用户名: 密码: 验证码:
分散液滴的尺寸对含水和非水微乳体系临界行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用“折射率法”测定了具有不同液滴尺寸的含水微乳体系(水/AOT/正癸烷)和非水微乳体系(DMA/AOT/正辛烷)的温度-折射率(T,n)共存曲线,根据标准曲线将其转化为温度-体积分数(T,φ)和温度-有效体积分数(T,ψ)共存曲线,并由共存曲线推导出临界指数β,指前因子B,Wegner校正项B_1及共存曲线直径ρ_d。分别研究含水微乳体系和非水微乳体系的临界行为,并讨论了分散液滴的尺寸对两类体系临界行为的影响,主要结论如下:
     (1)水/AOT/正癸烷体系具有低临界温度,且临界温度随分散液滴尺寸的增加而降低;而DMA/AOT/正辛烷体系具有高临界温度,临界温度均随分散液滴尺寸的增加而增大。前者相变主要是受焓变控制,而后者是受熵变控制。
     (2)水/AOT/正癸烷体系和DMA/AOT/正辛烷体系的临界组成均随着液滴尺寸的增加而略有降低。
     (3)水/AOT/正癸烷各体系的临界指数β在温度接近临界温度时,均趋近于3D-Ising模型的理论值0.3265;而DMA/AOT/正辛烷各体系在本论文所研究的ω_s范围内,临界指数β在较宽的温度范围内均接近于Fisher重整化理论值0.365。两者不同可能的原因在于后者ω较大时,极少量DMA溶解在正辛烷中,导致临界指数β重正化。两者的共同点是分散液滴尺寸的改变均不影响体系的临界指数值。
     (4)水/AOT/正癸烷体系和DMA/AOT/正辛烷微乳体系的指前因子B均随分散液滴尺寸的增加而增大,这可能归因于液滴间相互作用的增加导致临界指数B增大。
The coexistence curves (T, n) (T, n are temperature and refractive index, respectively) of water/l,4-di(2-ethyl-l-hexyl)sulphosuccinate(AOT)/decane and dimethylacetamide (DMA)/AOT/octane with different droplet sizes were determined by measurements of refractive indexes of coexisting phases at constant pressure for various temperatures in the critical regions. The coexistence curves of (T, n) were converted to the coexistence curves of (T,φ) and (T,Ψ), (φandΨare volume fraction and effective volume fraction, respectively) by the standard curves. The critical exponentsβ, the critical amplitudes B, the amplitude of Wegner correction terms B_1 and the diameters of coexistence curvesρ_d were deduced from the coexistence curves. The effects of the dispersed droplet sizes on the critical behavior of aqueous and nonaqueous microemulsions were discussed. The experimental results are summarized as follows:
     (1) All the aqueous microemulsions (AM) have the lower critical temperatures which decrease as the disperse droplet sizes increase; on the contrary, the upper critical temperatures increases with the dispersed droplet sizes for all the nonaqueous microemulsions (NM). The phase transition for the former is controlled by the change of enthalpy, but the latter is controlled by the change of entropy.
     (2) The critical volume fractions little decrease with the increase of the dispersed droplet sizes for the AM systems and NM systems.
     (3) The values ofβapproach the 3D-Ising value of 0.3265 for all the AM systems in the regions sufficiently close to the critical temperatures and the Fisher's Renormalization value of 0.365 for all the NM systems. Two types of systems belong to the different universal classes that may be attributed to the solubilization of DMA in the octane, which induces the critical exponentβto be renormalized. The values of critical exponebtsβfor both AM and NM are not affected by the change of the dispersed droplet sizes.
     (4) The system-dependence amplitudes B of both AM and NM almost linearly increase with the dispersed droplet sizes which are ascribed to the increase of interaction between the droplets.
引文
[1] Hoar T. P., Schulman J. H., Nature, 1943,152,102.
    
    [2] Friberg S., et al., in "Encyclopedia of Emulsion Technology", Vol.1, Basic Theory, Edited by Becher P., Chapter 4, Marcel Dekker, New York and Basel, 1984.
    
