用户名: 密码: 验证码:
咪唑类离子液体表面活性剂形成的微乳液的相行为及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文包括四部分,第一章为绪论;第二章为酸碱盐对CnmimBr形成的W/O微乳液的界面组成、热力学性质及结构参数的影响;第三章为非水微乳液体系C12mimBr/[bmim][BF_4]/正戊醇/正辛烷的相行为和物化性质;第四章为无机盐及合成纳米粒子对W/O微乳液的物化性质和结构参数的影响。
     一.绪论
     介绍了离子液体和研究微乳液相行为的W/O稀释法,综述了离子液体和非离子表面活性剂Brij-35缔合结构体系的研究进展。对微乳液作为反应介质在纳米合成方面的应用也进行了评述。
     二.酸碱盐对CnmimBr形成的W/O微乳液的界面组成、热力学性质及结构参数的影响
     用W/O稀释法,研究了CnmimBr/醇/油/盐水W/O型微乳液体系的界面组成、热力学性质及微乳液滴的结构等,探讨了水相中酸碱盐对上述微乳液体系界面组成及结构参数等的影响。
     1.离子液体型表面活性剂溴代1-十二烷基-3-甲基咪唑(C12mimBr)、溴代1-十四烷基-3-甲基咪唑(C14mimBr)和溴代1-十六烷基-3-甲基咪唑(C16mimBr)在不同的水相介质中(NaCl, HCl或NaOH)均易于形成W/O型微乳液。
     2.不同水相介质(NaCl、HCl或NaOH)对W/O型离子液体微乳液体系的影响规律相同,即随水相介质中酸碱盐浓度的增大,醇在油中的摩尔溶解度X o醇在界面层中的摩尔分数X ia减小,而K和ΔGo
     o→i值增大,液滴半径(Rw和Re)增大。
     3.不同的水相介质对W/O型微乳液物化参数的影响顺序为:HCl >> NaCl>NaOH (X o
     a、X i
     a),NaOH > NaCl >> HCl (ΔGo
     o→i、Rw )。以NaOH为水相的体系中的水池半径与以NaCl或HCl为水相的体系比较显著增大。
     三.非水微乳液体系C12mimBr/[bmim][BF_4]/正戊醇/正辛烷的相行为和物化性质
     对非水微乳液体系C12mimBr/ [bmim][BF_4]/正戊醇/正辛烷的相行为和热力学性质进行了研究,并将其与含水微乳液体系C12mimBr/ H2O/正戊醇/正辛烷进行了比较。
     1.当使用不同的亲水相时,单相区区域的大小顺序为H2O< 5% [bmim][BF_4]水溶液<5% NaCl水溶液< [bmim][BF_4]。
     2. [bmim][BF_4]微乳液体系的X oa和X ia值总是分别大于水相体系的,IL/O型微乳液形成的自发性小于传统的W/O型微乳液。IL/O微乳液液滴小于传统的W/O型微乳液液滴。
     3.随醇碳链长度的增加,IL/O微乳液形成的自发性增强。烷烃对微乳液物化参数的影响与醇的影响相反。即随烷烃碳链长度的增长,体系物化性质的变化规律与随醇碳链长度的增长导致的变化规律不同。
     4.盐效应对IL/O微乳液体系的界面组成和结构参数没有明显影响。
     5.在较高温度下,IL/O微乳液形成的自发性变小,而W/O型微乳液形成的自发性变大。
     四.无机盐及合成纳米粒子对W/O微乳液的物化性质和结构参数的影响
     利用W/O稀释法,研究了分别以Na_2CO_3、CaCl2和两种无机盐的混合物为水相,C16mimBr(或Brij35)/正戊醇/正辛烷/水溶液的W/O微乳液体系的界面组成、热力学性质及结构参数等。
     考察了在上述微乳液体系中,在不同ωo(水与表面活性剂的摩尔比)及不同Na_2CO_3、CaCl2浓度下,合成纳米粒子CaCO3过程前后,微乳液体系的组成及微乳液滴结构参数的变化。
     1.在不同ωo值下,合成CaCO3纳米粒子前后,醇在油相中的摩尔分数Xo均增加,醇在界面膜中的摩尔分数X i
     a均减小,ΔG oo→i值均减小,微乳液滴均增大。合成CaCO3纳米粒子后,微乳液液滴的水池半径与Na_2CO_3、CaCl2微乳液体系相比均有所增大。
     2.随Na_2CO_3、CaCl2浓度增加,C16mimBr(或Brij35)/正戊醇/正辛烷/水溶液W/O微乳液体系的X oa均减小,X ia、ΔGoo→i均增大,Rw均有所减小。但合成CaCO3纳米粒子后,微乳液液滴的水池半径增大。
     3.含水量ωo和Na_2CO_3、CaCl_2浓度对两种微乳液体系的界面组成、热力学性质及结构参数等都有影响,但ωo的影响较之盐浓度的影响要大。
This thesis contains four parts. Chapter I. Introduction;Chapter II. The effects ofNaCl(HCl/NaOH) on the interfacial composition, thermodynamic properties andstructural parameters of the W/O microemulsions formed by CnmimBr. Chapter III.Phase behavior and thermodynamic properties of nonaqueous microemulsion systemscontaining C12mimBr/ [bmim][BF_4]/ pentanol/ n-octane. Chapter IV. Effects ofinorganic salts and synthesized nanoparticles on the physicochemical properties andstructural parameters of W/O microemulsions.
     Chapter I. Introduction
     The basic knowledge about ionic liquids and the W/O dilution method used toinvestigate the phase behavior of microemulsions were introduced. The researchprogresses of the association structure systems formed by ionic liquids and non-ionicsurfactant Brij35 were revewed. The application of microemulsion systems asreaction media in the synthesis of nanoparticles is also disscussed.
     Chapter II. The effects of NaCl(HCl/NaOH) on the interfacialcomposition, thermodynamic properties and structural parameters ofthe W/O microemulsions formed by CnmimBr.
     The interfacial composition, thermodynamic properties and structure parameters ofthe W/O microemulsions CnmimBr/ 1-pentanol/ n-octane/ brine with the W/O dilutionmethod. The effects of NaCl (HCl/NaOH) on the above items were discussed.
     1. The W/O microemulsions containing surfactant-like ionic liquid 1-dodecyl-3-methylimidazolium bromide (C12mimBr) [or 1-tetradecyl-3-methylimidazoliumbromide (C14mimBr), 1-hexadecyl-3-methylimidazolium bromide (C16mimBr)] areeasier to form (largerΔGoo→ivalues) in different aqueous phases (NaCl, HCl orNaOH).
