用户名: 密码: 验证码:
镁基块体非晶合金及其复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Mg基非晶合金由于具有高的比强度、良好的耐蚀性、低廉的价格而在精密仪器、微成型材料和3C产品中具有广泛的应用前景。但是由于通常Mg基非晶合金没有宏观上的塑性变形,断裂韧性也与SiO_2等理想脆性材料相当,使Mg基非晶合金的应用存在困难,因此提高Mg基非晶合金的塑性成为Mg基非晶合金研究的焦点。
     本文通过合金元素的力学特性和对Mg基非晶形成能力的分析,确定了以Mg-Cu-Nd、Mg-Ni-Cu-RE(RE=Y,Nd)、Mg-Zn-Ca和Mg-Ni-Zn-Y合金为主要研究对象,通过铜模铸造方法制备了不同直径的圆柱样品。采用扫描电镜、X射线衍射仪、差示扫描量热仪、透射电镜和拉压力学试验机等设备对合金的组织形貌、相结构、非晶合金的热力学稳定性、熔化行为和力学性能进行研究,获得了以下结果:
     在Mg-Cu-Nd三元合金系中,建立了非晶合金形成能力在2mm以上的成分区域。合金元素Ag可以提高Mg-Cu-Nd合金的非晶形成能力与力学性能。其中Mg_(57)Cu_(30.5)Nd_(10)Ag_(2.5)的非晶形成能力达到5mm,塑性变形量达到为1.5%。
     对Mg-Cu-Ni-Nd四元合金的研究结果表明,Mg_(62.6)Cu_(10.5)Ni_(14)Nd_(12.9)的临界制备尺寸至少可以达到直径5mm。而Mg_(60)Ni_(10)Cu_(16)Nd_(14)合金不仅具有较高的非晶形成能力(-5mm),而且具有高达8.5%的塑性应变,这是目前所发现的塑性应变量最大的Mg基非晶合金,采用TEM分析表明,两种不同成分的非晶相所引起的剪切滑移过程的变化是引起塑性变形的主要原因。
     对Mg-Cu-Ni-Nd-Y五元合金的研究结果表明,Mg_(58.5)Cu_(27.5)Ni_3Nd_5Y_6可以形成直径达13mm的非晶合金,提出了采用计算应力与实验应力的相对差值估算实验应力的可靠性问题。计算结果表明,Mg_(58.5)Cu_(27.5)Ni_3Nd_5Y_6具有最小的相对误差,表明具有很好的实验应力再现性能。
     对Mg-Zn-Ca三元合金研究结果表明:非晶形成能力最佳的合金成分为Mg_(68)Zn_(28)Ca_4,其强度和塑性应变分别为828MPa和1.28%。在Ca含量控制在3-5at.%时,通过调节Mg和Zn的含量可以获得具有高性能的Mg基非晶合金及其复合材料。
     对Mg-Ni-Zn-Y四元合金的研究结果表明,当合金成分在Mg为73-81at%、Ni为8-12% at%、Zn为3-5at%、Y为6-10% at%范围时,可以形成具有长程有序相(LPO)韧化的Mg基非晶合金复合材料。合金成分中形成LPO相的最小Y/Zn值为0.57,而LPO相中的Y/Zn比值略大于1。其中Mg_(81)Ni_8Zn_5Y_6合金的压缩强度为550MPa,塑性应变为21%。这是目前所发现的塑性变形量最大的Mg基非晶合金复合材料
Mg-based bulk metallic glasses (BMGs) have potential application in precision instruments, micro-forming materials and 3C products due to their high special strength, good corrosion resistance and low cost. However, it is impossible to use such kind of materials because most of Mg-based BMGs exhibit no macro-plastic deformation under compression and the fracture toughness is comparable to the ideal brittle materials, such as SiO_2. Therefore, how to improve the ductility of Mg-based BMGs has become a key issue in this area.
     By considering mechanical properties and the effect on glass-forming ability (GFA) of choosing elements, glass-forming alloys were designed based on Mg-Cu-Nd, Mg-Ni-Cu-RE (RE=Y, Nd), Mg-Zn-Ca and Mg-Ni-Zn-Y, respectively. As-cast samples with different diameters were fabricated by copper mould casting method. The microstructure, thermal properties related to amorphicity, melting behavior and mechanical properties of as-cast samples were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), transmission electron microscopy (TEM) and compression-tension tester, respectively. The main experimental results are as following:
     The glass-forming region with BMG diameter up to 2 mm was located in Mg-Cu-Nd ternary phase diagram. The addition of Ag element can improve both the GFA and mechanical properties of Mg-Cu-Nd alloys. Furthermore, we found that the GFA reflected by critical cast diameter and plastic strain for Mg_(57)Cu_(30.5)Nd_(10)Ag_(2.5) alloy are as high as 5 mm and 1.5%, respectively.
     For Mg-Cu-Ni-Nd alloys, at least 5 mm in diameter for glass formation was obtained for the Mg_(62.6)Cu_(10.5)Ni_(14)Nd_(12.9) alloy. While the Mg_(60)Ni_(10)Cu_(16)Nd_(14) alloy exhibits not only good GFA, but also excellent plastic strain up to 8.5%, which is the largest strain found up to now according to the literature. Such large plastic strain was attributed the two different compositional amorphous phase existed in matrix, as testified by TEM, which was able to change the shear process and such result in the plastic deformation of the related BMG.
     The GFA and the mechanical properties of Mg-Cu-Ni-Nd-Y alloys were investigated. The glass formation for Mg_(58.5)Cu_(27.5)Ni_3Nd_5Y_6 alloy is as high as 13 mm in diameter. Furthermore, we suggest that the reliability in fracture stress can be evaluated by the relative difference between calculated stress and experimental stress. The smallest value was found for Mg_(58.5)Cu_(27.5)Ni_3Nd_5Y_6 BMG, which demonstrates that the fracture stress of this alloy can be reproduced.
     The GFA for Mg-Zn-Ca alloys was investigated and the best one with composition of Mg_(68)Zn_(28)Ca_4 was located. The fracture stress and plastic strain for Mg_(68)Zn_(28)Ca_4 BMG are 828MPa and 1.28%, respectively. The glass formers and amorphous matrix composites with relative better mechanical properties can be obtained by adjusting Mg and Zn content when Ca content is between 3~5at.% for Mg-Zn-Ca alloys.
     The long period ordered (LPO) structure can be formed in the amorphous matrix when Mg, Ni, Zn and Y are in the range of 73-81at%, 8-12% at%, 3-5 at% and 6-10% at%, respectively, which can improve the ductility of Mg-based BMGs. The critical Y/Zn ratio for LPO formation is 0.57 in the composition of alloys, whereas the value of Y/Zn ratio in the LPO is general larger than 1. The fracture stress and plastic strain for Mg_(81)Ni_8Zn_5Y_6 are 550MPa and 21%, respectively. The plastic strain is the largest one found up to now among Mg-based amorphous matrix composites.
引文
[1] 郭贻诚,王震西主编.非晶态物理学.北京:科学出版社,1984.
    [2] Buckel W, Hilsch R. Possibility of determining the surface band curvature in semimetals. Physics, 1954,138: 109-117.
