用户名: 密码: 验证码:
光通信用短脉冲源的研制及其在波长变换中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有丰富带宽资源的光纤通信成为满足目前及未来巨大通信容量需求
    的唯一选择。由于受光纤色散的影响,光脉冲的谱宽度决定了传输距离。增
    益开关 DFB 激光器和 DFB 激光器加 EAM 外调制等通信系统常用的光脉冲
    源都具有初始啁啾。为了解光脉冲源的啁啾特性,必须建立能够精确测量光
    脉冲啁啾的测量系统。充分利用光纤的带宽资源成为目前世界各国研究机构
    的共同努力目标。从上个世纪 90 年代以来,人们越来越青睐于采用 WDM
    方式对通讯系统进行扩容,WDM 全光网的关键技术之一就是波长变换。波
    长变换即为波长的再分配和再利用,以解决交叉连接中的波长竞争、有效地
    进行路由选择、降低网络的阻塞率,从而提高网络的灵活性和可扩展性。由
    于实现简单,采用半导体光放大器的交叉增益调制效应来实现波长变换是目
    前研究较多的一种波长变换技术。同时,由于光电光波长变换可以实现 3R
    再生(再定时、再放大、再整形)功能,可以消除噪声积累和色散积累,从
    而改善网络传输性能,在未来的全光网的核心网络还有广泛的应用。
     结合所承担的科研项目,本论文主要在超短光脉冲的产生、超短光脉冲
    的测量、以及波长变换等方面开展了研究工作。
    一、  我们通过数值求解 DFB激光器速率方程,得到光脉冲啁啾随外部驱
     动条件的变化规律;我们研究了激光器高速封装的关键技术:一是微波
     匹配网络的设计。我们首次利用保角变换方法得出了有限地非对称共面
     波导传输线的特性阻抗和有效介电常数的解析闭合解,并且用同样的方
     法分析了有限地对称共面波导、无限地不对称共面波导和有限地背地对
     称共面波导,证明了这种分析方法具有普适性。我们首次提出了利用背
     地共面波导形式制作微波匹配阻抗渐变传输线,并利用背地对称共面波
     导设计制作了激光器微波匹配阻抗渐变传输线,得到了从 50 欧姆到 5
     欧姆的阻抗变换,实现了宽带的良好匹配。二是讨论了激光器与单模光
     纤的耦和问题,根据实验室的具体情况和系统需求,分析了拉锥光纤和
    119
    
    
    吉林大学博士学位论文
     自聚焦透镜对两种情况,进行了理论分析和实验。我们制作了尾纤输出
     的带微波匹配网络的增益开关 DFB激光器超短光脉冲源。并对其输出特
     性进行了实验研究。 
    二、  我们利用测量的EAM吸收特性,给出了基于单个EAM和级联EAM
     产生超短光脉冲的数值模型,推导出输出光脉冲的脉冲宽度与消光比的
     计算公式,分析了脉宽与消光比随调制条件的变化规律,并对单个 EAM
     的开关特性进行了分析。我们首次对电脉冲调制 EAM 产生超短光脉冲
     的特性进行了分析,给出了基于高斯型电脉冲调制的光脉宽公式。我们
     首次提出了基于级联 EAM 产生二倍重复频率光脉冲的方法,并推导出
     了产生等幅二倍重复频率光脉冲的工作条件。我们通过测量 EAM 在不
     同波长和偏压下的吸收特性,计算了 EAM 输出光脉冲的啁啾参数。我
     们进行了 EAM 微波调制和电脉冲调制产生超短光脉冲的实验,给出了
     不同驱动条件下的实验结果。 
    三、  我们阐述了基于条纹分辨二次谐波自相关方法(FRSHG)测量超短光
     脉冲的原理,对利用 FRSHG 测量获得的数据进行迭代计算,恢复光脉
     冲的强度波形和相位的理论进行数学上的证明。给出了非对称波形和对
     称波形两种情况下的迭代算法,并编制了迭代运算程序。通过对自相关
     函数进行模拟,验证了程序的正确性。在国内首次建立了基于条纹分辨
     二次谐波自相关方法的超短光脉冲测量系统。给出了利用这套测量系统
     对增益开关 DFB激光器产生光脉冲和 DFB激光器加 EAM外调制产生光脉
     冲的测量结果。 
    四、  我们对 SOA-XGM 全光波长变换进行了理论分析。通过数值模拟,
     给出了同向传输和反向传输两种情况下,变换光波形和啁啾在不同条件
     下的变化规律,并进行了波长变换实验,给出了实验结果。利于光纤时
     延法产生了 4×2.5GHz的时分复用信号,并对其进行了波长变换实验。
     此外我们还进行了光电光波长变换实验研究,在国内首次设计制作了光
     电混合集成的光电光变换器模块,并给出了初步的实验结果。
In order to satisfy the enormous communication capability, the fiber
    communication with abundant band width sources has been the only choices.