     2. The different aqueous phases (NaCl, HCl or NaOH) have the same influencingtrends on the ionic liquids based W/O microemulsions. That is, both the molesolubility of the alcohol in the oil phaseX oa, and the mole fraction of alcohol at theinterfacial layerX iadecreases, while K andΔGo droplets (Reand Rw) increase with increasing aqueous media concentrations.
     3. The physicochemical parameters of the microemulsion systems with differentaqueous phases are in the order HCl>> NaCl> NaOH (X oaandX ia), NaOH > NaCl>> HCl (ΔGoo→iandRw ). The W/O microemulsions have the larger radii of thewater pool with NaOH aqueous phase compared with the systems formed with NaClor HCl aqueous phase.
     Chapter III. Phase behavior and thermodynamic properties ofnonaqueous microemulsion systems containing C12mimBr/[bmim][BF_4]/ 1-pentanol/ n-octane
     The phase behavior and thermodynamic properties of nonaqueous microemulsionsystems containing C12mimBr/ [bmim][BF_4]/ 1-pentanol/n-octane was studied andcompared with that of aqueous systems containing C12mimBr/ water/ 1-pentanol/n-octane.
     1. When different hydrophilic phases are used, the magnitude of the areas of thesingle-phase domain is as follows: pure water< 5% [bmim][BF_4] aqueoussolution<5% NaCl aqueous solution< pure [bmim][BF_4] .
     2. BothX oaandX iain [bmim][BF_4] microemulsion systems are always largerthanX oaandX iain H2O systems, respectively. The formation of IL/O microemulsionwas less stable and the droplets of IL/O microemulsions were smaller than theconventional W/O microemulsions.
     3. As the carbon chain lengths of the alcohol increases, the formation of IL/Omicroemulsion was increasingly stable. While the pattern of change of all theparameters resulting from different carbon chain lengths of alkanes is in the contraryto the pattern of change resulting from different carbon chain lengths of alcohols.
     4. Salinity has no effect on the interfacial composition and structural parametersfor IL/O microemulsion systems.5. At higher temperatures, the IL/O microemulsion was less stable, while theW/O microemulsion was more stable. The radii of the IL/O and W/O microemulsiondroplets decrease as well. Chapter IV. Effects of inorganic salts and synthesized nanoparticleson the physicochemical properties and structural parameters of W/Omicroemulsions.
     The effects of Na_2CO_3, CaCl2and the mixture of the two salts as the aqueousphase on the interfacial compositions, thermodynamic properties and structureparameters of the W/O microemulsions C16mimBr (Brij35)/ 1-pentanol/ n-octane/aqueous phase have been investigated.
     The changes of the compositions and the structure parameters of the W/Omicroemulsions withωovalue (the molar ratio of water to surfactant) , Na_2CO_3andCaCl2concentrations were investigated. The effect of the reaction between Na_2CO_3and CaCl2to form CaCO3was also discussed.
     1. At differentωovalues, the reaction between Na_2CO_3and CaCl2to form CaCO3resuls in the decreases inX oavalues, increases inX ia,ΔG oo→iand the radius of thewater pool. TheRw values of the microemulsion systems containg CaCO3are largerthan that of the systems containg Na_2CO_3or CaCl2.
     2. As Na_2CO_3or CaCl2concentration increases,X oadecreases,X iaandΔGoo→iincrease, andRw also decreases, the droplets of the water pool increase with theformation of CaCO3particles for the W/O microemulsion systems of C16mimBr(Brij35)/ 1-pentanol/ n-octane/ aqueous phase.
     3.ωovalues, Na_2CO_3and CaCl2concentrations all have effects on the interfacialcomposition, thermodynamic properties and structure parameters of the W/Omicroemulsions. However, the effect ofωois stronger than that of Na_2CO_3andCaCl2concentrations.
引文
[1] Seddon, K. R. Ionic Liquids for clean technology [J]. Chem, Biotechnol.,1997, 2,351-356.
    [2] Holbery, J. D; Seddon, K. R. The Phase behavior of 1-alkyl-3-methylimidazoliumtetrafluoroborates: ionic liquids and ionic liquid crystals [J]. J. Chem.Soc., Daltontrans., 1999, 13, 2133-2139.
    [3]鲍晓磊,赵地顺,武彤,张立伟,贾晓艳.离子液体的合成及应用进展[J].河北化工, 2007, 30(12), 31-35.
    [4]邹汉波,董新法,林维明.离子液体及其在绿色有机合成中的应用[J].化学世界, 2004, 45(2), 107-110.
    [5]梁红玉,宫红,姜恒.离子液体-未来化学工业中的绿色溶剂[J].当代化工,2002, 31(1), 60- 62.
    [6] Wasserscheid, P.; Keim, W. Ionic liquids—new“solutions”for transition metalcatalysis [J]. Angew. Chem. Int. Ed., 2000, 39, 3773-3789.
    [7] Tait, S.; Osteryoung, R. A. Infrared study of ambient-temperaturechloroaluminates as a function of melt acidity [J]. Inorg. Chem., 1984, 23, 4352-4360.
    [8] Wilkes, J. S.; A short history of ionic liquids—from molten salts to neotericsolvents [J]. Green Chem., 2002, 4 (2), 73-80.
    [9] Chum, H. L.; Koch, V. R.; Miller, L. L. et al. Electrochenmical scrutiny oforganometallic iron complexes and hexamethylbenzene in a room temperature moltensalt [J]. J. Am. Chem. Soc., 1975, 97 (11), 3264-3265.
    [10] Wilkes, J. S., Levisky, J. A.; Wilson, R. A. et al. Dialkylimidazoliumchloroaluminate melts: a new class of room-temperature ionic liquids forelectrochemistry, spectroscopy, and synthesis [J]. Inorg. Chem., 1982, 21 (3),1263-1264.
    [11] Hussey, C. L. Room temperature haloaluminate ionic liquids—novel solvents fortransition metal solution chemistry [J]. Pure&Appl. Chem., 1988, 60 (12),1763-1772.
    [12] Wilkes, J. S.; Zaworotko, M. J. Air and water stable 1–ethyl-3- methylimidazolium based ionic liquids [J]. J. Chem. Soc., Chem. Commun., 1992, (13),965-966.