    [3] Cargill G S. Dense random packing of hard spheres as a structural model for noncrystalline. Journal of Applied Physics, 1970, 41: 2248-2250.
    [4] Cohen M H, Turnbull D. Metastability of amorphous structures. Nature, 1964, 203: 964-965.
    [5] Kramer J. Preparation of soft magnetic Fe_(72)B_(20-X)C_XSi_4Tm_4(Tm=Nb, Zr, Mo) Fe-based powders by mechanical alloying. Physics, 1934,19:37-64.
    [6] Kramer J. Zirconium base amorphous alloy and phase diagram study. Physics, 1937, 106: 675-701.
    [7] Brenner A, Couch D E, Williams E K. Electro deposition of alloys of phosphorus with nickel or cobalt. Journal of Research Nature Burrton Standard, 1950, 44: 109-119.
    [8] Klement W, Willens R, Duwez P. Non-crystalline structure in solidified gold-silicon alloy. Nature, 1960, 187:869-890.
    [9] F.E. Luborsky. Amorphous Metallic Alloys. Butterworth, London, 1983.
    [10] Jones H. Rapid Solidification of Metal and Alloys. Institution of Metallurgists, London, 1982.
    [11] Davies H A, Aucote J, Hull J B. Aluminum and Al-alloy strip produced by spray deposition and rolling. Nature, 1973,246: 13-15.
    [12] Smith C H. Rapidly Solidified Alloys. New York, 1993.
    [13] Rabinkin A, Liebermann H H. Rapidly Solidified Alloys.New York, 1993.
    [14] Chen H S, Turnbull D. Formation, stability and structure of palladium-silicon based alloy glasses. Acta Materialia, 1969, 17: 1021-1031.
    [15] Naka N, Kita Y, Masumoto T. Rapidly Quenched Metals. Metals Society, London, 1978.
    [16] Boettinger W J. Proc.of 4~(th) Int. Conf. on Rapidly Quenched Metals, Sendai, 1989.
    [17] Steinberg. J, Lord A E, Lacy L L, et al. Production of bulk amorphous Pd_(77.5)Si_(16.5)Cu_6 in a containerless low gravity environment. Applied Physics Letters, 1981, 38: 135-137.
    [18] Lee M C, Kendall J M, Johnson W L. Spheres of the metallic glasses Au_(55)Pb_(22.5)Sb_(22.5) and their surface characteristics. Applied Physics Letters, 1982, 40: 382-384.
    [19] Drehman A J, Turnbull D. Bulk formation of a metallic glass: Pd_(40)Ni_(40)P_(20). Applied Physics Letters, 1982,41:716-717.
    [20] Kui H W, Greer A L, Turnbull D. Formation of bulk metallic glass by fluxing. Applied Physics Letters, 1984,45:615-616.
    [21] Inoue A, Ekimoto T, Masumoto T, et al. Rapid solidification. Materials Transactions JIM, 1988, 3: 237-246.
    [22] Xu Y F, He X M, Chen H, et al. Formation, structure and properties of bulk metallic glasses. Journal of Materials Science Letters, 1990, 9: 850-859.
    [23] Inoue A, Kata K, Zhang T, et al. Rapid solidification Al-alloys. Materials Transactions JIM, 1989, 30(9): 722-731.
    [24] Inoue A, Kata K, Masumoto T, et al. New amorphous alloys with good ductility in Al-Y-M and Al-La-M (M=Fe,Co,Ni, or Cu) system. Japan Journal of Applied Physics, 1988, 27(3): L280-L282.
    [25] Inoue A, Zhang T, Masumoto T. La-Al-Ni amorphous alloys with a wide supercooled liquid region. Materials Transactions JIM, 1989: 30: 965-972.
    [26] Chen H S, Jackson K A. Metallic Glasses. ASM Metals Park, Ohio, 1978.
    [27] Inoue A, Zhang T, Masumoto T. Production of amorphous cylinder and sheet of La_(55)Al_(25)Ni_(20) alloy by a metallic mold casting method. Materials Transactions JIM, 1990, 31(5): 425-430.
    [28] Inoue A, Nakamura T, Sugita T, et al. Bulky La-Al-TM (TM=Transition Metal)amorphous alloys with high tensile strength produced by a high-pressure die casting method. Materials Transactions JIM,1993,34:351-358.
    [29]Jiang Q K,Zhang G Q,Yang L,et al.La-based bulk metallic glasses with critical diameter up to 30mm.Acta Materialia,2007,55:4409-4418.
    [30]Inoue A,Zhang T,Masumoto T.Zr-Al-Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region.Materials Transactions JIM,1990,31(3):177-186.
    [31]Zhang T,Inoue A,Masumoto T.Amorphous Al-based thick sheets produced by rapid solidification of supercooled liquid droplets.Materials Transactions JIM,1990,32(11):1005-1016.
    [32]Inoue A,Zhang T,Nishiyama N,et al.Preparation of 16mm diameter rod of amorphous Zr_(65)Al_(7.5)Ni(10)Cu_(17.5) alloy.Materials Transactions JIM,1993,34(12):1234-1237.
    [33]Peker A,Johnson W L.A highly processable metallic glass:Zr_(41.5)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5)Applied Physics Letters,1993,63(17):2342-2344.
    [34]Johnson W L.Bulk glass-forming metallic alloys:science and technology.MRS Bulletin,1999,10:42-56.
    [35]Inoue A,Zhang T.Fabrication of bulk glass Zr_(55)Al_(10)Ni_5Cu_(30)alloy of 30mm in diameter by suction casting method.Materials Transactions JIM,1996,37(2):185-187.
    [36]He Y,Price C E,Poon S J.Formation of bulk metallic glass in neodymium-based alloys.Philosophical Magazine Letters,1994,70(6):371-377.
    [37]Inoue A,Zhang T,Takeuchi A,et al.Hard magnetic bulk amorphous Nd-Fe-Al alloys of 12 mm in diameter made by suction casting.Materials Transactions JIM,1996,37(4):636-640.
    [38]Wang D,Li Y,Sun B B,et al.Bulk metallic glass formation in the binary Cu-Zr system.Applied Physics Letters,2004,84:4029-4031.
    [39]Wang W H,Lewandowski J J,Greer A L.Understanding the glass-forming ability of Cu_(50)Zr_(50) alloys in terms of a metastable eutectic.Journal of Material Research,2005,20:2307-2313.
    [40]Duan G,Blauwe K De,Lind M L,et al.Compositional dependence of thermal,elastic,and mechanical properties in Cu-Zr-Ag bulk metallic glasses.Scripta Materialia,2008,58:159-162.
    [41]Lin X H,Johnson W L.Formation of Ti-Zr-Cu-Ni bulk metallic glasses.Journal of Applied Physics,1995,78:6514-6519.
    [42]Inoue A,Nishiyama N,Amiya K,et al.Ti-based amorphous alloys with a wide supercooled liquid region.Material Letters,1994,19:131-135.
    [43]Inoue A,Shinohara Y,Gook J S.Thermal and magnetic properties of bulk Fe based glassy alloys by copper mold casting.Materials Transactions JIM,1995,36(12):1427-1433.
    [44]Inoue A,Zhang T,Takeuchi A.Hard magnetic bulk amorphous alloys.IEEE Transactions Magnetics,1997,33(5):3814-3816.
