05, Germany,2005:759-763.
    [23]Chen H, Gao W, and Daut D.Spectrum sensing using cyclostationary properties and application to IEEE 802.22 WRAN.Proc.GLOBECOM, USA,2007:3133-3138.
    [24]Ye Z,Grosspietsch J, and Memik G Spectrum sensing using cyclostationary spectrum density for cognitive radios, in Proc.IEEE SiPS,China,2007:1-6.
    [25]Lunden J, Koivunen V, Huttunen A, and etal. Spectrum sensing in cognitive radios based on multiple cyclic frequencies. Proc. IEEE GLOBECOM, USA,2007.
    [26]Tkachenko A, Cabric A, and Brodersen R. Cyclostationary feature detector experiments using reconfigurable BEE2.Proc.IEEE DySPAN`07,Ireland,2007:216-219.
    [27]Fehske A, Gaeddert J D and Reed J H. A new approach to signal classification using spectral correlation and neural networks. Proc. IEEE DySPAN'05,USA,2005:144-150.
    [28]Tian Z and Giannaks G A wavelet approach to wideband spectrum sensing for cognitive radios. Proc.1st IEEE CROWNCOM,Greece,2006:1-5.
    [29]Park J, Hur Y, Song T, etal. Implementation Issues of A Wideband Multi-Resolution Spectrum Sensing (MRSS) Technique for Cognitive Radio (CR) Systems. Proc.1st IEEE CROWNCOM,Greece,2006:1-5.
    [30]Kundargi N, and Tewfik A. Hierarchical sequential detection in the context of dynamic spectrum access For cognitive radios. Proc.14th IEEE International Conference on Electronics, Circuits and Systems, Morocco,2007:514-517.
    [31]Taherpour A, Norouzi Y, Nasiri K M, Jamshidi A, and Zeinalpour Y Z.Asymptotically optimum detection of primary user in cognitive radio networks. IET Communications, 2007,6:1138-1145.
    [32]Chaudhari S,Koivunen V, and Poor H V.Distributed autocorrelation-based sequential detection of OFDM signals in cognitive radios. Proc.3rd IEEE CROWNCOM, Singapore, 2008:1-6.
    [33]Lai L F, Fan Y J, and Poor H V. Quickest detection in cognitive radio:A sequential change detection framework. Proc. IEEE GLOBECOM'08,USA,2008:1-5.
    [34]Li H S,Li C Z,and Dai H Y. Quickest spectrum sensing in cognitive radio.42nd Annual Conf. on Information Sciences and Systems, USA,2008:203-208.
    [35]Unnikrishnan J and Veeravalli V. Cooperative spectrum sensing and detection for cognitive radio.Proc. IEEE GLOBECOM, USA,2007:2972-2976.
    [36]Zhang W and Ben Letaief K. Cooperative spectrum sensing with transmit and relay diversity in cognitive radio networks, in IEEE Trans, on Wireless Communications,2008, 11(7):4761-4766.
    [37]Ghasemi A and Sousa ES.Collaborative spectrum sensing for opportunistic access in fading environments. Proc.1st IEEE Symp.New Frontiers in Dynamic Spectrum Access Networks (DySPAN'05), USA,2005:131-136.
    [38]Vistotsky E, Kuffner S,and Peterson R. On collaborative detection of TV transmissions in support of dynamic spectrum sharing. Proc. IEEE DySPAN'05,USA,2005:338-345.
    [39]Mishra S M, Sahai A, and Brodersen R. Cooperative sensing among cognitive radios. Proc. IEEE ICC'06,Turkey,2006:1658-1663.
    [40]Unnikrishnan J and Veeravalli V.Cooperative sensing for primary detection in cognitive radio.IEEE J. of Selected Topics in Signal Processing,2008,2(1):18-27.
    [41]Quan Z, Cui S G, and Sayed A H. An optimal strategy for cooperative spectrum sensing in cognitive radio networks. Proc.IEEE GLOBECOM, USA,2007:2947-2951.
    [42]Quan Z, Cui S G, Sayed A H, and Poor H V.Optimal multiband joint detection for spectrum sensing in cognitive radio networks. IEEE Trans.on Signal Processing,2009, 57(3):1128-1140.
    [43]Ma J, Zhao G, and Li Y Soft combination and detection for cooperative spectrum sensing in cognitive radio networks,in IEEE Trans.on Wireless Commun.,2008,7(12): 4502-4507.
    [44]Ganesan G and Li Y Cooperative spectrum sensing in cognitive radio,Part Ⅰ:Two user networks.in IEEE Trans.on Wireless Commun.,2007,6(6):2204-2213.