    [3] Shinoda K., Friberg S., Adv. Colloid Interface Sci., 1975,4, 281.
    
    [4] Schulman J. H., Stoeckenius W., Prince L. M, J. Phys. Chem., 1959, 63,1677.
    
    [5] Danielsson I., Lindman B., Colloids Surf. A, 1981, 3, 391.
    
    [6] Leung R., Hou M. J., Manohar C, in Macro- and Microemulsions, D. O. Shash, Ed., American chemical society, Washington, D. C, 1985.
    
    [7] Winsor P. A., Solvent Properties of Amphiphilic Compounds, Butterworth, London, 1954.
    
    [8] Winsor P. A., Trans. Faraday Soc, 1984,44, 376.
    
    [9] Prince L. M., Microemulsions, Theory and Practice, Chapter 5, Academic Press, New York, 1977.
    
    [10] Shinoda K., Friberg S., Microemulsion: Collidal aspects, Adv. Colloid Interface Sci., 1975,4,275.
    
    [11] Robbins M. L., in "Micellization, Solubilization and Microemulsion", Vol.2 (Mittal K. L. ed.), Plenum Press, New York, 1977, 713.
    
    [12] Michell D. J., Ninham B. W., J. Chem. Soc. Faraday Trans., 1981,1, 601.
    
    [13] Bourrel M., Schechter R. S., in "Microemulsion and Related System: Formulation, Solvency, and Physical Properties", Chapter 1, Surfactant Science Series Vol.30, Marcel Dekker, Inc. New York and Basel, 1988.
    
    [14] Shioi A., Harade M., Tanabe M., J. Phys. Chem., 1995, 99, 4750.
    
    [15] Eicke Hans-Friedrich, Markovic Zora, J. Colloid and Interface Sci., 1982, 85,198.
    
    [16] Bisal S.R., Bhattacharya P.K., Moulik S.P., J. Phys. Chem., 1990, 94, 350.
    
    [17] Caboi F., Capuzzi G, Baglioni P., Monduzzi M.,J. Phys. Chem., 1997,101, 10205.
    
    [18] Velazquez M. M., Valero M., Ortega F., J. Phys. Chem., 2001,105,10163.
    
    [19] Hwan R. N., Miller C. A., Fort T., J. Colloid Interface Sci., 1979, 68, 221.
    [20] Dvolaitzky M., Guyot M, Lagues M., Le Pesant J. P., Ober R., Sauterey C, Taupin C.,J. Chem. Phys., 1978, 69, 3279.
    
    [21] Lalanne J. R., Poulgny B., Seln E., J. Phys. Chem., 1983, 87,696.
    
    [22] Eastoe J., Towey T. F, Robinson B. H., Williams J., Heenan R. K., J. Phys. Chem., 1993, 97, 1459.
    
    [23] Zulauf M., Eicke H. F., J. Phys. Chem., 1979, 83,480.
    
    [24] Kurumada K., Shioi A., Harada M., J. Phys. Chem., 1996, 100, 1020.
    
    [25] Capuzzi G, Pini F.,Gambi C. M. C, Monduzzi M, Baglioni P., Teixeira J., Langmuir, 1997,13,6927.
    
    [26] Simmons B., Agarwal V., McPherson G, John V., Bose A., Langmuir, 2002,18, 8345.
    
    [27] Eastoe J., Gold S., Rogers S. E., Paul A., Welton T., Heenan R. K., Grillo I., J. Am. Chem. Soc, 2005,127,7302.
    
    [28] Yano J., Furedi-Milhofer H, Wachtel E., Garti N., Langmuir, 2000,16, 9996.
    
    [29] Martino A, Kaler E. W., J. Phys. Chem., 1990, 94,1627.
    
    [30] Jahn W., Strey R., J. Phys. Chem., 1988, 92, 2294.
    
    [31] Goto A., Kuwahara Y., Suzuki A., Yoshioka H., Goto R., Iwamoto T., Imae T., Journal of Molecular Liquids, 1997, 72,137.
    
    [32] Das S. K., Ganguly B. Nandi, Colloids and Surfaces A, 2002,168, 53.
    