    [45]Akatsuka R,Zhang T,Koshiba H,et al.Preparation of new Ni-based amorphous alloys with a large supercooled liquid region.Materials Transactions JIM,1999,40(3):258-261.
    [46]Inoue A,Nishiyama N,Matsuda T.Preparation of bulk glassy Pb_(40)Ni_(10)Cu_(30)P_(20)alloy of 40mm in diameter by water quenching.Materials Transactions JIM,1996,37(2):181-184.
    [47]Inoue A,Nishiyama N,Kimura H.Preparation and thermal stability of bulk amorphous Pd_(40)Cu_(30)Ni_(10)P_(20)alloy cylinder of 72mm in diameter.Materials Transactions JIM,1997,38:179-183.
    [48]He Y,Schwarz R B,Archuleta J I.Bulk glass formation in the Pd-Ni-P system.Applied Physics Letters,1996,69(13):1861-1863.
    [49]Calka A,Madhava M,Polk D E,et al.Transition-metal-free amorphous alloy-Mg_(70)Zn_(30).Scripta Materialia,1970,11:65-70.
    [50]Turnbull D.Metastability of amorphous structures.Transactions AIME221,1961,26:422-436.
    [51]Marcus M,Turnbull D.Metallic glasses.Materials Science and Engineering A,1976,23:211-214.
    [52]Hansen M.Constitution of Binary Alloys.McGraw-Hill,New York,1985.
    [53]Sommer F,Bucher G,Predel B.Gauge unification of fundamental forces.Journal of Physics C 1980,8:563-572.
    [54]Shibata T,Inoue A,Masumoto T.Dislocation-induced damping in metal matrix composites. Journal of Materials Science,1993,28:379-388.
    [55]Sirkin H,Mingolo N,Nassif E,et al.Increase of the glass-forming composition range of Mg-based binary alloys by addition of tin.Journal of Non-Crystalline Solids,1987,93:323-330.
    [56]Inoue A,Ohtera K,Tsai A P,et al.New amorphous alloys with good ductility in Al-YM and Al-La-M (M= Fe,Co,Ni or Cu)systems.Journal of Applied Physics,1988,27:L280-L282.
    [57]Inoue A,Ohtera K,Masumoto T.New amorphous Al-Y,Al-La and Al-Ce alloys prepared by melt spinning.Journal of Applied Physics,1988,27:L736-L739.
    [58]Inoue A,Ohtera K,Tsai A P,et al.Aluminum-based amorphous alloys with tensile strength above 980 MPa (100 kg/mm~2).Journal of Applied Physics,1988,27:L479-L482.
    [59]Louzguine D V,Inoue A.Electro-negativity of the rare earth metals as a factor stabilizing the supercooled liquid region in Al-based metallic glasses.Applied Physics Letters,2001,79:3410-3412.
    [60]Masumalski T B.Binary Alloy Phase Diagrams.American Society for Metals,Ohio,1986.
    [61]Inoue A,Ohtera K,Tsai A P et al.Mg-Cu-Y amorphous alloys with a wide supercooled liquid region.Journal of Applied Physics,1988,27:L2248-L2251.
    [62]Inoue A,Ohtera K,Tsai A P et al.Mg-Ni-La amorphous alloys with wide supercooled liquid region.Materials Transactions JIM,1989,30:378-381.
    [63]Matsubara E,Tamura T,Waseda Y et al.Mg-Ni-Ln amorphous alloys with wide supercooled liquid region.Materials Transactions JIM,1989,31:789-792.
    [64]Inoue A,Ohtera K,Tsai A P et al.Glass transition behavior of Al-and Mg-based amorphous alloys.Journal of Non-Crystalline Solids,1990,117/118:712-715.
    [65]Kim S G,Inoue A,Masumoto T.High mechanical strengths of Mg-Ni-Y and Mg-Cu-Y amorphous alloys with significant supercooled liquid region.Materials Transactions JIM,1990,31:929-934.
    [66]Inoue A,Masumoto T.Production and properties of light-metal-based amorphous alloys.Materials Science and Engineering A,1991,133:6-9.
    [67]Shibata T,Inoue A,Masumoto T.Formation,thermal stability and mechanical properties of amorphous alloys in the Mg-transition metal (Ni,Cu)-alkaline-earth metal (Ca,Sr,Ba)system. Journal of Materials Science,1993,15:379-383.
    [68]He Y,Poon S J,Shiflet G J.Synthesis and properties of metallic glasses that contain aluminum.Science,1988,241:1640-1642.
    [69]Shiflet G J,He Y,Poon S J.Mechanical properties of a new class of metallic glasses based on aluminum.Journal of Applied Physics,1988,64:6863-6865.
    [70]Shiflet G J,He Y,Poon S J.Structural effects on the superconducting and magnetic behavior of aluminum-rich metallic glasses.Scripta Materialia,1988,22:1661-1665.
    [71]Inoue A,Ohtera K,Zhang T et al.New amorphous Al-Ln (Ln=Pr,Nd,Sm or Gd)alloys prepared by melt spinning.Journal of Applied Physics,1988,27:L1583-L1586.
    [72]Su S Y,Shiflet G J,He Y et al.Formation and properties of Mg-based metallic glasses in Mg-TM-X alloys(TM=Cu or Ni;X=Sn,Si,Ge,Zn,Sb,Bi or In).Materials Science and Engineering A,1994,185:115-121.
    [73]Turnbull D.Under what conditions can a glass formed? Contemporary Physics,1969,10(5):473-477.
    [74]Kato A,Inoue A,Horikiri H et al.Consolidation and their mechanical properties of amorphous Mg_(87.5)Cu_5Y_(7.5) and Mg_(70)Ca_(10)Al_(20) powders produced by high pressure gas atomization.Materials Transactions JIM,1995,36:977-981.
    [75]Fontana M,Arcondo B.Fabrication of Mg matrix in-situ composites via self-propagation synthesis.Journal of Materials Science,1995,30:734-736.
    [76]Mizutani U,Matsuda T.Resistivity,Hall coefficient and thermopower in Mg_(70)Cu_(30-x)Zn_x(0≤x≤30) metallic glasses.Journal of Non-Crystalline Solids,1987,94:345-352.
    [77]Inoue A,Nishiyama N,Kim S G et al.Mg-Cu-Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method.Materials Transactions JIM,1992,33:360-365.
    [78]Horikiri H,Kato A,Inoue A.New Mg-based amorphous alloys in Mg-Y-misch metal systems.Materials Science and Engineering A,1994,179-180:702-706.
    [79]Louzguine D V,Kawamura Y,Inoue A.Influence of Ni,Cu,Zn and Al additions on glass-forming ability and mechanical properties of Mg-Y-Mm (Mm=misch metal)alloys.Materials Science Forum,2000,350-351:123-128.
    [80]Inoue A,Kato A,Zhang T,et al.Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method.Materials Transactions JIM,1991,7:609-616.
    [81]Inoue A,Nakamura T,Nishiyama N,et al.Mg-Cu-Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method.Materials Transactions JIM,1992,33:937-945.
    [82]Busch R,Liu W,Johnson W L.Thermodynamics and kinetics of the Mg_(65)Cu_25)Y_(10) bulk metallic glass forming liquid.Journal of Applied Physics,1998,83:4134-4141.