    [45]Zheng H and Peng C.Collaboration and fairness in opportunistic spectrum access. Proc. IEEE ICC'05,Korea,2005:3132-3136.
    [46]Peng C Y, Zheng H T and Zhao B Y.Utilization and fairness in spectrum assignment for opportunistic spectrum access. ACM Mobile Networks and Applications (MONET),2006, 11(4):1-19.
    [47]Cao L L and Zheng H T. Distributed spectrum allocation via local bargaining. Proc. IEEE SECON,USA,2005:475-486.
    [48]Capar F, Martoyo I, Weiss T, et al.Comparison of bandwidth utilization for controlled and uncontrolled channel assignment in a spectrum pooling system. Proc. IEEE VTC Spring, UK,2002:1069-1073.
    [49]Zheng H T and Cao L L. Device-centric spectrum management. Proc. IEEE DySPAN`05, USA,2005:56-65.
    [50]Xia W and Qi Z. Power control for cognitive radio base on game theory. Proc. IEEE WiCOM,China,2007:1256-1259.
    [51]Zhou P, Yuan W, Liu W and Cheng W Q.Joint power and rate control in cognitive radio networks:A game-theoretical approach. Proc.IEEE ICC`08,China,2008:3296-3301.
    [52]Nie N and Comaniciu C.Adaptive channel allocation spectrum etiquette for cognitive radio networks. Proc. IEEE DySPAN`05,USA,2005:269-278.
    [53]Sun C H, Chen W and Ben Letaief K. Joint Scheduling and Cooperative Sensing in Cognitive Radios:A Game Theoretic Approach. Proc. IEEE WCNC`09,Hungary,2009.
    [54]Zhao Q, Tong L, Swami A, and Chen Y Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks:A POMDP framework. IEEE J. on Selected Areas in Commun.,2007,25(3):589-600.
    [55]Plummer A, Wu T and Biswas S.A cognitive spectrum assignment protocol using distributed conflict graph construction. Proc. IEEE MILCOM, USA,2007:1-7.
    [56]Willkomm D,Gross J, Wolisz A. Reliable link maintenance in cognitive radio systems. Proc.DySPAN,USA,2005:371-378.
    [57]Shu T, Cui S G and Krunz M. Medium access control for multi-channel parallel transmission in cognitive radio networks. IEEE GlobeCom`06,USA,2006:1-5.
    [58]Huang S H, Liu X and Ding Z. A MAC protocol for opportunistic spectrum Access in cognitive radio networks. Proc. IEEE InfoCom,2008:2101-2109.
    [59]Le L and Hossain E. OSA-MAC:A MAC protocol for opportunistic spectrum Access in cognitive radio networks. Proc.IEEE WCNC`08,2008:1426-1430.
    [60]Ghasemi A and Sousa E S.Optimization of spectrum sensing for opportunistic spectrum access in cognitive radio networks. Proc. IEEE CCNC`07,USA,2007:1022-1026.
    [61]Zhang W, Mallik, R K and Ben Letaief K. Cooperative spectrum sensing optimization in cognitive radio networks. Proc. IEEE ICC`08,China,2008:3411-3415.
    [62]Lee W Y and Akyildiz I F. Optimal spectrum sensing framework for cognitive radio networks. IEEE Trans.on Wireless Commun.,2007,7(10):3845-3857.
    [63]Federal Communications Commission, Spectrum Policy Task Force, ET Docket no.03-237 Notice of inquiry and notice of proposed Rulemaking [EB/OL].(2003)http:// fjallfoss.fcc.gov/edocs_pub lic/attachmatch/FCC-03-237Al.pdf.
    [64]Zhao G D,Ma J, Li Y and et al.Spatial Spectrum Holes for Cognitive Radio with Directional Transmission. Proc. IEEE GlobeCom`08,USA,2008:1-5.
    [65]Gurney D,Buchwald G, Ecklund L and et al. Geo-location database techniques for incumbent protection in the TV white space. Proc. IEEE DySPAN'08,USA,2008:1-9.
    [66]Zhao Y P and Reed J H. Radio environment map design and exploitation. MPRG Technical Report, Virginia Tech.,2005.
    [67]Zhao Y P, Gaeddert J, Bae K K and et al. Radio environment map enabled situation-aware cognitive radio learning algorithms.Proc. SDR Technical Conference and Product Exposition, USA,2006:1-6.
    [68]Zhao Y P, Morales L, Gaeddert J and et al. Applying radio environment maps to cognitive wireless regional area networks. IEEE DySPAN'07,Ireland,2007:115-118.
    [69]Federal Communications Commission, Spectrum Policy Task Force, ET Docket no.03-222 Notice of proposed rule making and order [EB/OL].(2003) http:// fjallfoss.fcc.gov/edocs_pub lic/attachmatch/FCC-03-222Al.pdf.