    [13] Bonhote, P. D.; Dias, A. P. Hydrophobic, highly conductive ambient-temperaturemolten [J] . Inorg. Chem., 1996, 35, 1168-1178.
    [14]杨雅立,王晓化,寇元等.不断壮大的离子液体家族[J].化学进展,2003, 15(6), 471-476.
    [15] Bao, W. L.; Wang, Z. M.; Li, X. Y. Synthesis of chiral ionic liquids from naturalamino acids [J]. J. Org. Chem., 2003, 68, 591-593.
    [16] Leone, A. M.; Weatherly, S. C.; Williams, M. E. et al. An ionic liquid form ofDNA: redox-active molten salts of nucleic acids [J]. J. Am. Chem. Soc., 2001, 123 (2),218-222.
    [17] Huang, J.; Jiang, T.; Gao, H. X. et al. Active and stable catalyst-Pd nanoparticlesimmobilized onto molecular sieve by ionic liquid as heterogenerous catalyst forsolvent-free hydrogenation [J]. Angew. Chem. Int., Ed., 2004, 43, 1397-1399.
    [18] Dai, L. Y.; Yu, S. Y.; Shan, Y. K. et al. Novel room temperature inorganic ionicliquids [J]. Eur. J. Inorg. Chem., 2004, 237-241.
    [19]顾彦龙,石峰,邓友全.室温离子液体:一类新型的软介质和功能材料[J].科学通报,2004, 49 (6), 515-521.
    [20]王均凤,张锁江,陈慧萍等.离子液体的性质及其在催化反应中的应用[J].过程工程学报,2003, 3 (2), 177-185.
    [21] Wilkes, J. S.; Zaworotko, M. J. Air and Water Stable 1-methyl-3-ethylimidazolium Based Ionic Liquids [J]. J. Chem. Soc., Chem. Comm., 1992, 965-966.
    [22]张锁江,吕兴梅等.离子液体—从基础研究到工业应用[M].北京:科学出版社,2006.
    [23] Evans, D. F.;Yamauchi, A.; Wei, G. J.; Bloomfield, V. A. Micelle size inethylammonium nitrate as determined by classical and quasi-elastic light scattering [J].J. Phys.Chem., 1983, 87, 3537-3541.
    [24] Merrigan, T. L.; Bates, E. D.; Dorman S. C.; Davis, J. H. New fluorous ionicliquids function as surfactants in conventional room-temperature ionic liquids [J].Chem.Commun., 2000, 2051-2052.
    [25] Baltazar, Q.Q.; Chandawalla, J.; Sawyer, K.; Anderson, J.L. Interfacial andmicellar properties of imidazolium-based monocationic and dicationic ionic liquids[J]. Colloid Surf. A, 2007, 302, 150-156.
    [26] Vanyúr, P.; Biczók, L.; Miskolczy, Z. Micelle formation of 1-alkyl-3-methylimidazolium bromide ionic liquids in aqueous solution [J]. Colloid Surf. A, 2007, 299,256–261.
    [27] Firestone, M. A.; Dietz, M. L.; Seifert S. et al. Ionogel-templated synthesis andorganization of anisotropic gold nanoparticles [J]. Small, 2005, 1, 754-760.
    [28] Gao, Y. A.; Zhao, X. Y.; Dong, B. et al. Inclusion Complexes of a-Cyclodextrinwith Ionic Liquid Surfactants [J]. J. Phys. Chem. B, 2006, 110, 8576-8581.
    [29] Wu, J. P.; Zhang, J.; Zheng, L. Q. et al. Characterization of lyotropic liquidcrystalline phases formed in imidazolium based ionic liquids [J]. Colloid Surf. A,2009, 336, 18–22.
    [30] Li, X. W.; Zhang, J.; Dong, B. et al. Characterization of lyotropic liquid crystalsformed in the mixtures of 1-alkyl-3-methylimidazolium bromide/ p-xylene/ water[J]. Colloid Surf. A, 2009, 335, 80–87.
    [31] Wang, Z. N.; Liu, F.; Gao, Y. A.; et al. Hexagonal liquid crystanlline phasesformed in ternary systems of Brij97/ water/ ionic liquids [J]. Langmuir, 2005, 21,4931–4937.
    [32] Ao, M. Q; Xu, G. Y.; Zhu, Y. Y.; Bai, Y. Synthesis and properties of ionicliquid-type Gemini imidazolium surfactants [J]. J. Colloid Interface Sci, 2008, 326,490-495.
    [33] Xia, H. S.; Yu, J.; Jiang, Y. Y.; Mahmood, I.; Liu, H. Z. Physicochemicalfeatures of ionic liquid solutions in the phase separation of penicillin(II): Winsor IIreversed micelle [J]. Ind. Eng. Chem. Res., 2007, 46,2112-2116.
    [34] Safavi, A.; Maleki, N.; Farjami, F. Phase behavior and characterization of ionicliquids based microemulsions [J]. Colloid Surf. A, 2010, 355, 61-66.
    [35] Eastoe, J.; Gold, S.; Rogers, S. E. et al. Ionic liquid-in-oil microemulsions [J]. J.Am. Chem. Soc., 2005, 127, 7302-7303.
    [36] Chakrabarty, D.; Seth, D.; Chakraborty, A.; Sarkar, N. Dynamics of solvationand rotational relaxation of coumarin 153 in ionic liquid confined nanometer-sizedmicroemulsions [J]. J. Phys. Chem. B, 2005, 109, 5753-5758.
    [37] Gao, Y. A.; Han, S. B.; Han, B. X. et al. TX-100/ Water/ 1-Butyl -3-methylimidazolium Hexafluorophosphate Microemulsions [J]. Langmuir, 2005, 21,5681-5684.
    [38] Yan, F.; Texter, J. Surfactant ionic liquid-based microemulsions forpolymerization [J]. Chem. Commun. 2006, 25, 2696-2698.
    [39] Fletcher, P. D. I.; Golal, M. F.; Robinson, B. H. J. Structural Study ofAerosol-OT-stabilised Microemulsions of Glycerol Dispersed in n-Heptane [J]. Chem.Soc., Faraday Trans., 1984, 80, 3307-3314.
    [40] Falcone, R. D.; Correa, N. M.; Biasutti, M. A.; Silber, J. J. Properties of AOTaqueous and nonaqueous microemulsions sensed by optical molecular probes [J].Langmuir, 2000, 16, 3070-3076.