    [83]Kato A,Inoue A,Horikiri H,et al.Production of bulk amorphous Mg_(85)Y_(10)Cu_5 alloy by extrusion of atomized amorphous powder.Materials Transactions JIM,1994,35:125-129.
    [84]Gebert A,Wolff U,John A,et al.Stability of the bulk glass-forming Mg_(65)Y_(10)Cu_(25) alloy in aqueous electrolytes.Materials Science and Engineering A,2001,299:125-135.
    [85]Ohnuma M,Pryds N H,Linderoth S,et al.Bulk amorphous (Mg_(0.98)Alo_(0.02))_(60)Cu_(30)Y_(10) alloy.Scripta Materialia,1999,41:889-893.
    [86]Pryds N H,Eldrup M,Ohnuma M,et al.Preparation and properties of Mg-Cu-Al-Y bulk amorphous alloys.Materials Transactions JIM,2000,41:1435-1442.
    [87]Liu W,Johnson W L.Precipitation of bcc nanocrystals in bulk Mg-Cu-Y amorphous alloys. Journal of Material Research,1996 (11):657-660.
    [88]Liu W,Johnson W L,Schneider S,et al.Small-angle X-ray-scattering study of phase separation and crystallizatioin in the bulk amorphous Mg_(62)Cu_(25)Y_(10)Li_3 alloy.Physical Review B,1999,59:11755-11759.
    [89]Kang H G,Park E S,Kim WT,et al.Fabrication of bulk Mg-Cu-Ag-Y glassy alloy by squeeze casting.Materials Transactions JIM,2000,41:846-849.
    [90]Park E S,Kang H G,Kim WT,et al.The effect of Ag addition on the glass-forming ability of Mg-Cu-Y metallic glass alloys.Journal of Non-Crystalline Solids,2001,279:154-160.
    [91]Park E S,Kang H G,Kim W T et al.The effect of Ag on the glass forming ability and crystallization in Mg-Cu-Ag-Y alloys.Materials Science Forum,2001,360-362:95-100.
    [92]Amiya K,Inoue A.Thermal stability and mechanical properties of Mg-Y-Cu-M(M=Ag,Pd)bulk amorphous alloys.Materials Transactions JIM,2000,41:1460-1462.
    [93]Amiya K,Inoue A.Preparation of bulk glassy Mg_(65)Y_(10)Cu_(15)Ag_5Pd_5 alloy of (?)l2mm in diameter by water quenching.Materials Transactions JIM,2001,42:543-545.
    [94]Li Y,Jones H,Davies H A.Determination of critical thickness for glass formation in new easy glass forming magnesium-base alloys by the wedge chill casting technique.Scripta Materialia,1992,26:1371-1375.
    [95]Li Y,Liu H Y,Davies H A,et al.Easy glass formation in Mg_(64)Ni_(21)Nd_(15)by Bridgman solidification.Materials Science and Engineering A,1994,179/180:628-631.
    [96]Li Y,Liu H Y,Jones H.Easy glass formation in Mg-based Mg-Ni-Nd alloy.Journal of Materials Science,1996,31:1857-1863.
    [97]Men H,Hu Z Q,Xu J.Bulk metallic glass formation in the Mg-Cu-Zn-Y system.Scripta Materialia,2002,46:699-703.
    [98]Ma H,Zheng Q,Xu J,et al.Doubling the critical size for bulk metallic glass formation in the Mg-Cu-Y ternary system.Journal of Material Research,2005,20:2252-2255.
    [99]Kov(?)cs Zs,Castellero A,Greer A L,et al.Thermal stability and instrumented indentation in a Mg_(60)Cu_(30)Y_(10) bulk metallic glass.Materials Science and Engineering A,2004,387:1012-1017.
    [100]Men H,Kim D H.Fabrication of ternary Mg-Cu-Gd bulk metallic glass with high glass-forming ability under air atmosphere.Journal of Material Research,2003,18:1502-1504.
    [101]Xi X K,Wang R J,Zhao D Q,ea al.Glass-forming Mg-Cu-Re (Re=Gd,Pr,Nd,Tb,Y,and Dy)alloys with strong oxygen resistance in manufacturability.Journal of Non-crystalline solids,2004,344:105-109.
    [102]Zheng Q,Chen S,Strader J H,et al.Critical size and strength of the best bulk metallic glass former in the Mg-Cu-Gd ternary system.Scripta Materialia,2007,56:161-164.
    [103]Ren Y L,Zuo J H,Qiu K Q,et al.Eutectic structure and bulk glass formation in Mg-based alloys. Intermetallics,2004,12:1205-1209.
    [104]Ma H,Shi L L,Xu J,et al.Discovering inch-diameter metallic glasses in three-dimensional composition space.Applied Physics Letters,2005,87:181915-1-181915-3.
    [105]Choi-Yim H,Busch R,Koster U,et al.Synthesis and characterization of particulate reinforced Zr_(57)Nb_5Al_(10)Cu_(15.4)Ni_(12.6) bulk metallic glass composites,Acta Meterialia,1999,47(8):2455-2462.
    [106]Conner R D,Rosakis A J,Johnson W L,et al.Fracture toughness determination for a beryllium-bearing bulk metallic glass.Scripta Materialia,1997,37:1373-1378.
    [107]Gilbert C J,Ritchie R O,Johnson W L.Micromechanisms of fracture and fatigue-crack growth in bulk metallic glass alloys.Applied Physics,1997,71:476-497.
    [108]Lowhaphandu P,Lewandowski J J.Fracture toughness and notched toughness of bulk amorphous alloy:Zr-Ti-Ni-Cu-Be.Scripta Materialia,1998,38:1811-1817.
    [109]Leng Y,Courtney T H.Multiple shear band formation in metallic glasses in composites.Journal of Materials Science.1991,26:588-592.
    [110]Chen H S,Leamy H J,O'Brien M J.Plastic flow in metallic glasses under compression.Scripta Meterialia,1973,7:931-935.
    [111]Takayama S,Maddin R.Rolling and bending deformation of Ni-Pd-P metal glasses.Acta Metallurgica 1975,23(8):943-952.
    [112]Kadir W M,Hayzelden C,Cantor B.Researches on alloys rapidly quenched from the melt.Journal of Materials Science,1980,15:2663-2675.
    [113]Marom G,Arridge R G C.Stress concentrations and transverse modes of failure in composites with a soft fibre-matrix interlayer.Materials Science and Engineering,1976,23:23-32.
    [114]Halpin J C,Thomas R L.Ribbon reinforcement of composites.Composite Materials,1968,2:488-497.
    [115]Hordon M J.A metallic glass-metal matrix composite.Journal of Materials Science Letters,1973,7:521-525.
    [116]Chen H S,Leamy H J,Miller C E,et al.Preparation of glassy metals.Journal of Materials Science,1980,10:363-391.
    [117]Jones H,Sutyanarana C.Rapid quenching from the melt:an annotated bibliography.Journal of Materials Science,1973,8:705-713.
    [118]Kreider K G.Metallic Matrix Composites.Academic Press,New York,1974.