    [70]Akyildiz I F, Lee W Y, Vuran M C and Mohanty S.Next generation/dynamic spectrum access/cognitive radio wireless networks:A survey. Computer Networks Journal (Elsevier),2006,50(13):2127-2159.
    [71]Sun Y Bandwidth-efficient wireless OFDM. IEEE J. Selected Areas in Commun.,2001, 19(11):2267-2278.
    [72]Akyildiz I F, Li Y OCRA:OFDM-based cognitive radio networks. Broadband and Wireless Networking Laboratory Technical Report, March 2006.
    [73]Chung C D. Spectrally precoded OFDM. IEEE Trans.on Commun.,2006,54(12): 2173-2185.
    [74]Wiegandt D A, Wu Z Q and Nassar C R. High-throughput, high-performance OFDM via pseudo-orthogonal carrier interferometry spreading codes.IEEE Trans.on Commun., 2003,51(7):1123-1134.
    [75]Hillenbrand J,Weiss T, and Jondral F. Calculation of detection and false alarm probabilities in spectrum pooling systems. IEEE Commun.letters,2005,9(4):349-351.
    [76]Kuczura A. The interrupted Poisson process as an overflow process. Bell Syst. Tect. Jour., 1973,52(3):437-448.
    [77]Sriram K, Whitt W. Characterizing superposition arrival processes in packet multiplexers for voice and data. IEEE J. Selected Area in Commun.,1986,6(9):833-846.
    [78]Jondral F K. Software-defined radio-basics and evolution to cognitive radio.EURASIP Journal on Wireless Communication and Networking,2005,3:275-283.
    [79]Xing Y, Chandramouli R, Mangold S and Shankar S.Dynamic spectrum access in open spectrum wireless networks. IEEE J. Selected Areas in Commun.,2005,24(3):626-637.
    [80]Sadeghi H and Azmi P. A novel primary user detection method for multiple-antenna cognitive radio.Proc.IST'08,Iran,2008:188-192.
    [81]马志壵,曹志刚.分布式认知无线电网络用户有效吞吐量的优化.清华大学学报(自然科学版),2008,48(4):506-509。
    [82]马志壵,曹志刚.认知无线电网络用户合作机会接入方案的研究.电子学报,2009,37(4).
    [83]Ma Z Y and Cao Z G. Secondary user cooperation access scheme in opportunistic cognitive radio networks. Proc. IEEE MILCOM, USA,2007:1-5.
    [84]Ma Z Y Cao Z G and Chen W. A fair opportunistic spectrum access (FOSA) scheme in distributed cognitive radio networks. Proc.IEEE ICC,China, May 2008:4054-4058.
    [85]Jondral F K. Cognitive radio:A communications engineering view. IEEE Trans. On Wireless Commun.,2007,14(4):28-33.
    [86]Vaman D R. Cognitive radio based multi-user resource allocation in mobile ad hoc networks using multi-carrier CDMA modulation. IEEE J. on Selected Areas in Commun., 2008,26(1):70-82.
    [87]Yang K and Wang X D.Cross-layer network planning for multi-radio multi-channel cognitive wireless networks. IEEE Trans on Commun.,2008,56(10):1705-1714.
    [88]He T,Huang C,Blum B M, Stankovic J A and Abdelzaher T. Range-free localization schemes for large scale sensor networks. Proc. ACM MobiCom, USA,2003:81-95.
    [89]Li M and Liu Y. Rendered path:range-free localization in anisotropic sensor networks with hole.Proc. ACM MobiCom, Canada,2007.
    [90]Costal J A, Patwari N and Hero A O.Distributed weighted multi-dimensional scaling for node localization in sensor networks. ACM Transactions on Sensor Networks (TOSN), 2006,2(1):39-64.
    [91]Kim S,Jeon H and Ma J. Robust localization with unknown transmission power for cognitive radio. Proc.IEEE MILCOM, USA,2007:1-6.
    [92]Hu L and Evans D.Localization for mobile sensor networks. Proc. ACM MobiCom,2004: 45-57.
    [93]Li M and Liu Y. Rendered path:range-free localization in anisotropic sensor networks with holes. Proc.ACM MobiCom,2007:51-62.
    [94]Lim H, Kung L, Hou, J C and Luo H. Zero-configuration, robust indoor localization: theory and experimentation. IEEE INFOCOM, Spain,2006:1-12.
    [95]Uchiyama A, Fujii S,Maeda K, Umedu T, Yamaguchi H and Higashino T. Ad-hoc localization in urban district. Proc.IEEE INFOCOM,USA,2007:2306-2310
    [96]Plummer A, Wu T and Biswas S.A cognitive spectrum assignment protocol using distributed conflict graph construction. IEEE MILCOM, USA,2007:1-7.