    [41] Das, K. P.; Ceglie, A.; Lindman, B. Microstructure of formamidemicroemulsions from NMR self-diffusion measurements [J]. J. Phys. Chem., 1987, 91,2938- 2946.
    [42] Anderson, J. L.; Pino, V.; Hagberg, E. C.; Sheares V. V.; Armstrong, D. W.Surfactant solvation effects and micelle formation in ionic liquids [J]. Chem.Commun., 2003, 2444-2445.
    [43] Fletcher, K. A.; Pandey, S. Surfactant Aggregation within Room-TemperatureIonic Liquid 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide [J].Langmuir, 2004, 20, 33-36.
    [44] Patrascu, C.; Gauffre, F.; Nallet, F.; et al. Micelles in Ionic Liquids: AggregationBehavior of Alkyl Poly(ethyleneglycol)-ethers in 1-Butyl-3-methyl-imidazolium TypeIonic Liquids [J]. Chem. Phys. Chem., 2006, 7, 99-101.
    [45] He, Y.; Li, Z.; Simone, P.; Lodge, T. P. Self-Assembly of Block CopolymerMicelles in an Ionic Liquid [J]. J. Am. Chem. Soc., 2006, 128, 2745-2750.
    [46] Gao, H. X.; Li, J. C.; Han, B. X.; et al. Microemulsions with ionic liquid polardomains [J]. Phys. Chem. Chem. Phys., 2004, 2914-2916.
    [47] Li, J. C.; Zhang, J. L.; Gao, H. X.; Han, B. X.; Gao, L. Nonaqueousmicroemulsion-containing ionic liquid [bmim][PF6] as polar microenvironment [J].Colloid Polym. Sci., 2005, 283, 1371-1375.
    [48] Gao, Y. A.; Li, N.; Zheng, L. Q.; et al. A cyclic voltammetric technique for thedetection of micro-regions of bmimPF6/Tween 20/H2O microemulsions and theirperformance characterization by UV-Vis spectroscopy [J]. Green Chem., 2006, 8,43-49.
    [49] Gao, Y. A.; Wang, S. Q.; Zheng, L. Q.; et al. Microregion Detection of IonicLiquid [J]. J. Colloid Interface. Sci., 2006, 301, 612-616.
    [50] Gao, Y. A.; Zhang, J.; Xu, H. Y.; et al. Structural Studies of 1-Butyl -3-methylimidazolium Tetrafluoroborate/TX-100/ P-xylene Ionic Liquid Microemulsions [J].Chem. Phys. Chem., 2006, 7, 1554-1561.
    [51] Fu, C.; Zhou, H.; Wu, H. et al. Research on electrochemical properties ofnonaqueous ionic liquid microemulsions [J]. Colloid. Polym. Sci., 2008, 286,1499-1504.
    [52] Adhikari, A.; Sahu, K.; Dey, S. et al. Femtosecond solvation dynamics in a neationic liquid and ionic liquid microemulsion: excitation wavelength dependence [J]. J.Phys. Chem. B, 2007,111, 12809-12816.
    [53] Adhikari, A.; Das, D. K.; Sasmal, D. K.; Bhattacharyya, K. Ultrafast FRET in aroom temperature ionic liquid microemulsion: a femtosecond excitation wavelengthdependence study[J]. J. Phys. Chem. A, 2009, 113, 3737-3743.
    [54] Li, J.; Zhang, J.; Gao, H. et al. Nonaqueous microemulsion-containing ionicliquid [bmim][PF6] as polar microenvironment [J]. Colloid. Polym. Sci., 2005, 283,1371-1375.
    [55] Cheng, S.; Fu, X.; Liu, J. et al. Study of ethylene glycol/TX-100/ionic liquidmicroemulsions[J]. Colloids Surf., A, 2007, 302, 211-215.
    [56] Zech, O.; Thomaier, S.; Bauduin, P. et al. Microemulsions with an ionic liquidsurfactant and room temperature ionic liquids as polar pseudo-phase [J]. J. Phys.Chem. B, 2009, 113, 465-473.
    [57] Rabe, C.; Koetz, J. CTAB-based microemulsions with ionic liquids [J]. ColloidsSurf., A, 2010, 354, 261-267.
    [58] Gayet, F.; El Kalamouni, C.; Lavedan, P. et al. Ionic liquid/oil microemulsions aschemical nanoreactors [J]. Langmuir, 2009, 25, 9741-9750.
    [59] Ahn, C. K.; Kim, Y. M.; Woo, S. H.; Park, J. M. Soil washing using variousnonionic surfactants and their recovery by selective adsorption with activated carbon[J]. J. Hazard. Mater., 2008, 154, 153–160.
    [60] Mishra, S. K.; Panda, D. Studies on the adsorption of Brij-35 and CTAB at thecoal–water interface [J]. J. Colloid Interface Sci., 2005, 283, 294–299.
    [61] Hsieh, Y. Z.; Kuo, K. L. Separation of retinoids by micellar electro-kineticcapillary chromatography [J]. J. Chromatog. A, 1997, 761, 307-313.
    [62] Cao, J.; Yi, L.; Li, P.; Chang, Y. X. On-line concentration of neutral analytes bycomplexation and acetonitrile sweeping in nonionic microemulsion electrokineticchromatography with direct ultraviolet detection[J]. J. Chromatogr. A, 2009, 1216,5608–5613.
    [63] Puig, P.; Borrull, F.; Aguilar, C.; Calull, M. Sample stacking for the analysis ofpenicillins by microemulsion electrokinetic capillary chromatography [J]. J.hromatogr. B, 2006, 831, 196-204.
    [64] Liu, J. F.; Sun, J.; Wang, Y. J. et al. Characterization of microemulsion liquidchromatography systems by solvation parameter model and comparison with otherphysicochemical and biological processes [J]. J. Chromatogr. A, 2007, 1164,129–138.
    [65] Deen, G. R.; Pedersen, J. S. Phase Behavior and Microstructure of C12E5NonionicMicroemulsions with Chlorinated Oils [J]. Langmuir, 2008, 24, 3111- 3117.
    [66] Kunieda, H.; Yamagata, M. Mixing of nonionic surfactants at water-oil interfacesin microemulsions [J]. Langmuir, 1993, 9, 3345-3351.