    The spectrum width of optical pulses decides the transmission length due to the
    limitation of the fiber dispersion. If short pulses source can make the TL optical
    pulses, it can minimize the effect of the fiber dispersion. So the optical pulses
    source in the fiber communication system must make the pulses reach the
    Fourier transform limited pulses. There are initial chirps in optical pulses
    generated by gain switch DFB laser and DFB LD+EAM respective in the
    communication system. For the sake of long distances transmission, it must
    eliminate the chirps. So it needs to build a measuring system to measure the
    pulses chirps accurately. How to effectively use the source of the fiber band
    width has been one of the hottest optoelectronic R & D projects in the world.
    From 1990s, people more and more put their eyes on the WDM communication
    system and used it to enlarge the communication capability. The key technology
    of the WDM all-optical net is the wavelength conversion. It means the
    reassigning and reutilizing of the wavelength. It can settle the wavelength
    channel contentions in OXC (optical cross-connection), make the routing
    selection effectively and reduce the block ratio of the net, then improve the
    flexibility and expandability of the net. Due to its simplicity, the wavelength
    conversion by the semiconductor optical amplifier cross gain modulation has
    been focused more in the wavelength conversion technology. Since O/E/O
    wavelength conversion can realize the 3R regeneration (re-timing ,re-
    amplifying, re-shaping)function, it can erase the noise accumulation and
    dispersion accumulation, then improve net transmission capability. It will be
    used widely in the core-net of the whole optical net in the future.
     Combining our research projects, this paper concentrates on the ultra-short
    optical pulses generation, its measurement, and the wavelength conversion, etc.
    1、After resolving the rate function of the DFB laser numerical, we got the rules
     that the chirp of the optical pulses change with external driving condition. We
     studied the key technology of the encapsulation of SLD: One is the design of
     microwave matching net. In condition of the qusi-static approximation,
     calculation of wave characteristic impendence and effective dielectric
     constant by conformal mapping techniques were first presented for
     asymmetrical coplanar waveguide with finite ground width and substrate
     thickness. In the same method, the symmetrical coplanar waveguide with
    121
    
    
    吉林大学博士学位论文
     finite ground width and the asymmetrical coplanar waveguide with infinite
     ground width are analyzed and the results are coincident with other methods.
     So this method is proved to be widely used. For the first time, we calculated
     the relationship of characteristic impedance and configuration size, designed
     the graded microwave impedance transformed line based on background
     coplanar wave-guide, got the impedance conversion from 50? to 5? and
     had the good matching at least 7GHz.The other is the coupling of laser and
     single mode optical fiber. According to the specific condition of lab and the
     need of the system, we analyzed the tapered fibers and the self-focus lens
     respectively from the theory analyzing and the experiment. We made the
     ultra-short pulses source of the output fiber with microwave matching net
     gain switch DFB laser and did the measurement experiment of the output
     characteristic.
    2、We simulated the ultra-short generation based on the single EAM and the
     tandem EAM. Measuring the absorption character of EAM, we built the
     calculation model of pulses generation based on single EAM and tandem
     EAM, then educed the calculating formula of extinction ratio and pulse
     width, analyzed the varied principle of pulse width and extinction ratio
     according to the modul
引文
[1] C.K.Kao and G.A.Hockham, ?°Dielectric-fiber surface waveguide for optical frequency?±,
     Proc.IEE, pp.1151-1158, 1966.
