用户名: 密码: 验证码:
镁基块体非晶的制备及其碳纳米管复合材料的增韧研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁基非晶态合金因具有轻质、高强度、高弹性极限、低价格等优点而受到关注,拥有广阔的发展潜力和应用前景。其中,Mg-Ni基非晶态合金相比于其它镁基非晶材料更是具有优异的力学性能、高储氢量和高耐蚀性能等优点。目前Mg-Ni基块体非晶有两个主要缺点阻碍了其发展和应用:①Mg-Ni基合金系非晶形成能力较低,目前研究发现的最大非晶尺寸仅为直径3mm;②塑韧性差,断裂形式表现为显著的脆性断裂,一般压缩实验中的形变位移最大为1%左右。本工作以Mg-Ni-Gd三元合金系为基础,通过改变合金成分配比,在合金系中添加新组元等方式得到一系列非晶形成能力良好的合金成分;另一方面,以碳纳米管作为外加第二相,以期提高韧性,改善Mg-Ni非晶基体的断裂性能。考虑到碳纳米管的添加对非晶形成能力可能造成的负面影响,制备得到非晶形成能力良好的合金成分是研究碳纳米管增韧机制的基础。实验得到的主要结果如下:
     (1)Gd元素含量在Mg-Ni-Gd三元合金系中对于非晶形成能力有显著的影响,Gd原子个数含量取_(10)at.%对于合金系的非晶形成能力有最佳优化作用;通过改变原子个数配比,发现Mg-Ni-Gd合金系中具最佳非晶形成能力的成分点Mg_(75)Ni_(15)Gd_(10),非晶临界尺寸3mm。通过晶态峰识别发现对Mg-Ni-Gd三元系非晶形成能力影响较大的强势晶态相GdNi_3。
     (2)Ag部分替代Mg_(75)Ni_(15)Gd_(10)合金中Mg元素对非晶形成能力有显著的影响,替代得到的四元合金成分Mg_(69)Ni_(15)Gd_(10)Ag_6,临界非晶尺寸为直径6mm。用伪三元相图成分定位的方法得到一批非晶形成能力优良的成分点,其中有五个成分点可达临界尺寸6mm,分别为Mg_(70)Ni_(14.3)Gd_(10)Ag_(5.7)、Mg_(69)Ni_(15)Gd_(10)Ag_6、Mg_(68)Ni_(15.7)Gd_(10)Ag_(6.3)、Mg_(64)Ni_(18.6)Gd_(10)Ag_(7.4)和Mg_(63)Ni_(19.3)Gd_(10)Ag_(7.7)。通过稀土元素掺杂法,得到了具有优良非晶形成能力的五元成分Mg_(69)Ni_(15)Ag_6Gd_7Pr_3,临界非晶形成尺寸为直径8mm,为目前所知最大尺寸的Mg-Ni基非晶合金。
     (3)球磨工艺可以改善碳纳米管的团聚问题,但部分碳纳米管会在球磨处理过程中被打断而变短。CNTs-Mg_(69)Ni_(15)Ag_6Gd_7Pr_3块体非晶复合材料的压缩应力和形变位移随碳纳米管体积含量的增大而提高,当含量为2vt.%时均达到最高值,分别为925MPa和2.26%,比之不添加碳纳米管时分别提高198MPa和0.74%,观察断口形貌,发现复合材料基体中出现一定规模的表征非晶韧性的脉络状花纹。
Mg-based amorphous alloy with the vast development potential and prospects for the advantages of a lightweight, high strength, high elastic limit and low price. Compared to other Mg-based amorphous material, Mg-Ni based amorphous alloy have excellent mechanical properties, high hydrogen storage capacity and high corrosion resistance and so on. Presently, Mg-Ni-based bulk metallic glass has two major drawbacks which hinder their development and application:①Mg-Ni based alloy have lower GFA, the current study found that the largest diameter of the amorphous size is only 3mm.②Poor toughness. The fracture is a significant form of brittle fracture,the general displacement of compression experiment in a maximum of 1%. The work is based on the Mg-Ni-Gd ternary alloy system, hope that get a group of good GFA of alloy composition by changing the alloy composition ratio. On the other hand, take carbon nanotubes as a second phase to improving the toughness and the the Mg-Ni amorphous matrix fracture properties. Taking into account the addition of carbon nanotubes have the possible negative effects on the glass forming ability, good glass forming ability of the alloy composition is the basis of toughening mechanisms of carbon nanotubes. The main results obtained from the experiment are as follows:
     (1)Gd content have significant impact on the Mg-Ni-Gd ternary alloys glass forming ability, _(10)at.% of Gd in the formation of amorphous alloys have the best ability to optimize the GFA; by changing the ratio of atomic number,we could found that the Mg-Ni-Gd alloy system have the best glass forming ability in the composition of point Mg_(75)Ni_(15)Gd_(10), whose amorphous critical size of 3mm. The other way, the strong crystalline phase GdNi_3 have a significant effect on the GFA of Mg-Ni-Gd ternary system.