    [97]Shirahama J and Ohtsuki T. RSS-based localization in environments with different path loss exponent for each link. Proc. IEEE VTC Spring'08,Singapore,2008:1509-1513.
    [98]Dardari D, Chong C C and Win M Z.Threshold-based time-of-arrival estimators in uwb dense multipath channels. IEEE Trans. On Comm.,2008,56(8):1366-1378.
    [99]So H C,Chan Y T and Chan,K W. Closed-form formulae for time-difference-of-arrival estimation. IEEE Trans. On Signal Processing,2008,56(6):2614-2620.
    [100]Souden M, Affes S,and Benesty J. A two-stage approach to estimate the angles of arrival and the angular spreads of locally scattered sources. IEEE Trans. On Signal Processing, 2008,56(5):1968-1983.
    [101]Vivekanandan V and Wong W S.Concentric anchor beacon localization algorithm for wireless sensor networks.IEEE Trans. On Vehicular Technology,2007,56(5):2733-2744.
    [102]Nicoli M, Morelli C and Rampa V. A jump markov particle filter for localization of moving terminals in multipath indoor scenarios. IEEE Trans,on Signal Processing,2008, 56(8):3801-3809.
    [103]Morelli C,Nicoli M, Rampa V and Spagnolini U. Hidden markov models for radio localization in mixed LOS/NLOS conditions. IEEE Trans.on Signal Processing,2007, 55(4):1525-1542.
    [104]Chan Y T, Tsui W Y, So H C and Ching P C.Time-of-arrival based localization under NLOS conditions. IEEE Trans. On Vehicular Technology,2006,55(1):17-24.
    [105]Celebi H and Arslan H. Cognitive Positioning Systems. IEEE Trans. On Wireless Comm., 2007,6(12):4475-4483.
    [106]Digham F F, Alouini M S and Simon M K. On the energy detection of unknown signals over fading channels. Proc. IEEE ICC'03,USA,2003:3575-3579.
    [107]Coulson A J, Williamson A G and Vaughan R G. A statistical basis for lognormal shadowing effects in multipath fading channels. IEEE Trans. Commun.,1998,46(4): 494-502.
    [108]Salo J, Vuokko L, Sallabi H M, and Vainikainen P. An additive model as a physical basis for shadow fading. IEEE Transactions on Vehicular Technology,2007,56(1):13-26.
    [109]Chitte S D,Dasgupta S,and Ding Z.Distance estimation from received signal strength under log-normal shadowing:Bias and variance.IEEE Trans, on Signal Processing,2009, 16(3):216-218.
    [110]Stevenson C R, Cordeiro C,Sofer E, et al. Functional Requirements for the 802.22 WRAN Standard.IEEE 802.22-05/0007r48,2005.
    [111]Gong D,Ma Z Y, Li Y F, Chen W and Cao Z G.High order geometric range free localization in opportunistic cognitive sensor networks. Proc.Workshop CoCoNET on IEEE ICC,China,2008:139-143.
    [112]Ma Z Y, Ben Letaief K, Chen W and Cao Z G A semi range-based iterative localization algorithm for cognitive radio networks. Proc. IEEE WCNC,Hungary,2009.
    [113]Ma Z Y, Chen W, Ben Letaief K and Cao Z G A semi range-based iterative localization algorithm for cognitive radio networks. Submitted to IEEE Trans,on Vehicular Technology.
    [114]马志壵,陈巍,曹志刚.一种认知无线电中基于检测概率的主用户定位算法.北京邮电大学学报,2009,32(4).
    [115]Kleinrock L and Tobagi F. Packet Switching in Radio Channels:Part Ⅰ--Carrier Sense Multiple-Access Modes and their Throughput-Delay Characteristics. IEEE Trans.on Commun.,1975,23(12):1400-1416.
    [116]Nelson R and Kleinrock L. The Spatial Capacity of a Slotted ALOHA Multihop Packet Radio Network with Capture.IEEE Trans.on Commun.,1984,32(6):684-694.
    [117]Chuang A, Fabregas G I,Rasmussen L K and Collings I B.Optimal throughput-diversity-delay tradeoff in MIMO ARQ block-fading channels. IEEE Transactions on Information Theory,2008,54(9):3968-3986.
    [118]Lee N H and Bank S.Dynamic channel allocation using the interference range in multi-cell downlink systems. Proc. IEEE WCNC'07,Hong Kong,2007:1716-1721.
    [119]Hoven N and Sahai A. Power scaling for cognitive radio.Proc.IEEE WirelessCom'05, USA,2005:250-255.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700