    [2] T.C.Cannon, D.L.Pope and D.D.Sell, IEEE Trans.Commun, 26:1045, 1978.
    [3] T.L.Maione, D.D.Sell and D.H.Wolaver. ?°Practical 45-Mb/s regenerator for lightwave
     transmission?±, Bell System Technical Journal, 57(6):1837-1856, 1978.
    [4] Y.K.Park, T.V.Nguyen and O.Mizuhara. ?°Field demonstration of 10-Gb/s line-rate
     teansmission on an installed transoceanic submarine lightwave cable?±, IEEE Photon
     Technol. Lett, 8(3):425-427, 1996.
    [5] A.Schopflin, et al., ?°Tealization of a commercial 10Gb/s TDM transmission
     system?±.ICCT`96, vol.1, pp.79-82, 1996.
    [6] A.Farbert, G.Mohs, S.Spalter, et al ?°7Tb/s(176 40Gb/s)bidirectional interleaved
     transmission with 50GHz channel spacing ?±. ECOC`2000, post-deadline papers,1.3.
    [7] P.S.Cho, PSinhat, D.Mahgerefteh, et al. ?°All-optical 2R regeneration of 10Gbit/s RZ data
     13
    
    
    吉林大学博士学位论文
     transmitted over 30,000km in a dispersion-managed system using an electroabsorption
     modulator?±, OFC`2000,WM22:1-4
    [8] W.S.Lee, D.Garthe, G.A.Pettitt, et al. ?°40Gbit/s TDM transmission over 160km (2
     80km) of standard nondispersion-shifted fiber?±, OFC`97, pp.244-245
    [9] K.Haginoto, Y.Miyamoto and Y.Yamabayshi. ?°40Gbit/s transmission systems?±, OFC` 98,
     WC3, pp.114-115
    [10] H. Taga, N. E dagawa , S. Yamamoto ,et al. ?°Recent progress in amplified undersea
     systems?±, J. Lightwave Technol, 13(5):829-840,1995
    [11] F.Forghieri, R.W.Tkach and A.R.Chraplyvy. ?°WDM systems with unequally spaced
     channels?±, J.Lightwave Technol, 13(5):889-897 1995
    [12] H.Taga.Long ?°distance transmission experiments using the WDM technology?± ,
     J.Lightwave Technol,14(6):1287-1298,1996
    [13] N.S.Bergano and C.R.Davidson. ?°Wavelength division multiplexing in long-haul
     transmission systems”, J.Lightwave technol, 14(6):1299-1308, 1996.
    [14] TN.Nielsen, A.J.Stentz, K.Rottwitt, et al, ?°3.28-Tb/s (82 40Gb/s) taansmission over 3
     100 km nonzero-dispersion fiber using dual c- and L-band hybrid Raman/Erbium-
     doped inline amplifier?±, OFC`2000, Postdeadling Papers, PD23:1-3
    [15] C.R.Davidson, C.J.Chen, M.Nissov, et al, ?°1800 Gb/s transmission of one hundred and
     weghty 10Gb/s WDM channels over 7,000km using full EDGA C-band?±, OFC`2000,
     Postdeadline Papers, PD25:1-3
    [16] Miyazaki, Miyamae-ku and Kawasaki. ?°6.4Tb/s(160 40Gb/s)WDM transmission
     wxperiment with 0.8 bit/Hz apedctral efficiency?±, ECOC`2000,Psot-deadline papers,
     1.1.
    [17] S.Bigo, A.Bertaina, Y.Frignac, et al. ?°5.12Tb/s (128 40Gb/sWCM) transmission over
     3 100km of TeralightTMfibre?±, ECOC`2000, Psot-Deadline papers, 1.2.