     (2)Ag partial substitution Mg in the Mg_(75)Ni_(15)Gd_(10) alloy have a significant impact on the glass forming ability, the best alternative to alloy composition is Mg_(69)Ni_(15)Gd_(10)Ag_6, with the critical diameter of the amorphous size 6mm. By positioning components in the Pseudo ternary phase diagram, have obtained an excellent group of glass forming ability components. Five component points have the critical size of diameter 6mm, respectively Mg_(70)Ni_(14.3)Gd_(10)Ag_(5.7), Mg_(69)Ni_(15)Gd_(10)Ag_6, Mg_(68)Ni_(15.7)Gd_(10)Ag_(6.3), Mg_(64)Ni_(18.6)G-d_(10)Ag_(7.4), and Mg_(63)Ni_(19.3)Gd_(10)Ag_(7.7)。By the rare earth doped method, have obtained the five-component Mg_(69)Ni_(15)Ag_6Gd_7Pr_3, which with excellent glass forming ability of critical diameter of glass forming size 8mm. It’s the maximum size of the amorphous Mg-Ni based alloys as far as we know.
     (3)Milling process can release the agglomeration of carbon nanotubes, in the milling progress, part of carbon nanotubes will be interrupted and short. The compressive stress and strain displacement of CNTs-Mg_(69)Ni_(15)Ag_6Gd_7Pr_3 bulk amorphous composites will improve with the increase of volume content of carbon.The volume fraction of 2% reached the highest value of respectively 925MPa and 2.26%. It’s 198MPa and 0.74% increased than haven't add Carbon nanotubes. The pattern of the context increased significantly in the amorphous matrix which is the characterization of toughness in the composite materials by observation of fracture morphology.
引文
[1] Kramer J. Non conductive transforma in metal[J]. Ann.Phys., 1934, 19: 37-64
    [2] Brenner A, Couch D E. Deposition of nickel and cobalt by chemical reduction[J]. J. Res. Nat. Bur. Stand., 1947, 37: 385-395
    [3] Brenner A, Couch D E. Electrodeposition of alloys of phosphorus with nickel or cobalt[J]. J. Res. Nat. Bur. Stand., 1950, 44: 109-119
    [4] Turnbull D. Kinetics of solidification of supercooled liquid mercury droplets[J]. J. Chem. Phys., 1952, 20: 411-424
    [5] Klements W, Willens R H, Duwez P. Non-crystalline structure in solidified gold-silicon alloys[J]. Nature, 1960, 187: 869-870
    [6]卢博斯基F E.非晶态金属合金[M].(柯成,唐于堪,罗阳,译者).北京:冶金工业出版社,1989
    [7]王一禾,杨膺善.非晶态合金[M],北京:冶金工业出版社,1985
    [8] Inoue A, Zhang T, Masumoto T. Al-La-Ni amorphous alloys with a wide supercooled liquid region[J]. Materials Transactions JIM, 1989, 30(12): 965-972
    [9] Inoue A, Kita K, Zhang T. An amorphous La_(55)Al_(25)Ni_(20) alloy prepared by water quenching[J]. Tran. JIM, 1989, 30(9): 722-972
    [10] Inoue A, Yamaguchi H, Zhang T. Al-La-Cu amorphous alloys with a wide supercooled lisuid region[J]. Mater. Trans. JIM, 1990, 31(2): 104-109
    [11] Inoue A, Kohinata M, Masumoto T, et al. Mg-Ni-La amorphous alloys with a wide supercooled liquid region[J]. Materials Transactions JIM, 1989, 30(5): 378-381.