    [33] Ferreira Marques M. F., Burrows H. D., da Graca Miguel M., de Lima A. P., Lopes Gil C, Duplatre G., J. Phys. Chem., 1996,100,7595.
    
    [34] Ferreira Marques M. F., Burrows H. D., Da Graa Miguel M., De Lima A. P., Lopes Gil C, Duplatre G., J. Chem. Soc. Faraday Trans., 1997, 93, 3827.
    
    [35] Lianos P., Lang J., Strazielle C, Zana R., J. Phys. Chem., 1982, 86,1019.
    
    [36] Maidment L.J., Chen V., Warr G G, Colloids and Surfaces A, 2001,176, 85.
    
    [37] Schwartz L. J., DeCiantis C. L., Chapman S., Kelley B. K., Hornak J. P., Langmuir, 1999,15, 5461.
    
    [38] Barelli A., Eicke H. R, Langmuir, 1986,2, 780.
    
    [39] Hauser H., Haering G, Pande A., Luisi P. L, J. Phys. Chem., 1989, 93, 7869.
    
    [40] Lang J., Djavanbakht A., Zana R., J. Phys. Chem., 1980, 84, 1541.
    [41] Mantegazza F., Degiorgio V., Giardini M. E., Price A. L., Steytler D. C., Robinson B. H., Langmuir, 1998, 14, 1.
    [42] Schorr W., Hoffmann H., J. Phys. Chem., 1981, 85, 3160.
    [43] Schulman J. H., Riley D. P., J. ColloidSci., 1948, 1,383.
    [44] Hirai M., Kawai-Hirai R., Sanada M., Iwase H., Mitsuya S., J. Phys. Chem. B, 1999, 103, 9658.
    [45] Bagger-Jorgensen H., Olssen U., Mortensen K., Langmuir, 1997, 13, 1413.
    [46] Laia C. A. T., Lopez-Cornejo P., Costa, S. M. B., d'Oliveira J., Martinho J. M. G., Langmuir, 1998, 14, 3531.
    [47] Regev O., Ezrahi S., Aserin A., Garti N., Wachtel E., Kaler E. W., Khan A., Talrnon Y., Langmuir, 1996, 12, 668.
    [48] Bolzinger-Thevenin M. A., Grossiord J. L., Poelman M. C., Langmuir, 1999, 15, 2307.
    [49] Gustafsson J., Nylander T., Almgren M., Ljusberg-Wahren H., J. Colloid Interface Sci., 1999, 15, 326.
    [50] Beck R., Gradzielski M., Horbaschek K., Shah S. S., Hoffmann H., Strunz P., J. Colloid Interface Sci., 2000, 15, 200.
    [51] 李干佐,郭荣等著, 《微乳液理论及其应用》北京,石油工业出版社,1995.
    [52] 李干佐,翟立民,郑立强,日用化学品科学,1999,8,3.
    [53] 黄胜炎,中国医院药学杂志,1985,5,24.
    [54] Lawrence M. J., Rees G. D., Advanced drug delivery reviews, 2000, 45, 89
    [55] Vandamrne Th. F., Progress in Retinal and Eye Research, 2002, 21, 15.
    [56] 邵庆辉,古国榜,章莉娟,化工新型材料,2001,29,9.
    [57] Chhatre A. S., Joshi R. A., Kulkarni B. D., J. Colloid Interface Sci., 1993, 158, 183.
    [58] Stoffer J. O., Bone T., Disp J., Sci. Techn., 1980, 1, 37.
    [59] Sasthav M., Cheung H. M., Langmuir, 1991, 7, 1378.
    [60] Sasthav M., Palani Raj W. R., Cheung H. M., J.. Colloid Interface Sci., 1992, 152, 376.
    [61] Palani Raj W. R., Sasthav M., Cheung H. M., Polymer, 1993, 34, 3305.
    [62] Eicke H. F., Rehak J., Langmuir, 2002, 18, 3018.
    [63] Ruckenstein E., Karpe P., J. Colloidlnterface Sci., 1990, 139, 408.
    [64] Misiorowski R. L., Wells M. A., Biochem., 1974, 13, 4921.
    [65] Papadimitriou V., Petit C., Cassin G, Xenakis A., Pileni M. P., Adv. Colloid Interface Sci., 1995, 54, 1.
    [66] 梁文平,殷福珊,《表面活性剂在分散体系中的应用》,中国轻工业出版社,2003,19.
    [67] Luethi P., Luisi P. L., J. Am. Chem. Soc., 1984, 7285.
    [68] Stamatis H., Xenakis A., Provelegiou M., Kolisis E N., Biotecnol. Bioeng., 1993, 42, 103.
    [69] Hayes D. G.., Gulari E., Biotecnol. Bioeng., 1990, 35, 793.
    [70] Hilhost R., Spruijt R., Laane C., Veeger C., Eur. J. Biochem., 1984, 144, 459.
    [71] L.E.雷克著,《统计物理现代教程》[美],北京大学出版社,1983.
    [72] 王诚泰著,《统计物理学》,清华大学出版社,1991.
    [73] 王志诚著,《热力学·统计物理》,高等教育出版社,1993.
    [74] 沈伟国,郑国康,物理化学学报,1993,9,137.
    [75] 于渌,郝柏林,陈晓松著,《边缘奇迹 相变和临界现象》,科学出版社,2005.
    [76] Ising E., Zeits. F., Physik, 1925, 31,253.
    [77] Onsager L., Phys. Rev., 1944, 65, 117.
    [78] Kaufman B., Phys. Rev., 1949, 76, 1232.
    [79] Kaufman B., Onsager L., Phys. Rev., 1949, 76, 1244.
    [80] Widom B., J. Chem. Phys., 1965, 43, 3898.
    [81] Reichl L. E., A modem course in statistical physics, Austin: University of Texas Press, 1980.
    [82] Wilson K. G., Rev. Mod. Phys., 1983, 55, 583.
    [83] Fisher M. E., Phys. Rev., 1968, 176, 257.
    [84] Degiorgio V., Piazza R., Corti M., Minero C., J. Chem. Phys., 1985, 82, 1025.
    [85] Fisher M. E., Phys. Rev. Lett., 1986, 57, 1911.
    [86] Wilcoxon J. P., Phys. Rev. A, 1991, 43, 1857.
    [87] Hamano K., Kuwahara N., Mitsushima I., Kubota K., Kamura T., J. Chem. Phys., 1991, 94, 2172.
    [88] Martin A., Lopez I., Monroy F., Casielles A. G., Ortega F., Rubio R. G., J. Chem. Phys., 1994, 101,6874.
    