    [18] T.Tanaka, N.Shimojoh, T.Naito, et al. ?°2.1-Tbit/s WDM transmission over 7,221km
     with 80-km repeater spacing?±, ECOC12000. Post-deadline papers, 1.8
    [19] A.K.Srivastava et al., ?°1Tb/s transmission of 100 WDM 10Gb/s channels over 400km
     of TueWaveTMfiber?±, OFC`98, PD10
    [20] M.Yamada et al. ?°Gain-flattened tellurite-based EDFA with a flat amplification
     andwidth of 76 nm?±, OFC`98, PD7
    [21] Y.Emori et al. ?°100nm bandwidth flat gain Raman amplifiers pumped and
     gain-equalized by 12-waveelength-channel WDM high power laser diodes?±, OFC`99,
     PD19.
    [22] T.Tsuritani, A.Agata, K.Imai, et al. ?°35GHz-spaced-20Gbps × 100WDM RZ
     transmission over 2700km using SMF-based dispersion flattened fiber span?±, ECOC
     2000, Post-Deadline Papers,1.5.
    [23] R.S.Tucker, G.Eisenstein and S.K.Korotky. ?°Optical time-divesion multiplexing for
     very high bit-rate transmission?±, J.Lightwave Technol., 1988, 6(11):1737-1749
    [24] S.Kawanishi, H.Takara, O.Kamatani, et al. ?°100Gbit/s,560km optical transmission
     experiment with 80km amplifier spacing employing dispersion management?±, Electron.
     Lett, 32:470-471, 1996.
    [25] M.Nakazawa, E.Yoshida, T.Yamamoto, et al, ?°TDM single channel 640Gbit/s
     transmission experiment over 60km using a 400fs pulse train and a walk-off
     free.dispersion-flattened nonlinear optical loop mirror?±, OFC`9. PD14.
    14
    
    
    吉林大学博士学位论文
    [26] J.Hansyrd, B.Bakhshi, B.E.Olsson, et al. ?°80Gbit/s single wavelength OTDMsoliton
     transmission over 172 installed fiber?±, OFC`99, PD6
    [27] M.L.Dennis, J.W.Lou, W.I.Kaechele et al. ?°Dense-dispersion-managed transmission of
     80-Gb/s time-divesion-multiplexed data over 1000km?±, ECOC`2000, Post-Deadline
     Papers, 1.9
    [28] U.Feiste, T.Ludwig, C.Schubert, et al. ?°160Gbit/s transmissing using 160 to 40 Gbit/s
     OTDM and 40 to 10 Gbit/s ETDM demux-techniques?±, ECOC`2000, Post-Deadline
     Papers, 1.10
    [29] M.Nakazawa, T.Yamamoto and K.R.Tanura. ?°1.28Tbit/s-70km OTDM transmission
     using third-and fourth–order simultaneous dispersion compensation with aphase
     modulator?±, ECOC`2000, Post-Eeadline Papers, 2.6
    [30] A.D.Ellisand T.Widdowson. ?°690 nodes global OTDM network demonstration?±,
     Electron .Lett, 31(14):1171-1172.
    [31] S.W.Seo, K.Bergman and P.R.Prucnal. ?°Transparent optical networks with time-div
     isionmultiplexing?±, IEEE J.on Selected Areas in Commun, 14(5): 1039-1051, 1996
    [32] R.A.Barry, V.W.S.Chan, K.L.Hall, et al. ?°All-optical network consortium-ultrafast
     TDM networks?±, IEEE J.onSelected Areas in Commun, 14(5): 999-1012, 1996.
    [33] D.Cotter, J.K.Lucek and D.D.Marcenac. ?°Ultra-high-bit-rate networking: from the
     transcontinential backbone to the desktop?±, IEEE Commun.Mag, pp.90-95, 1997
    [34] R.A.Barry, ?°Optical TDM networks andtechnology?±, OFC`97, TuQ1, pp. 86-87
    [35] P.Toliver, I.Glesk, R.J.Runser, et al. ?°routing of 100Gbit/s words in a packet-switched
     optical networiing demonstration (POND) node?±, J. Lightwabe Technol. 16(12):
     2169-2180 1998
    [36] S.C.Rashleigh and R.Ulrich. ?°Polarization mode dispersion in single-mode fibers?±,
     Opt.Lett, 3(1): 60-62., 1978.