    [119]Cytron S J.A metallic glass-metal matrix composite.Journal of Material Science Letters,1982,1(5):211-213.
    [120]Kimura H,Masumoto T,Ast D G.Yield stress of a composite consisting of amorphous Ni_(78)Si_(10)B_(12) and urn sized WC particles.Acta Metallurgica 1987,35:1757-1765.
    [121]Kato H,Inoue A.Synthesis and mechanical properties of bulk amorphous Zr-Al-Ni-Cu alloys containing ZrC particles.Materials Transactions JIM,1997,38:793-800.
    [122]Hirano T,Kato H,Matsuo A,et al.Synthesis and mechanical properties of Zr_(55)Al_(10)Ni_5Cu_(30) bulk glass composite containing ZrC particles formed by the in-situ reaction.Materials Transactions JIM,2000,41:1454-1459.
    [123]Dandliker R B,Conner R D,Johnson W L.Melt infiltration casting of bulk metallic-glass matrix composites.Journal of Material Research,1998,13(10):2896-2901.
    [124]Conner R D,Dandliker R B,Johnson WL.Mechanical properties of tungsten and steel fiber reinforced Zr_(41.25)Ti_(13.75)Cu_(12.5)Ni_(10)Be_(22.5) metallic glass matrix composites.Acta Metallurgica,1998, 46:6089-6102.
    [125]Szuecs F,Kim C P,Johnson W L.Bulk metallic glasses-preparation,microstructure and mechanical properties of carbon fiber.Materials Science Forum,2001,360-362:43-48.
    [126]Choi-Yim H,Conner D R,Johnson.W L.The effect of Ag addition on the crystallization behavior of amorphous Zr_(65)Al_(7.5)Cu_(17.5-x)Ag_x (x-0,2.5,5,7.5,10)alloys.Materials Science Forum,2001,55:360-362.
    [127]Choi-Yim H,Busch R,Koster U,et al.Synthesis and characterization of particulate reinforced Zr_(57)Nb_5Al_(10)Cu_(15.4)Ni_(12.6) bulk metallic glass composites.Acta Metallurgica,1999,47:2455-2462.
    [128]Choi-Yim H,Busch R,Johnson W L.The effect of silicon on the glass forming ability of Cu_(47)Ti_(34_)Zr_(11)Ni_8 bulk metallic glass forming alloy during processing of composites.Applied Physics,1998,83(12):7993-7997.
    [129]Wang W H,Bai H Y.Carbon-addition-induced bulk ZrTiCuNiBe amorphous matrix composite containing ZrC particles.Material Letters,2000,44:59-63.
    [130]Hays C C,Kim C P,Johnson WL.Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions.Physical Review Letters,2000,13:2901-2904.
    [131]Kim C P,Szuecs F,Johnson W L.Bulk metallic glasses-microstructure and mechanical properties of ductile phase containing bulk particles.Materials Science Forum,2001,49:360-362.
    [132]Lee L C,Kim Y C,Ahn J P,et al.A study of sintering of spherical silver powder.Acta Metallurgica,2005,53:129-138.
    [133]Xu Y K,Ma H,Xu J,et al.Mg-based bulk metallic glass composites with plasticity and gigapascal strength. Acta Metallurgica, 2005, 53: 1857-1866.
    [134] Ma H, Xu J, Ma E. Mg-based bulk metallic glass composites with plasticity high strength. Applied Physics Letters, 2003, 83: 2793-2795.
    [135] Hui X, Dong W, Wang ML, et al. Super plasticity Mg_(77)Cu_(12)Zn_5Y_6 bulk amorphous alloys based in situ composites. Science Bulletin, 2006, 51(2): 224-229.
    [136] Hui X, Dong W, Chen G L, et al. Formation, microstructure and properties of long-period order structure reinforced Mg-based bulk metallic glass composites. Acta Metallurgica, 2007, 55:907-920.
    [137] 王一禾,杨膺善.非晶态合金.北京:冶金工业出版社,1989.
    [138] 卢博斯基主编,柯成,唐与谌,罗阳,何开元译.非晶态金属合金.北京:冶金工业出版社,1987.
    [139] R泽仑著,黄畇等译.非晶态固体物理学.北京:北京大学出版社,1988.
    [140] Inoue A. In non-equilibrium processing of materials. An Imprint of Elsevier Science, 1989.
    [141] Yassin A, Castanet R. Investigation of the short-range order in Au-Te melts. Journal of Alloys and Compounds, 1998, 28: 237-240.
    [142] Bouhajib A, Nadiri A, Yacoubi A, et al. Investigation of the short-range order in the Ca-Sb melts. Journal of Alloys and Compounds, 1999, 29: 167-169.
    [143] Arpshofen I, Pool M J, Sommer F, et al. Knudsen cell mass spectrometry for the determination of the thermodynamic properties of liquid copper-nickel alloys. Journal of Alloys and Compounds,1983,47:223-226.
    [144] 边赞.大体积非晶材料的研究.北京科技大学博士学位论文,2000.
    [145] Chen H S. Thermodynamic considerations on the formation and stability of metallic glasses. Acta Metallurgica, 1974,22: 1505-1509.
    [146] Takayama S. Glass formation and stability. Journal of Materials Science. 1976, 11: 164-167.
    [147] Turnbull D. Under what conditions can a glass be formed? Contemporary Physics, 1969,10:473-488.
    [148] Uhlmann D R. A kinetic treatment of glass formation. Journal of Non-Crystalline Solids, 1972, 7:337-348.
    [149] Marcus M, Turnbull D. Correlation between glass-forming tendency and liquids temperature in metallic alloys. Materials Science and Engineering A, 1976, 23: 211-215.
    [150] Donald I W, Davis H A. Prediction of glass-forming ability for metallic systems. Journal of Non-Crystal Solids, 1978, 10: 77-85.
    [151] Inoue A. Fe-based ferromagnetic glassy alloys with wide supercooled liquid region. Material Transaction, 1995, 36:1180-1183.
    [152] Inoue A. Bulk Amorphous Alloys. Trans Tech Publication Ltd, Switzerland, 1998.
    [153] Hng H H, Li Y, Ng S S, et al. Critical cooling rates for glass formation in Zr-Al-Cu-Ni alloys. Journal of Non-Crystal Solids, 1996, 208: 127-138.
    [154] Fan G J, L(o|¨)ser W, Roth S, et al. Glass-forming ability and magnetic properties of Nd_(70-x)Fe_(20)Al_(10)Co_x alloys. Journal of Material Research, 2000, 15: 1556-1563.
    [155] Fan G J, L(o|¨)ser W, Roth S, et al. Glass-forming ability of RE-A1-TM alloys (RE=Sm, Y; TM=Fe, Co, Cu). Acta Metallurgica, 2000, 48: 3823-3831.
    [156] Jachle J. Models of the glass transition. Progress in Physics, 1986,49: 171-231.
    [157] Sethna J P, Shore J D, Ming H. Scaling theory for the glass transition. Physical Review B, 1991, 44:4943.4959.
    [158] Williams G, Watts D C. Non-symmetrical dielectric relaxation behavior arising from a simple empirical decay function. Transactions of the Faraday Society, 1970, 66: 80-85.