    [89] Kubota K., KuwaharaN., Seto H.,J. Chem. Phys., 1994,100,4543.
    
    [90] Martin A., Ortega F., Rubio R. G., Phys. Rev. E, 1995, 52,1871.
    
    [91] Isojima T., Fujii S., Kubota K., Hamano K., J. Chem. Phys., 1999, 111, 9839.
    
    [92] Isojima T., Fujii S., Kubota K., Hamano K., J. Chem. Phys., 2000,113, 3916.
    
    [93] Huang J. S., Kim M. W., Phys. Rev. Lett., 1981,47,1462.
    
    [94] Kotlarchyk M., Chen S. H., Huang J. S., Phys. Rev. A, 1983, 28, 508.
    
    [95] Roux D., Belloeq A. M., Phys. Rev. Lett., 1984, 52, 1895.
    
    [96] Kim M. W., Bock J., Huang J. S., Phys. Rev. Lett., 1985, 54,46.
    
    [97] Rouch J., Satouane A., Tartaglia P., Chen S. H., J. Chem. Phys., 1989, 90, 3756.
    
    [98] Jayalakshmi Y., Beysens D., Phys. Rev. A, 1992,45, 8709.
    
    [99] Aschauer R., Besense D., J. Chem. Phys., 1993, 98, 8194.
    
    [100] Seto H., Schwahn D., Mortensen K., Komura S., J. Chem. Phys., 1993, 99, 5512.
    
    [101] Seto H., Schwahn D., Yokoi E., Nagao M., Komura S., Imai M., Mortensen K., PhysicaB, 1995,213-214, 597.
    