    [67] Rajib, K. M.; Bidyut, K. P. Effect of temperature and salt on the phase behaviorof nonionic and mixed nonionic–ionic microemulsions with fish-tail diagrams [J]. J.Colloid Interface Sci., 2005, 291, 550–559.
    [68] Buzier, M.; Ravey, J. Solubilization Properties of Nonionic Surfactants I. Evolutionof the Ternary Phase Diagrams with Temperature, Salinity, HLB, and CAN [J]. J.Colloid Interface Sci. 1983, 91(1), 20-33.
    [69] Ajith, S.; Rakshit, A. K. Effect of NaCl on a Nonionic Surfactant MicroemulsionSystem [J]. Langmuir, 1995, 11, 1122-1126.
    [70] Mehta, S. K.; Gurpreet Kaur, G.; Mutneja, R.; Bhasin K. K. Solubilization,microstructure and thermodynamics of fully dilutable U-type Brij microemulsion [J].J. Colloid Interface Sci., 2009, 338, 542–549.
    [71] Rajib, K. M.; Bidyut K. P. Physicochemical investigations ofmicroemulsification of eucalyptus oil and water using mixed surfactants (AOT+Brij-35) and butanol [J]. J. Colloid Interface Sci., 2005, 283, 565–577.
    [72] Debdurlav N.; Rajib K. M.; Bidyut K. P. Phase behavior of the mixtures ofpoly(oxyethylene) (10) stearyl ether (Brij-76), 1-butanol, isooctane, and mixed polarsolvents II. Water and ethylene glycol (EG) or tetraethylene glycol (TEG) [J]. J.Colloid Interface Sci., 2007, 310, 229–239.
    [73] Acharya, A.; Sanyal, S. K.; Moulik, S. P. Physicochemical investigations onmicroemulsification of eucalyptol and water in presence of polyoxyethylene (4) laurylether (Brij-30) and ethanol [J]. Int. J. Pharm. 2001, 229, 213–226.
    [74] Matija T.; Marija B. R.; Andrej J. et al. Ternary systems of nonionic surfactantBrij 35, water and various simple alcohols: Structural investigations by small-angleX-ray scattering and dynamic light scattering [J]. J. Colloid Interface Sci., 2006, 294,194–211
    [75] Capek, I. Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions[J]. Colloid Interface Sci. 2004, 110, 49–74.
    [76] Uskokovi , V.; Drofenik, M. Synthesis of materials within reverse micelles [J].Surf. Rev. Lett. 2005, 12, 239–277.
    [77] Stubenrauch, C.; Wielputz, T.; Sottmann, T. Microemulsions as templates for thesynthesis of metallic nanoparticles [J]. Colloids Surf. A, 2008, 317, 328–338.
    [78] Nashaat, N. N.; Maen, M. H. Effect of microemulsion variables on copper oxidenanoparticle uptake by AOT microemulsions [J]. J. Colloid Interface Sci., 2007, 316,442–450.
    [79] Mohammed, J. M.; Pankaj P.; Frank, B. et al. Nanoparticle formation in rapidexpansion of water-in-supercritical carbon dioxide microemulsion into liquid solution[J]. J. Supercrit. Fluids 2005, 34, 91–97.
    [80] Yao, L.; Xu, G. Y.; Xiaodeng Yang, X. D.; Luan, Y. X. CdS@SiO2nanoparticles synthesized from polyoxyethylene (10) tertoctylphenyl ether basedreverse microemulsion [J]. Colloids Surf. A, 2009, 333, 1–6.
    [81] Niemann, B.; Rauscher, F.; Adityawarman, D. Microemulsion-assistedprecipitation of particles: Experimental and model-based process analysis [J]. Chem.Eng. Process., 2006, 45, 917–935.
    [82] Nandini, D.; Ranabrata, M. A.; Sen, H.; Maiti, S. Nanosized bismuth ferritepowder prepared through sonochemical and microemulsion techniques [J]. Mater.Lett., 2007, 61, 2100–2104.
    [83] Manna, A.; Imae, T.; Yogo, T. et al. Synthesis of Gold Nanoparticles in a WinsorII Type Microemulsion and Their Characterization [J]. J. Colloid Interface Sci., 2002,256, 297–303.
    [84] Lade, M.; Mays, H.; Schmidt, J. et al. On the nanoparticle synthesis inmicroemulsions: detailed characterization of an applied reaction mixture [J].Colloids Surf. A, 2000, 163, 3–15.
    [85] Giustini, M.; Murgia, S.; Palazzo, G. Does the Schulman's titration ofmicroemulsions really provide meaningful parameters [J]? Langmuir, 2004, 20,7381–7384.
    [86] Palazzo, G.; Lopez, F.; Giustini, M. et al. Role of the Cosurfactant in theCTAB/Water/n-Pentanol/n-Hexane Water-in-Oil Microemulsion. 1. Pentanol Effecton the Microstructure [J]. J. Phys. Chem. B 2003, 107, 1924–1931.
    [87].Zheng, O.; Zhao, J. X.; Fu, X. M. Interfacial Composition and StructuralParameters of Water/C12-s-C12.2Br/n-hexanol/n-Heptane MicroemulsionsStudied by the Method of Dilution [J]. Langmuir, 2006, 22, 3528–3532.
    [88] Wang, F; Zhang, Z. Q.; Li, D. et al. Dilution Method Study on the InterfacialComposition, Thermodynamic Properties and Structural Parameters of the
    [bmim][BF4] + Brij-35 + 1-Butanol + Toluene Microemulsion [J]. J. Chem. Eng. Data,2011, 56, 3328–3335
    [89] Palazzo. G.; Carbone. L.; Colafemmina. G. et al. The role of the cosurfactant inthe CTAB/water/n-pentanol/n-hexane system: Pentanol effect on the phase equilibriaand mesophase structure [J]. Phys. Chem. Chem. Phys., 2004, 6, 1423-1429.
    [90] Moulik, S. P.; Digout, L. G.; Aylward, W. M.; Palepu, R. Studies on theInterfacial Composition and Thermodynamic Properties of W/O Microemulsions [J].Langmuir, 2000, 16, 3101-3106.
    [91] Paul, B. K.; Nandy, D. Dilution method study on the interfacial composition,thermodynamic properties and structural parameters of W/O microemulsionsstabilized by 1-pentanol and surfactants in absence and presence of sodium chloride[J]. J. Colloid Interface Sci. 2007, 316, 751–761.