    [37] G.J.Foschini and C.D.Poole. ?°Statistical theory of polarization dispersion in single
     mode fibers?±, J.Lightwabe Technol., 9:1439-1456, 1991
    [38] N.J.Frigo, ?°A geometrical model of polarizatiaon mode dispersion?±, OFC`2000, WL1
    [39] P.A.Andrekson, ?°High speed soliton transmission on installed fibers?±, OFC`2000, Tup2
    [40] D.Sandel, M.Yoshida-Dierolf, R.Loe, et al. ?°Automatic polarization mode dispersion
     compensation in 40 Gbit/s optical transmission system?±, Electron Lett, 34(23):
     2258-2259
    [41] M.W.Chabat, T.Fuerst, J.T.Anthony, et al ?°Long term field demonstration of optical
     PMD compensation on an installed OC-192 link?±, OFC`99, Postdeadline papers, PD1
    [42] A.Mecozzi, M.Shtaif, M.Tur, et al. ?°A simole compensator for high order polarization
     mode dispersion effects?±, OFC`2000, WL2
    [43] Z.Pan, Y.Xie, S.Lee, et al. ?°Chirp-free tunable PMD compensation using
     Hi-Binolinearly-chirped FBGs in a dual-pass configuration?±, OFC2000, ThH2
    [44] K.L.Hall and K.A.Rauschenbach. ?°100-Gbit/s bitwise logic?±, Opt.Lett, 23:1271-1273,
     1998
    [45] K.L.Hall, ?°High-speed TDMA techniques?±, OFC`2000, Thv4
    [46] T.Morioka, S.Kawanishi, H.Takara, et al. ?°100Gbit/s 4ch, 100km repeaterless
     TDM-WDM transmission using a single supercontinuum source ?°, Electron.Lett, 32(5):
     468-470, 1996
    [47] T.Morioka, H.Takara, S.Kawanishi, et al. ?°1Tbit/s (100Gbit/s 10channel)
     OTDM/WDM transmission using a single supercontinuum WDM source?±, Electron.
    15
    
    
    吉林大学博士学位论文
     Let, 32(10): 906-907, 1996
    [48] S.Kawanishi, H.Takara, K.Uchiyanma, et al. ?°1.4Tbit/s (200Gbit/s 7ch) 50km optical
     transmission experiment?±, Electron.Lett, 33(20):1716-1717 1997.
    [49] S.Kawanishi, H.Tkara, K.Uchiyama, et al. ?°3Tbit/s (160Gbit/s 16ch) OTDM/WDM
     transmission experiment?±, OFC’99, Postdeadline papers, P1.
    [50] M.Nakazawa, K.Suzuki,and E.Yamada ?°Femtosecond optical pulse generation using a
     distributed-feedback laser diode?±Electron.Lett, vol.26, no.24, pp. 2038-2040, 1990.
    [51] S.Bouchoule, E.Lach, G.Lemestreallan, S.Slempkes, D.Mathoorasing, C.Kazmierski,
     and A.Ougazzaden, ?°High speed gain-switched laser as very simple 4×10Gbit/s and up
     to 8×10Gbit/s OTDM source?±, ECOC`98, vol.1, pp.215-16,1988.
    [52] Kurita,I. Ogura and ?°Yokoyama,fast all-optical signal processing with mode-locked
     emiconductor laser?±, E Trans.Electron.bol.E81-C, no.2, pp.129-139,1998.
    [53] C.Schmidt, E.Dietrich, S.Diez, H.J.Ehrke, U.Feiste, L.Kuller, R.Ludwig and G.Weber,
     ?°de-locked semiconductor asers and their applications for optical signal processing?±,
     CLEO199, CthA3, pp.348-349, 1999.