    [12]张海峰,丁炳哲,胡壮麒.块状金属玻璃研究与进展[J].金属学报, 2001, 37(11): 1131-1141
    [13] Inoue A, Kato A, Masumoto T, et al. Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method[J]. Materials Transactions, 1991, 32(7): 609-616
    [14] Inoue A, Zhang T, Masumoto T. Zr-Al-Ni amorphous alloys with high transition temperature and significant supercooled lisuid region[J]. Mater. Trans. JIM, 1990, 31(3): 177-183
    [15]肖华星,陈光.大块非晶晶化研究的现状和动态[J].兵器材料科学与工程,2003,26(1):65-67
    [16] Peker A. A highly processable metallic glass: Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10.0)Be_(22.5)[J]. Applied Physics Letters, 1993, 63(17): 2342-2344
    [17] Johnson W L. Bulk glass-forming metallic alloys: Science and technology[J]. MRS Bulletin, 1999, 24(10): 42-56
    [18] Inoue A, Nishiyama N, Kimura H. Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter[J]. Materials Transactions JIM, 1997, 38(2): 179-183
    [19]孔见,陈光. Cu47Ti34Zrl1Ni8块体非晶合金的制备[J].特种铸造及有色合金, 2003, (6): 11-14
    [20] Inoue A, Zhang T. Fabrication of bulk glassy Zr_(55)Al_(10)Ni_5Cu_(30) alloy of 30 mm in diameter by a suction casting method[J]. Materials Transactions JIM, 1996, 37(2): 185-187
    [21] Xu D H, Duan G, Johnson W L. Unusual glass forming ability of bulk amorphous alloys[J]. Physical Review Letters, 2004, 92(24): 245-247
    [22] Dai C L, Guo H, Shen Y, et al. A new centimeter-diameter Cu-based bulk metallic glass[J]. Scripta Materialia, 2006, 54(7): 1403-1408
    [23] Jia P, Guo H, Li Y, et al. A new Cu-Hf-Al ternary bulk metallic glass with high glass forming ability and ductility[J]. Scripta Materialia, 2006, 54(12): 2165-2168
    [24] Guo F, Poon S J, Shiflet G J. Metallic glass ingots based on yttrium[J]. Applied physics letters, 2003, 83(13): 2575-2577
    [25] Ma H, Shi L L, Xu J, et al. Discovering inch-diameter metallic glasses in three-dimensional composition space[J]. Applied Physics Letters, 2005, 87(12): 181-185
    [26]赵德乾, ShekCH,汪卫华. Zr-Ti-Cu-Ni-Be-Fe大块非晶合金晶化动力学效应[J].金属学报, 2001, (7): 754-758
    [27] Zheng Q, Cheng S, Strader J H, et al. Critical size and strength of the best bulk metallic glass former in the Mg-Cu-Gd ternary system[J]. Scripta Materialia, 2007, 56(2): 161-164
    [28]郭贻诚,王震西.非晶态物理学[M].北京:科学出版社, 1984
    [29]周效锋,戴雯,陶淑芬.非晶态金属材料发展及前景展望[J].云南师范人学学报(教育科学版), 2003, (6): 251-253
    [30]赵德乾,张勇,庄艳歆. Zr-Ti-Cu-Ni-Be-Fe块体非晶合金及非晶基纳米复合材料的形成及其性质[J],金属学报, 2000, 36(3): 329-333
    [31]司鹏程,程饶雄,李细,等.大块非晶合金形成的控制因素与制备技术[J].材料工程, 1998(11): 3-7
    [32]惠希东,陈国良.块体非晶合金[M].化学工业出版社,1.2007
    [33]孙玉峰,张国胜,魏炳忱,等. TiC原位增强大块Cu_(47)Ti_(34)Zr_(11)Ni_8非晶合金复合材料[J].科学通报, 2004, (2): 115-119
    [34]董树荣,涂江平,张孝彬.碳纳米管增强铜基复合材料的力学性能和物理性能[J].材料研究学报, 2000, 14(1): 132-136.