    [102] Seto H., Schwahn D., Nagao M., Yokoi E., Komura S., Imai M., Mortensen K., Phys. Rev. E, 1996, 54, 629.
    
    [103] Honorat P., Roux D., Bellocq A. M., J. Phys. (Paris) Lett., 1984,45, L-961.
    
    [104] Pepin C, Bose T. K., Thoen J., Phys. Rev. A, 1989, 39, 835.
    
    [105] Belloeq A. M., Gazeau D., J. Phys. Chem., 1990, 94, 8933.
    
    [106] Aschauer R., Beysens D., Phys. Rev. E, 1993,47,1850.
    
    [107] Letamendia, L., Pru-Lestret, E., Panizza, P., Rouch, J., Sciortino, F., Tartaglia, P., Hashimoto, C, Ushiki, H., Risso, D., PhysicaA, 2001,300, 53.
    
    [108] An X. Q., Feng J., Shen W. G., J. Phys. Chem., 1996,100,16674.
    
    [109] An X. Q., Chen J. Y., Huang Y. G., Shen W. G., J. Colloid Interface Sci., 1998, 203,140.
    
    [110] An X. Q., Huang Y. G, Shen W. G, J. Chem. Thermodyn., 2002, 34, 1107.
    
    [111] An X. Q., Wang B. Y., Wang N., Shen W. G, J. Chem. Thermodyn., 2005, 37, 31.
    
    
    [112] Peng S., An X., Shen W, J. Colloid Interface Sci., 2005, 287, 141.
    [113] Peng S. J., An X. Q., Shen W. G, J. Chem. Thermodyn., 2006,38,43.
    
    [114] Zulauf M, Eicke H. F., J. Phys. Chem., 1979, 83,480.
    
    [115] Kotlarchyk M., Chen S.H., Huang J. S., J. Phys. Chem., 1982, 86, 3273.
    
    
    [116] Wines T. H., Dukhin A. S., Somasundaran P., J. Colloid Interface Sci., 1999, 216, 303.
    
    [117] Rouch J., Safouane A., Tartaglia P., Chen S. H., Progr. Colloid Polym. Sci., 1989, 79, 279.
    
    [118] Kotlarchyk M., Chen S. H., Kim M. W, Phys. Rev. A, 1984,29,2054.
    
    [119] Ahamd-Zadeh S. A., de Savignac A., Rico I., Lattes A., Tetrahedron, 1985,41, 3683.
    
    [120] Mukherjee L., Mitra N., Bhattacharya P. K., Moulik S. P., Langmuir, 1995,11, 2866.
    
    [121] Atay N. Z., Robinson B. H., Langmuir, 1999,15,5056.
    
    [122] Singhal M, Chhabra V., Kang P., Shah D. O., Mater. Res. Bull., 1997, 32,239.
    
    [123] Martino A., Kaler E.W., J. Phys. Chem., 1990,94,1627.
    
    [124] Mitra R. K., Paul B. K., Colloid polym. Sci, 2006,284,1435.
    
    [125] Martino A., Kaler E. W., Langmuir, 1995,11,779.
    
    [126] Ray S., Moulik S. P, Langmuir, 1994,10,2511.
    
    [127] Mathew C, Saidi Z., Peyrelasse J., Boned C, Phys. Rev. A, 1991,43, 873.
    
    [128] Arcoleo V., Aliotta F., Goffredi M., La Manna G, Turco Liveri V., Mater. Sci. Eng C, 1997, 5,47.
    
    [129] Mehta S. K., Kawaljit, Bala K., Phys. Rev. E, 1999, 59,4317.
    
    [130] Riter R. E., Undiks E. P., Kimmel J. R., Levinger N. E., J. Phys. Chem. B, 1998, 102,7931.
    
    [131] Riter R. E., Kimmel J. R., Undiks E. P, Levinger N. E., J. Phys. Chem. B, 1997, 101, 8292.
    
    [132] Lopez-Cornejo P., Costa S. M. B., Langmuir, 1998,14, 2042.
    