    [159] Williams G, Watts D C, Dev S B, et al. Further considerations of non symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Transactions of the Faraday Society, 1971,67: 1323-1335.
    [160] Vitek V. Amorphous Materials: Modeling of Structure and Properties. A publication of the Metallurgical Society of AIME, 1983.
    [161] Wong J, Angell C A. Glass: Structure by Spectroscopy, New York: Marcel Dekker, 1976.
    [162] Jeong J H. Ultrasonic investigation of the glass transition in glycerol. Physical Review A, 1986, 345: 602-608.
    [163]Lewis L J.Atomic dynamics through the glass transition.Physical Review B,1991,44:4245-4254.
    [164]Adam G,Gibbs J.On the temperature dependence of cooperative relaxation properties in glass-forming liquids.Journal of Chemical Physics,1965,43:139-146.
    [165]Gibbs J H,Dimarzio E A.Nature of the glass transition and the glassy state.Journal of Chemical Physics,1958,28:373-383.
    [166]Dimarzio E A.Equilibrium-theory of glasses.Annals of the New York Academy of Sciences,1981,371:1-20.
    [167]Kauzmann W K.The nature of the glassy state and the behavior of liquids at low temperatures.Chemical Review,1948,43:219-256.
    [168]Cohen M H,Grest G S.Liquid-glass transition,a free-volume approach.Physical Review B.1979,20(3):1077-1098.
    [169]Grest G S,Cohen M H.Liquid-glass transition:Dependence of the glass transition on heating and cooling rates.Physical Review B,1980,21:4113-4117.
    [170]Fredrickson G H.Recent developments in dynamical theories of the liquid-glass transition.Annual review of Chemical Physics,1988,39:149-180.
    [171]Hunt A.Non-Debye relaxation and the glass transition.Journal of Non-Crystalline Solids,1993,160:183-187.
    [172]Leutheusser E.The liquid-glass transition in statistical.Physics.Physical Review A,1984,29:2765-2773.
    [173]Bengtzelius U.Dynamics of supercooled liquids and the glass transition.Journal of Physics C,1984,17:5915-5934.
    [174]GQtze W,Sjogren L.Glass-forming microemulsions:verification of simple liquids and electron microscope probing of droplet-packing modes.Physics B,1984,65:415-419.
    [175]Das S P.Glass transition and self-consistent mode-coupling theory.Physical Review A,1990,42:6116-6124.
    [176]Kim B,Mazenko G F.Stochastic model for the glass transition of simple liquids.Physical Review A,1990,41:929-937.
    [177]曹标,陈振华,黄培云.非晶转变的两种主要模型.材料科学与工艺,1998,16(3):13-16.
    [178]Li Q F,Qiu K Q,Yang X,et al.Glass forming ability and reliability in fracture stress for Mg-Cu-Ni-Nd-Y bulk metallic glasses.Materials Science and Engineering A,2008,491:420-424.
    [179]Dunst A,Herlach D M,Gillessen F.Formation of glassy phase of Fe-Ni-P-B by containerless processing.Materials Science and Engineering A,1991,133:785-789.
    [180]Li Y,Liu H Y,Davies H A,et al.Easy glass formation in Mg_(64)Ni_(21)Nd_(15)by Bridgman solidification.Materials Science and Engineering A,1994,179-180:628-631.
    [181]Li Y,Ng S C,Lu Z P.Easy glass formation in La_(55)Ni_(20)Al_(25)by Bridgman solidification.Materials Letters,1998,34:318-321.
    [182]Yokoyama Y,Inoue A.Solidification condition of bulk glassy Zr_(65)Al_(10)Ni_(10)Cu_(15)Pd_5 alloy by unidirectional arc melting.Materials Transactions JIM,1995,36(11):1398-1402.
    [183]Kato H,Kawamura Y,Inoue A.High tensile strength bulk glassy alloy Zr_(65)Al_(10)Ni_(10)Cu_(15) prepared by extrusion of atomized glassy powder.Materials Transactions JIM,1996,37(1):70-77.
    [184]Kawamura Y,Kato H,Inoue A.and Masumoto T.Fabrication of bulk amorphous alloys by powder consolidation.The International Journal of Powder Metallurgy,1997,33(2):50-61.
    [185]Zhou F,Zhang X H,Lu K.Synthesis of a bulk amorphous alloy by consolidation of the melt-spun amorphous ribbons under high pressure.Journal of Material Research,1998,13(3):784-788.
    [186]Seidel M,Echert J,Bauer H D,et al.Investigations of the solid state reaction process in mechanically alloyed Zr-Al-Cu-Ni bulk metallic glasses by analytical transmission electron microscopy.Materials Science Forum,1996,225-227:701-706.
    [187]Bruck H A,Christman T,Johnson W L,et al.Quasistatic constitutive behavior of Zr_(41.25)Ti_(13.75) Ni_(10)Cu_(12.5)Be_(22.5) bulk amorphous alloys.Scripta Meterialia,1994,30:429-434.
    [188]Inoue A.High strength of bulk amorphous alloys with low critical cooling rates (overview).Materials Transactions JIM,1995,36:866-875.
    [189]Gilbert C J,Schroeder V,Ritchie R O,et al.Mechanisms for fracture and fatigue-crack propagation in a bulk metallic glass.Materials Transactions JIM A,1999,30:1739-1753.
    [190]Inoue A,Zhang T,Masumoto T.Preparation of bulk amorphous Zr-Al-Co-Ni alloys by copper mold casting and their thermal and mechanical properties.Materials Transactions JIM,1995,36:391-398.
    [191]Doolittle A K.The dependence of the viscosity of liquids on free-space.Applied Physics Letters,1951,22:1472-1474.
    [192]Chen H S.Glassy metals.Reports on Progress in Physics,1980,43:353-432.
    [193]Taub A T.Rapidly Quenched Metals.Northholland,Elsevier,Amsterdam,1985.
    [194]Fulcher G S.Analysis of recent measurements of the viscosity of glasses.Journal of the American Ceramic Society,1925,6:339-355.
    [195]Chen H S.Correlation between the thermal stability and activation energy of crystallization in metallic glasses.Applied Physics Letters,1976,29:12-14.
    [196]Nagendra N,Ramaurty U,Li Y.Effect of crystallinity on the impact toughness of a La-based bulk metallic glass.Acta Materialia,2000,48:2603-2615.
    [197]Inoue A,Cook J S.Co-based ferromagnetic glassy alloys with wide supercooled liquid region.Materials Transactions JIM,1995,36:1170-1184.
    [198]Inoue A,Koshiba M,Zhang T,et al.Thermal and magnetic properties of Fe_(56)Co_7Ni_7Zr_(10-x)Nb_xB_(20)amorphous alloys with wide supercooled liquid region.Materials Transactions JIM,1997,38:577-582.
    [199]Inoue A,Zhang T,Takeuchi A.Preparation of bulk Pr-Fe-Al amorphous alloys and characterization of their hard magnetic properties.Materials Transactions JIM,1996,37:1731-1740.
    [200]Oliveira M F de,Botta W J,Yavari A R.Shaping,joining and engraving of bulk metallic using an electromechanical process.Materials Science Forum,2001,360-362:1-6.