    [54] I.O.gura, T.Sasaki, HYamada, and H.Yokoyama, ?°Precise repetition frequency tuning of
     monolithic mode-locked laser diodes at SDH frequency,?±CLEO`99, CthAl, p. 347,
     1999
    [55] A.Sano, T.Kataoka, H.Tsuda, A.Hirano, K.Murata, H.Kawakami, Y.Tada, K.Haginoto,
     K.Sato, K.Wakita, K.Kato and Y.Miyamoto, ?°Field experiments on 40Gbit/s
     repeaterless transmission over 198km dispersion-managed submarine cable using a
     monolithic mode-locked laser diode?±, Electron.Lett, vol.32, no.13, pp.1218-1220.1996
    [56] A.Takada and H.Miyazawa, ?°30GHz picosecond pulse generation from actively
     mode-locked erbium-doped fiber laser,?±Electron Lett, vol26, no.13, pp.216-217, 1996
    [57] D.M.Patrick, ?°Modelocked ring lader using nonliearity in a semiconductor laser
     amplifier?±, Electron.Lett, bol.30, no.1, pp.43-44, 1994
    [58] J.S.Wey, J.Goldhar, and G.L Burdge, ?°Active harmonic modellocking of an erbium
     fiber laser with intracavity Fabry-Perot filters?±, J.Lightwave Techno, vol.15, no.7
     pp.1171-1180.1997
    [59] H.Takara, S.Kawanishi, and M.Saruwatari, ?°20GHz transform-limited optical pulse
     generation and bit-error-free operation using a tunable actively modellocked Er-doped
     fiber ring laser?±, Electron.Lett, vol.29, no.13, pp.1149-1150, 1993
    [60] M.Suzuke, H.Tanaka, N.Edagawa, K.Utaka and Y.Matsushima, ?°Transform-limited
     optical pulse generation up to 20-GHz repetition rate by a sinusoidally driven
     InGaAsPElectroabsorption modulator?±, J.LightwaveTechnol, vol.11, no.3, pp.468-473,
     1993.
    [61] K.Eakita, K.Yoshino, A.Hirano, S.Kondo and Y.Noguchi, ?°Very-high-speed and low
     driving-voltage modulator modules for a short optical pulse generation?±, IEICE
     Trans.Electron, vol.E81-C, no.2, pp.175-179, 1998
    [62] S.Oshiba, K.Nakamura and H.Horikawa, ?°Low-drive-voltage MQW electroabsorption
     modulator for optical short-pulse gentration?±, IEEE J.Quantum Electron, vol.34, no.2,
     pp. 277-281, 1998
    [63] Zhavoronkov N, Korn G, ?°Generation of intense supershort optical pulses using
     ultrafast molecular phase modulation?±, [A] ProLasers ang Electro Optics[C]. USA: Opt
     Soc America, 2001.669—670
    16
    
    
    吉林大学博士学位论文
    [64] Papadogiannis N A.Witzel B.Kalpouzos, et al. ?°Observation of attosecong light
     localization in higher harmonic generation view?±, Letters, 1999, 83(21):4289—4292.
    [65] Aleksandrov, A.V.Dikansky, N.S.Guidi, et al. ?°Performance of a radio-frequency-based
     streak camera?±, [A] Proc of the 1999 Conference[C] USA: IEEE 4:2948—2950, 1999.
    [66] Stanchi L, ?°Spatial Sampling for fast single events?±, [J] IEEE Trans on NS, 107—113,
     1969
    [67] Schwarte R, ?°New results of an experimental sampling system for reducing fast events?±,
     [J] Electronics Letters, 1972, 1
    [68] McEwan T E, Kilkenny J D, Dallum G, ?°Wotld`s fastest solid-state digitizer?±, [J]
     Energy and Technology Review, (4) 1994
    [69] Kikuchi.K. ?°Highly sensitive interferometric autocorrelator using Si avalanche
     photodilde as two-photo absorber?±, [J] Electronics (1): 123—125
    [70] Wong.K.S, Sun.T.Fung, B.K.K, et al., ?°Wisible to ultraviolet femtosecond
     outocorrelation measure ments based on two-photo abphotoedtector?±, [J] Journalof
     Crystal Grouth, 717—721 2001.