    [92] Wang, F; Fang, B.; Zhang, Z. Q. et al. Interfacial and Thermodynamic Propertiesof Aqueous HCl + Cetyltrimethylammonium Chlorine + Alkanol + Diesel OilMicroemulsion: Effect of HCl in the Aqueous Phase [J]. J. Chem. Eng. Data, 2008, 53,1256–1261.
    [93] Mitra, R. K.; Paul, B. K.; Moulik, S. P. Phase behavior, interfacial compositionand thermodynamic properties of mixed surfactant (CTAB and Brij-58) derived w/omicroemulsions with 1-butanol and 1-pentanol as cosurfactants and n-heptane andn-decane as oils [J]. J. Colloid Interface Sci. 2006, 300, 755–764.
    [94] Bayrak, Y. Interfacial composition and formation of w/o microemulsion withdifferent amphiphiles and oils [J]. Colloids Surf. A, 2004, 247, 99–103.
    [1] Zhao, M. W.; Zheng, L. Q.; Bai, X. T. et al. Fabrication of silica nanoparticles andhollow spheres using ionic liquid microemulsion droplets as templates [J]. ColloidsSurf., A, 2009, 346, 229-233.
    [2] Jacob, D. S.; Joseph, A.; Mallenahalli, S. P. et al. Rapid synthesis in ionic liquidsof room-temperature conducting solid micro silica spheres [J]. Angew. Chem. Int. Ed.,2005, 44, 6560-6563.
    [3]. Yan, F.; Texter, J. Surfactant ionic liquid-based microemulsions forpolymerization [J]. Chem. Commun., 2006, 25, 2696-2698.
    [4] Hamley I. In Introduction to Soft Matter [M]. Wiley: New York, 2005.
    [5] Kunieda, H.; Shinoda, K. Evaluation of the hydrophile-lipophile balance (HLB) ofnonionic surfactants. I. Multisurfactant systems [J]. J. Colloid Interface Sci., 1985,107, 107-121.
    [6] Kunieda, H.; Ishikawa, N. Evaluation of the hydrophile-lipophile balance (HLB)of nonionic surfactants. II. Commercial-surfactant systems [J]. J. Colloid InterfaceSci., 1985, 107, 122-128.
    [7] Kunieda, H.; Nakano, A.; Pes, M. A. Effect of Oil on the Solubilization inMicroemulsion Systems Including Nonionic Surfactant Mixtures [J]. Langmuir, 1995,11, 3302-3306.
    [8] Olsson, U.; Shinoda, K.; Lindman, B. Change of the structure of microemulsionswith the hydrophile-lipophile balance of nonionic surfactant as revealed by NMRself-diffusion studies [J]. J. Phys. Chem., 1986, 90, 4083-4088.
    [10] Bansal, V. K.; Shah, D. O.; Connell, J. P. Influence of alkyl chain lengthcompatibility on microemulsion structure and solubilization [J]. J. Colloid InterfaceSci., 1980, 75, 462-475.
    [11] Penders, M. H. G. M.; Strey, R. Phase Behavior of the Quaternary SystemH2O/n-Octane /C8E5/n-Octanol: Role of the Alkanol in Microemulsions [J]. J. Phys.Chem., 1995, 99, 10313-10318.
    [12] Hou, M. J.; Shah, D. O. Effects of the molecular structure of the interface andcontinuous phase on solubilization of water in water/oil microemulsions [J]. Langmuir,1987, 3(6), 1086–1096.
    [13] Klaus, R.; Wormuth, K. E. W. Amines as microemulsion cosurfactants [J]. J.Phys. Chem., 1987, 91, 611–617.
    [14] Li, X. F.; Ueda, K.; Kunieda, H. Solubilization and Phase Behavior ofMicroemulsions with Mixed Anionic Cationic Surfactants and Hexanol [J]. Langmuir,1999, 15, 7973–7979.
    [15] Chlebicki, J.; Majtyka, P. Effect of Oxypropylene Chain Length on the SurfaceProperties of Dialkyl Glycerol Ether Nonionic Surfactants [J]. J. Colloid Interf. Sci.,1999, 220, 57–62.
    [16] Arai, H.; Shinoda, K. The effect of mixing of oils and of nonionic surfactants onthe phase inversion temperatures of emulsions [J]. J. Colloid Interf. Sci., 1967, 25,396–400.
    [17] Iwanaga, T.; Kunieda, H. Effect of Added Salts or Polyols on the Cloud Point andthe Liquid-Crystalline Structures of Polyoxyethylene-Modified Silicone [J]. J. ColloidInterf. Sci., 2000, 227, 349–355.
    [18] Kunieda, H.; Umizu, G.; Yamaguchi, Y. Mixing Effect of Polyoxyethylene-TypeNonionic Surfactants on the Liquid Crystalline Structures [J]. J. Colloid Interf. Sci.,1999, 218, 88–96.
    [19] Bayrak, Y.; Iscan, M. Studies on the phase behavior of the system non-ionicsurfactant/alkanol/alkane/H2O [J]. J. Colloids Surf., A, 2005, 268, 99–103.
    [20] Kunieda, H.; Shinoda, K. Evaluation of the hydrophile-lipophile balance (HLB)of nonionic surfactants. I. Multisurfactant systems [J]. J. Colloid Interface Sci., 1985,107, 107-121.
    [21] Kunieda, H.; Aoki, R. Effect of Added Salt on the Maximum Solubilization in anIonic-Surfactant Microemulsion [J]. Langmuir, 1996, 12, 5796-5799.
    [22] Deen, G.-R.; Pedersen, J.-S. Phase Behavior and Microstructure of C12E5NonionicMicroemulsions with Chlorinated Oils [J]. Langmuir, 2008, 24, 3111- 3117.
    [23] Sottmann, T.; Strey, R. Ultra-low interfacial tensions in water - n-alkane -surfactant systems. [J]. J. Chem. Phys., 1997, 106, 8606-8615.
    [24] Fanun, M. Oil type effect on diclofenac solubilization in mixed nonionicsurfactants microemulsions [J]. J. Colloids Surf., A,2009, 343, 75–82.
    [25] Wang, Z. W.; Zhang, J.; Wang, Z. N.; Liu, F. Study on food-grade vitamin Emicroemulsions based on nonionic emulsifiers[J]. J. Colloids Surf., A, 2009, 339, 1–6.
    [26] Strey, R. Microemulsion microstructure and interfacial curvature [J]. ColloidPolym. Sci., 1994, 272, 1005-1019.