    [133] Shirota H., Horie K., J. Phys. Chem. B, 1999,103,1437.
    
    [134] Falcone R. D., Correa N. M., Biasutti M. A., Silker J. J., Langmuir, 2000, 16,3070.
    
    [135] Raju B. B., Costa S. M. B., Spectrochim. Acta Part A, 2000, 56,1703.
    [136] Laia C. A. T., Brown W., Almgren M., Costa S. M. B., Langmuir, 2000, 16, 8763.
    [137] Laia C. A. T., Costa S. M. B., Langmuir, 2002, 18, 1494.
    [138] Siler J. J., Falcone R. D., Correa N. M., Biasutti M. A., Elsa A., Lissi E., Campodonico P., Langmuir, 2003, 19, 2067.
    [139] Shirota H., Segawa H., Langmuir, 2004, 20, 329.
    [140] Correa N. M., Levinger N. M., J. Phys. Chem. B, 1006, 110, 13050.
    [141] Falcone R. D., Correa N. M., Biasutti M. A., Silber J. J., J. Colloid Interface Sci., 2006, 296, 356.
    [142] Novaki L. P., Correa N. M., Silber J. J., EI Seoud O. A., Langmuir, 2000, 16, 5573.
    [143] El Seoud O. A., Correa N. M., Novaki L. P., Langmuir, 2001, 17, 1847.
    [144] Correa N. M., Pires P. A. R., Silber J. J., El Seoud O. A., J. Phys. Chem. B, 2005, 109, 21209.
    [145] Peng S. J., An X. Q., Shen W. G., J. Colloid Interface Sci., 2005, 287, 141.
    [146] Peng S. J., An X. Q., Shen W. G., J. Chem. Thermodyn., 2006, 38, 43.
    [147] 彭三军,博士毕业论文,兰洲大学, (2005).
    [148] McGlashan M. L., J. Chem. Thermodyn., 1990, 22, 653.
    [149] Riddiek J. A., Bunger W. B., Sakano T. K., Organic Solvents, Fourth ed., Weissberger A.: editor. Techniques of Chemistry, Vol. Ⅱ, Wiley-Interscienee: New York, 1986, 844-845.
    [150] Ekwall., Mandell L., Fontell K., J Colloid Interface Sci., 1970, 33, 215.
    [151] Botcher C. J. F., Bordewijk P., Theory of Electric Polarization, Vol. 2, Elsevier: New York. 1974, 28.
    [152] An X. Q., Shen W. G., Wang H. Y., Zheng G. K., J. Chem. Thermodyn., 1993, 25, 1373.
    [153] Sanehez I. C., J. Appl. Phys., 1985, 58, 2871.
    [154] Wegner F. J., Phys. Rev. B, 1972, 5, 4529.
    [155] Ley-Koo M., Green M. S., Phys. Rev. A, 1981, 23, 2650.
    [156] Singh H. N., Saleem Syed M., Singh R. P., J. Phys. Chem., 1980, 84, 2191.
    [157] Li P., An X. Q., Shen W. G., Acta Phys-Chim Sin, 2001, 17, 144.
    [158] Huang J. S., Safran S. A., Kim M. W., Grest G. S., Kotlarchyk M., Quirke N., Phys. Rev. lett., 1984, 53, 592.
    [159] Gutkowski K., Anisimov M. A., Sengers J. V., J. Chem. Phys., 2001, 114, 3133.
    [160] Anisimov M. A., Povodyrev A. A., Kulikoy V. D., Sengers J. V., Phys. Rev. Lett., 1995, 75, 3146.
    [161] Jacob J., Kumar A., Anisimov M. A., Povodyrev A. A., Sengers J. V., Phys. Rev. E, 1998, 58, 2188.
    [162] Anisimov M. A., Povodyrev A. A., Sengers J. V., FluidPhase Equilib., 1999, 158-160, 537.
    [163] Dozier W. D., Kim M. W., Klein R., J. Chem. Phys., 1987, 87, 1455.
    [164] Mehta S. K., Kawaljit, Bala K., Phys. Rev. E, 1999, 59, 4317.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700