    [71] Kane.D.J, Trebino R, ?°Characterization of arbitrary femtosecond pulses using
     frequency-resolved optical gating?±, [J] IEEE Jo Electronic,29(2):571—579 ,1993
    [72] Baltuska.A, Pshenichnikov.M.S, ?°Wiersma D.A, ?°Second-harmonic generation
     frequency-resolved optical gating in the single-cycl?±, Journal of Quantum Electronic,
     35(4):459—478 1999
    [73] Kane.D.J, ?°Recent progress towatd real-time measurement of ultrashort laser pulses?±, [J]
     IEEE Journal of QuantumElectron 421—431.
    [74] Iaconis.C, Walmsley.A, ?°Self-referencing spectral interferometry for measuring
     ultrashort optical pulses?±, [J] IEEE Journal of Q1999, 35(4)501—509.
    [75] Gallmannn L, Sutter D.H, Matuschek N, et al. ?°Characterizationg of sub-6-fs optical
     pulses with specral phase interferonetry foreconstruction [J]?±, Optical Letters,
     24(18):1314-1316, 1999.
    [76] Li.L, K.usaka S, Karasawa. N, et al., ?°Ampliude and phase characterization of 5.0fs
     optical pulses using spectral phase interferom tric-field reconstruction?±, Japanese
     Journal of Applied Physics, 2001, 40(7):684—687.
    [77] K.yo Inoue, ?°Noise Transfer Characteristics in Wavelength Conversion Based on
     Cross-Gain Saturation in a Semiconductor Optical Amplifier?± IEEE Photonics
     Technology Letters. Vol.8, No.7, July 1996, 888-890
    [78] F.Ginovart, J.C.Simon, I.Valiente, ?°Gain recovery dynamics in semiconductor optical
     amplifier?±, Optics Communications, Vol.1999, November 2001, 111-115
    [79] Junqiang Sun, ?°Relaxation of facet reflection restrictions in XGM wavelength
     converters?±, Optics Communications, Vol.206, May 2002, 67-74
    [80] Alan E.Willner and William Shieh, ?°Optimal Spectral and Power Parameters for
     All-Optical Wavelength Shifting Single Stage, Fanout, and Cascadability?±, Journal of
     Lightwave Technology, Vol.13, No.5, May 1995, 771-781
    [81] Hanlim Lee, Hyunjae Yoon, et al., ?°Theoretical Study of Frequency Chirping and
     Extinction Ratio of Wavelength-Converted Optical Signals by XGM and XPM Using
     SOA’s?±, IEEE Journal of Quantum Electronics, Vol.35, No.8, August 1999, 1213-1219
    [82] Mehdi Asghari, Ian H.White, and Richard V.Penty, ?°Wavelength Conversion Using
     Semiconductor Optical Amplifiers?±, Journal of Lightwave Technology, Vol.15, No.7,
     July 1997, 1181-1190
    17
    
    
    吉林大学博士学位论文
    [83] 叶亚斌、郑小平、张汉一等,“基于半导体光放大器中交叉增益调制效应的波长转
     换啁啾特性的分析”,光学学报,Vol.22, No.4,April 2002, 436-440
    [84] 谢光、张新亮等,“基于交叉增益调制的全光波长转换实验研究”,光通讯研究,
     Vol.3, No.105, 2001, 17-19
    [85] 张宏斌、邱昆、李中桂,“基于半导体光放大器交叉增益调制(SOA-XGM)波长
     变换器仿真研究”,光子学报,Vol.31, No.2, March 2002, 337-344
    [86] C.Joergensen, S.L.Danielsen, M.Vaa, et al., ?°40Gbit/s all-optical wavelength conversion
     by semiconductor optical amplifiers?±, Electronics Letters, Vol.32, No.4, February 1996,
     367-368
    [87] H.Ghafouri-Shiraz and P.W.Tan, ?°Analysis of Cross-Gain Modulation Wavelength
     Conversion in Tapered-Waveguide Laser-diode Amplifiers?±, Microwave and Optical
     Technology Letters, Vol.28, No.2, January 2001, 147-150
    [88] Pak S.Cho, Daniel Mahgerefteh, Julius Goldhar and Geoffrey L.Brudeg, ?°RZ