    [27] Safran, S. A. Microemulsions: An ensemble of fluctuating interfaces. In S. H. Chen,J.S. Huang, P. Tartaglia (eds), Structure and Dynamics of Strongly Interacting Colloidsand Supramolecular Aggregates in Solutions[M]. Kluwer Academic Publishers,Dordrecht, 1992, pp. 237–263.
    [28] Sottmann, T.; Stubenrauch, C. Chapter 1: Phase Behaviour, Interfacial Tension andMicrostructure of Microemulsions, BLBK034- Stubenrauch [M]. 2008, August 12,1-47.
    [29] Kunieda, H.; Shinoda, K. Bull. Chem. Soc. Jpn., 1982, 55, 1777-1781.
    [30] Griffin, W. C. Classification of surfaceactive agents by HLB [J]. J. Soc. Cosmet.Chem., 1949, 1, 311-326.
    [31] Shinoda, K.; Friberg, S. Emulsions and Solubilizations [J]. John Wiley, Sons, NewYork, 1986, Chapter 1.
    [32] Deen, G. R.; Pedersen, J. S. Phase Behavior and Microstructure of C12E5Nonionic Microemulsions with Chlorinated Oils [J]. Langmuir, 2008, 24, 3111-3117.
    [33] Graciaa, A.; Lachaise, J.; Cucuphat, C. et al. Improving solubilization inmicroemulsions with additives. Long chain alkanols as lipophilic linkers [J].Langmuir, 1993, 9, 3371-3374.
    [34] Dantas, T. N. C.; Neto, A. A. D.; Moura, M. C. P. A. et al. Heavy metalsextraction by microemulsions[J]. Water Research., 2003, 37, 2709–2717.
    [35] He, D. S.; Yang, C. M.; Ma, M. et al. Studies of the chemical properties oftri-n-octylamine (TNOA)-secondary octanol-kerosene- HCl-H2O microemulsions andits extraction characteristics for cadmium(II) [J]. Colloids Surf., A, 2004, 232, 39–47.
    [36] Stefan T.; Werner K. Aggregates in mixtures of ionic liquids [J]. J. Mol. Liq.,2007, 130, 104-107.
    [37] Moulik, S. P.; Digout, L. G.; Aylward, W. M.; Palepu R. Studies on the interfacialcomposition and thermodynamic properties of W/O microemulsions [J]. Langmuir,2000, 16, 3101-3106.
    [38] Giustini, M.; Murgia, S.; Palazzo, G. Does the Schulman's Titration ofMicroemulsions Really Provide Meaningful Parameters [J]? Langmuir, 2004, 20,7381-7384.
    [39] Zheng, O.; Zhao, J. X.; Fu, X. M. Interfacial Composition and StructuralParameters of Water/C12-s-C12·2Br/n-Hexanol/n-Heptane Microemulsions Studied bythe Dilution Method [J]. Langmuir, 2006, 22, 3528-3532.
    [40] Zheng, O.; Zhao, J. X.; Yan, H.; Gao, S. K. Dilution method study on theinterfacial composition and structural parameters of water/ C12-EOx-C12.2Br/n-hexanol/ n-heptane microemulsions: effect of the oxyethylene groups in the spacer[J]. J. Colloid Interface Sci., 2007, 310, 331–336.
    [41] Kunieda, H.; Aoki, R. Effect of added salt on the maximum solubilisation inionic-surfactant microemulsion [J]. Langmuir, 1996, 12, 5796-5799.
    [42] Paul, B. K. and Nandy, D. Dilution method study on the interfacial composition,thermodynamic properties and structural parameters of W/O microemulsionsstabilized by 1-pentanol and surfactants in absence and presence of sodium chloride[J]. J. Colloid Interface Sci., 2007, 316, 751-761.
    [43] Li, Y.; Chai, J. L.; Xue, X. N.; Zhang, Z. M. Studies on the InterfacialComposition, Thermodynamic Properties and Structural Parameters of W/OMicroemulsions Containing Surfactant-like Ionic Liquid [J]. Polish J. Chem., 2009,83, 1809-1820.
    [44] Salager, J. L.; Marquez, N.; Graciaa, A.; Lachaise, J. Partitioning of ethoxylatedoctylphenol surfactants in microemulsion-oil-water systems. Influence of temperatureand relation between partitioning coefficient and physicochemical formulation [J].Langmuir, 2000, 16, 5534-5539.
    [45] Wang, F.; Fang, B.; Zhang, Z. Q. et al. Interfacial and Thermodynamic Propertiesof Aqueous HCl + Cetyltrimethylammonium Chlorine + Alkanol + Diesel OilMicroemulsion: Effect of HCl in the Aqueous Phase [J]. J. Chem. Eng. Data, 2008, 53,1256-1261.
    [46] He, D. S.; Yang, C. M.; Ma, M. et al. Studies of the chemical properties oftri-n-octylamine-secondary octanol-kerosene-HCl-H2O microemulsions and itsextraction characteristics for cadmium(II) [J]. Colloids Surf., A, 2004, 232, 39-47.
    [1] Gao, H. X.; Li, J. C.; Han, B. X. et al. Microemulsions with ionic liquid polardomains [J]. Phys. Chem. Chem. Phys., 2004, 6, 2914–2916.
    [2] Gao, Y. A.; Voigt, A.; Hilfert, L.; Sundmacher, K. Effect of Polyvinylpyrrolidoneon the Microstructure of the Microemulsion 1-butyl-3-methylimidazoliumtetrafluoroborate / Triton X-100/ Cyclohexane[J]. Colloids Surf. A, 2008, 329,146–152.
    [3] Rabe, C.; Koetz, J. CTAB-based microemulsions with ionic liquids [J]. ColloidsSurf. A, 2010, 354, 261–267.
    [4] Safavi, A.; Maleki, N.; Farjami, F. Phase behavior and characterization of ionicliquids based microemulsions [J]. Colloids Surf. A, 2010, 355, 61–66.
    [5] Gao, Y. A.; Li, N.; Zheng, L. Q.; Zhao, X. Y.; Zhang, S. H.; Han, B. X.; Hou, W.G.; Li, G. Z. A cyclic voltammetric technique for the detection of micro-regions ofbmimPF6/Tween 20/H2O microemulsions and their performance characterization byUV-Vis spectroscopy [J]. Green Chem., 2006, 8, 43–49.