    [201]Oliveira M de,Botta W J F,Yavari A R.Connecting,assemblage and electrochemical shaping of bulk metallic glasses.Materials Transactions JIM,2001,41(11):1501-1504.
    [202]Gebert A,Buchholz K,Leonhard A,et al.Investigation on the electrochemical behavior of Zr-based bulk metallic glasses.Materials Science and Engineering A,1999,267:294-249.
    [203]Kiene M,Strunskus T,Schultz L.Oxide formation on bulk metallic glass Zr_(46.75)Ti_(8.25)Cu_(7.5)-Ni_(10)Be_(27.5).Material Research Society,1999,12:167-172.
    [204]Pang S J,Zhang T,Inoue A.Corrosion behavior of Zr-(Nb-)Al-Ni-Cu glass alloys.Materials Transactions JIM,2000,41(11):1490-1494.
    [205]Inoue A.Stabilization of metallic supercooled liquid and bulk amorphous alloys.Acta Materialia,2000,48:279-306.
    [206]Inoue A,Gook J S.Fe-based ferromagnetic glassy alloys with wide supercooled liquid region.Materials Transactions JIM,1995,36:1180-1184.
    [207]Inoue A.Stabilization and high strain-rate superplasticity of metallic supercooled liquid.Materials Science and Engineering A,1999,267:171-183.
    [208]Gottschall R J.Recent advances and future research direction in bulk metallic glasses.Materials Transactions JIM,2001,42(4):548-550.
    [209]Egami T.Rapidly Solidified Alloys.New York,Basel,Hong Kong,1993.
    [210]Ohnuma M,Suzuki J,Hamaguchi Y.Effect of minute solute elements in the ferrite matrix on the inherent creep strength of carbon steels.Materials Transactions JIM,1995,7:918-923.
    [211]Treacy M M J,Gibson J M,Keblinski P J.Paracrystallites found in evaporated amorphous tetrahedral semiconductors.Journal of Non-Crystalline Solids,1998,231:99-110.
    [212]Iwai T,Voyles P W,Oono Y.An improved method for detecting subtle spatial structures by fluctuation microscopy.Physics Review Letters B,1999,60:191-200.
    [213]曲向东.钛、锆、钕基大块非晶态合金的制备及晶化过程动力学研究.中国科学院金属研究所硕士学位论文,1997.
    [214]Inoue A,Kato A,Zhang T,et al.Mg-Cu-Y amorphous alloys with high mechanical properties. Materials Transactions JIM,1991,32(7):609-616.
    [215]Xi X K,Wang R J,Zhao D Q,et al.Glass-forming Mg-Cu-RE (RE=Gd,Pr,Nd,Tb,Y,and Dy)alloys with strong oxygen resistance in manufacturability.Journal of Non-Crystalline Solids,2004,344:105-109.
    [216]Zheng Q,Ma H,Ma E,et al.Mg-Cu-(Y,Nd)pseudo-ternary bulk metallic glasses:the effects of Nd on glass-forming ability and plasticity.Scripta Materialia,2006,55:541-544.
    [217]Hurby A.Evaluation of glass-forming tendency by means of DTA.Journal of Physics B,1972,22:1187-1193.
    [218]Lu Z P,Liu CT.A new glass-forming ability criterion for bulk metallic glasses.Acta Metallurgica,2002,50:3501-3512.
    [219]Ma D,Tan H,Wang D,et al.Improving glass-forming ability of Mg-Cu-Y via substitutional alloying:Effects of Ag versus Ni.Applied Physics Letters,2005,85:191906-1-191906-3.
    [220]Ponnambalam V,Poon S J,Shiflet G J.Fe-based bulk metallic glasses with diameter thickness larger than one centimeter.Journal of Materials Research,2004,19:1320-1323.
    [221]Tan H,Zhang Y,Ma D,et al.Optimum glass formation at off-eutectic composition and its relation to skewed eutectic coupled zone in the La based La-Al-(Cu,Ni)pseudo ternary system.Acta Metallurgica,2003,51:4551-4561.
    [222]Inoue A,Zhang T.Fabrication of bulky Zr-based glassy alloys by suction casting into copper mold.Materials Transactions JIM,1995,36:1184-1187.
    [223]Lu J,Ravichandran G,Johnson W L.Deformation behavior of the Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5) bulk metallic glass over a wide range of strain-rates and temperatures.Acta Metallurgica,2003,51:3429-3443.
    [224]Flores K M,Dauskardt R H.Enhanced toughness due to stable crack tip damage zones in bulk metallic glass.Scripta Materialia,1999,41:937-942.
    [225]Inoue A,Kato A,Zhang T,et al.Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method.Materials Transactions JIM,1991,32:609-616.
    [226]Li Y,Ng S C,Ong C K.New amorphous alloys with high strength and good bend ductility in the Mg-Ni-Nd system.Journal of Materials Processing Technology,1995,48:489-493.
    [227]Soifer Y M,Kobelev N P,Brodova L G,et al.Internal friction and the Young's modulus change associated with amorphous to nano-crystalline phase transition in Mg-Ni-Y alloy.Nano-structured Materials,1999,12:875-878.
    [228]Ohnuma M,Pryds N H,Linderoth S,et al.Bulk amorphous (Mg_(0.98)Al_(0.02))_(60)Cu_(30)Y_(10)alloy.Scripta Materials,1999,41(8):889-893.
    [229]Eldrup M,Pedersen A,Ohnuma M,et al.Bulk amorphous alloy preparation and properties of (Mg_(0.98)Al_(0.02))_x(Cu_(0.75)Y_(0.25))_(100-x).Materials Science Forum,2000,(343~346):123-128.
    [230]Pryds N,Eldrup M,Ohnuma M,et al.Preparation and properties of Mg-Cu-Al-Y bulk amorphous alloys.Materials Transactions JIM,2000,41(11):1435-1442.
    [231]Inoue A,Zhang T,Masumoto T.Production of amorphous cylinder and sheet of La_(55)Al_(25)Ni_(20) alloy by a metallic mold casting method.Materials Transactions JIM,1990,31(5):425-429.
    [232]Inoue A,Nakamura T,Nishiyama N,et al.Mg-Cu-Y bulk amorphous alloys with high tensile strength produced by a high pressure die casting method.Materials Transactions JIM,1992,33(10):937-945.
    [233]Park E S,Kim D H.Formation of Ca-Mg-Zn bulk metallic glassy alloys by casting into cone-shaped copper mold.Journal of Materials Research,2004,19:685-688.
    [234]Qiu K Q,Pang J,Ren Y L,et al.Fe-based bulk metallic glasses with a larger supercooled liquid region,high ductility.Materials Science and Engineering A,2008,498:464-467.
    [235]Inoue A,Nakamura T,Nishiyama N,et al.Mg-Cu-Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method.Materials Transactions JIM,1992,33:937-945.
    [236]Gu X,Shiflet G J,Guo F Q,et al.Critical size and strength of the best bulk metallic glass former in the Mg-Cu-Gd ternary system.Journal of Material Research,2005,20:1935-1944.
    [237]Li Q F,Weng H R,Suo Z Y,et al.Microstructure and mechanical properties of bulk Mg-Zn-Ca amorphous alloys and amorphous matrix composites.Materials Science and Engineering A,2008,487:301-308.