    [35]胡人杰.复合材料[M],天津:天津大学出版社, 2000
    [36]马仁志,朱艳秋,魏秉庆,等.铁-钯基合金复合材料的研究[J].复合材料学报, 1997, 14(2), 92-96
    [37]郗雨林,张文兴,柴东琅,等.粉末冶金法制备镁基复合材料组织及性能的研究[J].热加工工艺, 2002(1): 51-53
    [38]胡连喜,李小强,王尔德,等.挤压变形对镁基复合材料组织和性能的影响[J].中国有色金属学报, 2000, 10(5): 680-683
    [39] Hays C C, Kim C P, Johnson W L. Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions[J]. PhysRev Lett, 2000, 84: 2901-2904
    [40] Xu Y K, Xu J. Ceramics particulate reinforced Mg_(65)Cu_(20)Zn_5Y_(10) bulk metallic glass composites[J]. Scripta Mater, 2003, 49: 843-848
    [41] Xu Y K, Ma H, Xu J, et al. Mg-based bulk metallic glass composites with plasticity and gigapascal strength[J]. Acta Mater, 2005, 53: 1857-1866
    [42] Zan Bian, Ru Ju Wang, Wei Hua Wang, et al. Carbon nanotube reinforced Zr-based bulk metallic glass composites and their properties[J]. Advanced Functional Materials, 2004, 14(1), 68-70
    [43] J.M.Park, G.Wang, R.Li. Enhancement of plastic deformability in Fe–Ni–Nb–B bulk glassy alloys by controlling the Ni-to-Fe concentration ratio[J]. Applied Physics Letters, 2010,66: 906-910
    [44] Zan Bian, Ming Xiang Pan, Yun Zhang, et al. Carbon-nanotube-reinforced Zr_(52.5)Cu_(17.9)Ni_(14.6)Al_(10)Ti_5 bulk metallic glass composites[J]. Applied Physics Letters, 2002, 16(25): 126-128
    [45] S.F.Guo, L.Liu, N.Li, Y.Li, Fe-based bulk metallic glass matrix composite with large plasticity[J]. Scripta Materialia,2010,62: 329–332
    [46] Wang Yinchun, Wang Yuren, Wei Bingchen, et al. Kinetics of glass transition and crystallization in carbon nanotube reinforced Mg-Cu-Gd bulk metallic glass[J]. Journal Of Rare Earths, 2006, 24: 327–331
    [47] Y.B.Li, B.Q.Wei, C.L.Xu. Physical properties of Fe_(80)P_(20) glass-carbon nanotubes composite[J]. Journal Of Materials Science, 1999, 34: 5281-5284
    [48] Inoue A, Stabilization of metallic supercooled liquid and bulk amorphous alloys[J]. Acta Mater, 2000, 48 (6): 719-723
    [49] Hidemi Kato, Inoue A. Synthesis and Mechanical Properties of Bulk Amorphous Zr-AI-Ni-Cu Alloys Containing ZrC Particles[J]. Mater Trans JIM, 1997, 38(9): 793-800
    [50]麻晗. Mg-Cu-RE合金系的玻璃形成能力及其内生复合材料[D].沈阳:中国科学院金属研究所, 2006
    [51]万淼,黄新堂.低速球磨对多壁碳纳米管球磨特性的影响研究[J].炭素技术, 2005. 3(24): 136-137
    [52]黎业生,吴子平,刘赣伟,等.镁基大块金属玻璃的制备及研究进展[J].铸造, 2005, 54(8): 745
    [53]门华,徐坚. Mg-Cu-Zn-Y块体金属玻璃的形成[J].金属学报, 2001, 37(12): 1243-1246
    [54]董树荣,涂江平,张孝彬.碳纳米管增强铜基复合材料的力学性能和物理性能[J].材料研究学报, 2000, 14 (1): 132-136
    [55]徐映坤,徐坚,陶瓷颗粒增强Mg_(65)Cu_(20)Zn_5Y_(10)块体金属玻璃复合材料[J].金属学报, 2004, 40(7): 726-730
    [56]邱克强,王爱民,张海峰,等.用渗流铸造法制备Zr_(55)Al_(10)Ni_5Cu_(300非晶复合材料[J].材料研究学报, 2002, (4): 389-392
    [57]杨占红,李新海.碳纳米管纯化技术研究[J].中南工业大学学报, 1999, 12(8): 389-391.
    [58]李金许,褚武杨,高克玮,等.块状非晶剪切带和微裂纹形核扩展的SEM原位研究[J].金属学报, 2003, 39(4): 359-361
    [59]孙玉峰,郭建,王育人,等.一种新型Zr基块状非晶复合材料的显微组织与力学性能[J].科学通报, 2006, 51(l): 8-12
    [60]李金许,褚武杨,高克玮,等.块状非晶剪切带和微裂纹形核扩展的SEM原位研究[J].金属学报, 2003, 39(4): 359-363
    [61]门华,杨明川,徐坚.添加Co对Mg_(65)Cu_(25)Y_(10)合金玻璃形成能力的影响[J].材料研究学报, 2002, 8: 379-384

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700