    [6] Mackay, R. A.; Myers, S. A.; Bodalbhai, L. A. Microemulsion structure and itseffect on electrochemical reactions [J]. Anal. Chem. 1990, 62, 1084–1090.
    [7] de Gennes, P. G.; Taupin, C., Microemulsions and the flexibility of oil/waterinterfaces [J]. J. Phys. Chem., 1982, 86, 2294–2304.
    [8] Kaler, E. W.; Bennett, K. E.; Davies, H. T.; Scriven, L. E. Toward understandingmicroemulsion microstructure I: A small-angle x-ray scattering study [J]. J. Chem.Phys., 1983, 79, 5673–5684.
    [9] Dupont, J.; Consorti, C.S.; Suarez P.A.Z.; de Souza, R.F. Preparation of1-butyl-3-methyl imidazolium-based room temperature ionic liquids [J]. Org. Synth.,2002, 79, 236–241.
    [10] Stefan, T.; Werner, K. Ionic liquid aggregates in a continuous ionic liquid phase -A new class of colloidal systems [J]. J. Mol. Liq., 2007, 130, 104–107.
    [11] Fang, D.; Cheng, J.; Gong, K.; Shi, Q. R.; Zhou, X. L.; Liu, Z. L. A green andnovel procedure for the preparation of ionic liquid [J]. J. Fluorine Chem., 2008, 129,108–111.
    [12] Weing rtner, H. Understanding ionic liquids at the molecular level: facts,problems, and controversies [J]. Angew. Chem. Int. Ed., 2008, 47, 654-670.
    [13] Yan, F.; Texter, J. Surfactant ionic liquid-based microemulsions forpolymerization [J]. Chem. Commun., 2006, 25, 2696-2698.
    [14] Li, Y.; Chai, J. L.; Xue, X. N.; Zhang, Z. M. Studies on the InterfacialComposition, Thermodynamic Properties and Structural Parameters of W/OMicroemulsions Containing Surfactant-like Ionic Liquid [J]. Pol. J. Chem., 2009, 83,1809–1820.
    [15] Wang, F., Zhang, Zh. Q.; Li, D.; Yang, J.; Chu, Ch. Ch.; Xu, L. F. DilutionMethod Study on the Interfacial Composition, Thermodynamic Properties, andStructural Parameters of the [bmim][BF4] + Brij-35 + 1-Butanol + TolueneMicroemulsion [J]. J. Chem. Eng. Data, 2011, 56, 3328–3335.
    [16] Kunieda, H.; Nakano, A.; Pes, M. A. Effect of Oil on the Solubilization inMicroemulsion Systems Including Nonionic Surfactant Mixtures [J]. Langmuir, 1995,11, 3302-3306.
    [17] Bansal, V. K.; Chinnaswamy, K.; Ramachandran, C.; Shah, D. O. StructuralAspects of Microemulsions Using Dielectric Relaxation and Spin Label Techniques[J]. J. Colloid Interface Sci., 1979, 72, 524-537.
    [18] Kunieda, H.; Aoki, R. Effect of Added Salt on the Maximum Solubilization in anIonic-Surfactant Microemulsion [J]. Langmuir, 1996, 12, 5796-5799.
    [19] Gao, Y. A.; Li, N.; Zheng, L. Q.; Bai, X. T.; Yu, L.; Zhao, X. Y.; Zhang, J.; Zhao,M. W.; Li, Zh. Role of Solubilized Water in the Reverse Ionic Liquid Microemulsionof 1-Butyl-3-methylimidazolium Tetrafluoroborate/TX-100/Benzene [J]. J. Phys.Chem. B, 2007, 111, 2506-2513.
    [20] Mele, A.; Tran, C. D.; Lacerda, S. H. D. The Structure of a Room-TemperatureIonic Liquid with and without Trace Amounts of Water: The Role of C-H....O andC-H....F Interactions in 1-n-Butyl-3-Methylimidazolium Tetrafluoroborate [J]. Angew.Chem. Int. Ed., 2003, 42, 4364-4366.
    [1] Capek, I. Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions[J]. Adv. Colloid Interface Sci., 2004, 110, 49-74.
    [2] Uskokovi , V.; Drofenik, M. Synthesis of Materials within Reverse Micelles [J].Surf. Rev. Lett., 2005, 12, 239-277.
    [3] Stubenrauch, C.; Wielputz, T.; Sottmann, T. et al. Microemulsions as templatesfor the synthesis of metallic nanoparticles [J]. Colloids Surf. A, 2008, 317, 328-338.
    [4] Najjar, R.; Stubenrauch, C.Phase diagrams of microemulsions containing reducingagents and metal salts as bases for the synthesis of metallic nanoparticles [J]. J.Colloid Interface Sci., 2009 331, 214–220.
    [5] Tai, C. Y.; Chen, C. K. Particle morphology, habit, and size control of CaCO3using reverse microemulsion technique [J].Chem. Eng. Sci., 2008, 63, 3632–3642.
    [6] Liu, L. P.; Fan, D. W.; Mao, H. Z. et al. Multi-phase equilibriummicroemulsions and synthesis of hierarchically structured calcium carbonate throughmicroemulsion-based routes [J]. J. Colloid Interface Sci., 2007, 306.154–160.
    [7] Wongwailikhit, K.; Horwongsakul, S. The preparation of iron (III) oxidenanoparticles using W/O microemulsion [J]. Mater. Lett., 2011, 65, 2820–2822.
    [8] Yao, L.; Guiying Xu, G. Y.; Yang, X. D.; Luan, Y. X. CdS@SiO2 nanoparticlessynthesized from polyoxyethylene (10) tertoctylphenyl ether based reversemicroemulsion [J]. Colloids Surf., A, 2009, 333, 1–6.
    [9] Stellner, K. L.; Amante, J. C.; Scamehorn, J. F.; Harwell, J. H. Precipitationphenomena in mixtures of anionic and cationic surfactants in aqueous solutions [J]. J.Colloid Interface Sci., 1988, 123, 186-200.
    [10]Kunieda, H.; Aoki, R. Effect of added salt on the maximum solubilization in anionic-surfactant microemulsion [J]. Langmuir, 1996, 12, 5796-5799.
    [11] Paul, B. K.; Nandy, D. Dilution method study on the interfacial composition,thermodynamic properties and structural parameters of W/O microemulsionsstabilized by 1-pentanol and surfactants in absence and presence of sodium chloride[J]. J. Colloid Interface Sci., 2007, 316, 751–761.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700