    [238]Yuan G Y,Qin C L,Inoue A.Mg-based bulk glassy alloys with high strength above 900 MPa and plastic strain.Journal of Material Research,2005,20:394-400.
    [239]Pan D G,Liu E Y,Zhang H F,et al.Mg-Cu-Ag-Gd-Ni bulk metalllic glass with high mechanical strength.Journal of Alloys and Compounds,2007,438:142-144.
    [240]Mark W.What do you want to know about the chemical elements?http://www.webelements.com/webelements/elements/text/periodic-table/phys.html,2008.
    [241]Qiu K Q,Zhang H F,Wang A M,et al.Glass-forming ability and thermal stability of Nd_(70-x)Fe_(20)Al_(10)Y_x alloys.Acta Materialia,2002,50:3567-3578.
    [242]Yang B,Liu C T,Nieh T G.Unified equation for the strength of bulk metallic glasses.Applied Physics Letters,2006,88:221911-1-221911-3.
    [243]Denton A R,Ashcroft N W.Vegard's law.Physics Review A,1991,43:3161-3164.
    [244]Wu W F,Y.Li,Schuh C A.Combined effects of crystallographic orientation,stacking fault energy and grain size on deformation twinning in FCC crystals.Philosophy Magazine,2008,in press.
    [245]Zhao Y Y,Ma E,Xu J.Reliability of compressive fracture strength of Mg-Zn-Ca bulk metallic glasses:Flaw sensitivity and Weibull statistics.Scripta Materialia,2008,58:496-499.
    [246]Rosakis P,Rosakis A J,Ravichandran G,et al.On the conversion of plastic work into heat during high-strain-rate deformation.Journal of Mechanical Physics Solids,2002,48:581-586.
    [247]Pandy K N,Chand S.Deformation based temperature rise:a review.International Journal of Pressure Vessels and Piping,2003,80:673-687.
    [248]Yang B,Morrison M L,Liaw P K,et al.Dynamic evolution of nanoscale shear bands in a bulk-metallic glass.Applied Physics Letters,2005,86:141904-1-141904-3.
    [249]Inoue A.Stabilization of metallic supercooled liquid and bulk amorphous alloys.Acta Materialia,2000,48:279-285.
    [250]Johnson W L.Bulk glass-forming metallic alloys:science and technology.MRS Bulletin,1999,24:42-56.
    [251]Men H,Kim W T,Kim D H.Fabrication and mechanical properties of Mg_(65)Cu_(15)Ag_5Pd_5Gd_(10) bulk metallic glass.Materials Transactions,2003,44:2141-2144.
    [252]Park E S,Kim WT,Kim D H.Bulk glass formation in Mg-Cu-Ag-Y-Gd alloy.Materials Transactions,2004,45:2474-2477.
    [253]Park E S,Lee J Y,Kim DH.Effect of Ag addition on the improvement of glass-forming ability and plasticity of Mg-Cu-Gd bulk metallic glass.Journal of Material Research,2005,20:2379-2385.
    [254]Park E S,Kim D H.Formation of Mg-Cu-Ni-Ag-Y-Gd bulk glassy alloy by casting into cone-shaped copper mold in air.Journal of Material Research,2005,20:1465-1469.
    [255]Yuan GY,Amiya K,Inoue A.Structural relaxation,glass-forming ability and mechanical properties of Mg-Cu-Ni-Gd alloys.Journal of Non-Crystalline Solids,2005,351:729-735.
    [256]Yuan G,Inoue A.The effect of Ni substitution on the glass-forming ability and mechanical properties of Mg-Cu-Gd metallic glass alloys.Journal of Alloys and Compounds.2005,387:134-138.
    [257]Qiu K Q,Li Q F,Ren Y L,et al.Glass forming ability for Mg-Cu-Nd alloys.Metallurgical and Materials Transactions A,(to be published).
    [258]Hui X,Dong W,Wang M L,et al.In-situ Mg_(77)Cu_(12)Zn_5Y_6 bulk metallic glass matrix composite with extraordinary plasticity.Chinese Science Bulletin,2006,51:229-234.
    [259]Li Z G,Hui X,Zhang C M,et al.Formation of Mg-Cu-Zn-Y bulk metallic glasses with compressive strength over gigapascal.Journal of Alloys and Compounds,2008,454:168-173.
    [260]Gu X,Shiflet G J,Guo F Q,et al.Mg-Ca-Zn bulk metallic glasses with high strength and significant ductility.Journal of Material Research,2005,20:1935-1938.
    [261]http://www.asminternational.org/asmenterprise/APD/SearchAPD.aspx.
    [262]Villars P A.Handbook of Ternary Alloy Phase Diagrams.Prince and H.Okamoto ASM International Materials Park,OH,1995.
    [263]Kim K B,Das J,Venkataraman S,et al.Work hardening ability of ductile Ti_(45)Cu_(40)Ni_(7.5)Zr_5Sn_(2.5)and Cu_(47.5)Zr_(47.5)Al_5 bulk metallic glasses.Applied Physics Letters,2006,88:071908-1-071908-2.
    [264]Abe E,Kawamura Y,Hayashi K,et al.Long-period ordered structure in a high-strength nanocrystalline Mg-lat% Zn-2at% Y alloy studied by atomic-resolution Z-contrast STEM.Acta Materialia,2002,50:3845-3857.
    [265]Luo Z P,Zhang S Q,Tang Y L,et al.Microstructures of Mg-Zn-Zr-RE alloys with high RE and low Zn contents.Journal of Alloys and Compounds,1994,209:275-278.
    [266]Luo Z P,Zhang S Q.High-resolution electron microscopy on the X-Mgl2ZnY phase in a high strength Mg-Zn-Zr-Y magnesium alloy.Journal of Materials Science Letters,2000,19:813-820.
    [267]Kawamura Y,Hayashi K,Inoue A,et al.Rapidly solidified powder metallurgy Mg_(97)Zn_1Y_2 alloys with excellent tensile yield strength above 600MPa.Materials Transactions JIM,2001,42:1171-1176.
    [268]Kawamura Y.Abstracts of the 134th Annual Meeting of the Japan Institute of Metals.Japan Institute of Metals Sendai Japan,2004.
    [269]Kawamura Y,Kasahara T,Izumi S,et al.Elevated temperature Mg_(97)Y_2Cu_1 alloy with long period ordered structure.Scripta Materialia,2006,55:453-456.
    [270]Matsuura M,et al.Precipitates with peculiar morphology consisting of a disk-shaped amorphous core sandwiched between 14H-typed long period stacking order crystals in a melt-quenched Mg_(98)Cu_1Y_1 alloy.Materials Transactions,2006,47:1264-1267.
    [271]Hui X,Dong W,Chen G L,et al.Formation,microstructure and properties of long-period order structure reinforced Mg-based bulk metallic glass composites.Acta Materialia,2006,55:907-920.
    [272]Inoue A,Kawamura Y,Matsushita M,et al.Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg-Zn-Y system.Journal of Material Research,2001,16:1894-1900.
    [273]Ma H,Shi L L,Xu J,et al.Chill-cast in situ composites in the pseudo-ternary Mg-(Cu,Ni)-Y glass-forming system:Microstructure and compressive properties.Journal of Material Research,2007,22:314-325.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700