     Wavelength Conversion with Reduced Power Penalty Using a Semiconductor Optical
     Amplifier/Fiber Grating Hybrid Device?±, IEEE Photonics Technology Letters, Vol.10,
     No.1, January 1998, 66-68
    [89] Y.K.Seo, C.S.Choi, and W.Y.Choi, ?°All-Optical Signal Up-Conversion for
     Radio-on-Fiber Applications Using Cross-Gain Modulation in Semiconductor Optical
     Amplifiers?±, IEEE Photonics Technology Letters, Vol.14, No.10, October 2002,
     1448-1450
    [90] Nan Chi, Shuqiang Chen, Lin Xu, et al. ?°A new scheme of cross-gain modulation
     wavelength converter with good performance on extinction ratio?±, Optics
     Communications, Vol.189, March 2001, 235-239
    [91] A.D.Ellis, A.E.Kely, D.Nesset, D.Pitcher et al. ?°Error free 100 Gbit/s wavelength
     conversion using grating assisted cross-gain modulation in 2 mm long semiconductor
     amplifier?±, Electronics Letters, Vol.34, No.20, October 1998, 1958-1959
    [92] Kristof Obermann, Stephan Kindt, Dirk Breuer, and Klaus Petermann, ?°Performance
     Analysis of Wavelength Converters Based on Cross-Gain Modulation in
     Semiconductor-Optical Amplifiers?±, Journal of Lightwave Technology, Vol.16, No.1,
     January 1998, 78-85
    [93] K.Obermann, S.Kindt, D.Breuer et al. ?°Noise Characteristics of semiconductor-optical
     amplifiers used for wavelength conversion via cross-gain and cross-phase modulation?±,
     IEEE Photonics Technology Letters, Vol 9, No.3, March 1997, 312-314
    [94] W.Shieh, S.H.Huang, and A.E.Willner, ?°A Polarization-Independent and Contrast Ratio
     Enhancing Module for All-Optical Wavelength Shifting Using SOA’s?±, IEEE Photonics
     Technology Letters, Vol,8, No.4, April 1996, 333-335
    [95] J.S.Perino, J.M.Wierenfeld, and B.Glance, ?°Fiber transmission of 10 Gbit/s signals
     following wavelength conversion using a traveling-wave semiconductor optical
     amplifier?±, Electronics Letters, Vol.30, No.3, 1994, 256-257
    [96] 张茹,刘刚,余重秀等,“基于 Mach-Zehnder 型波长变换器特性的模拟研究”,现
     代有线传输,Vol.1, March 2003, 23-26
    [97] Yabin Ye, Xiaoping Zheng, Hanyi Zhang, Yanhe Li, ?°Study on the dynamic range of
     input power for wavelength converter based on cross-phase modulation in SOAs?±,
     Optical Communications, Vol.200, December 2001, 349-354
    [98] Juerg Leuthold, Pierre A.Besse, et al. ?°All-Optical Space Switches with Cain and
    18
    
    
    吉林大学博士学位论文
     Principally Ideal Extinction Ratios?±, IEEE Journal of Quantum Electronics, Vol..34,
     No.4, April 1998 622-633
    [99] W.Idler, M.Schilling, K.Daub, D.Baums, et al. ?°Signal quality and BER performance
     improvement by wavelength conversion with an integrated three-port Mach-Zehnder
     interferometer?±, Electronics Letters, Vol.31, No.6, March 1995, 454-455
    [100] B.Mikkelsen, S.L.Danielsen, C.Joergensen, et al. ?°All-optical noise reduction
     capability of interferometric wavelength converters7?±, Electronics Letters, Vol.32,
     No.6, March 1996 566-567
    [101] Victor E. Perlin and Herbert G.Winful, ?°All-Fiber Wavelength Conversion Using
     Cross-Phase Modulation and Bragg Gratings?±, IEEE Photonics Technology Letters,
     Vol.14, No.2, February 2002, 176-178
    [102] M.Y.Jamro, J.M.Senior, M.S.Leeson, G.Murtaza, ?°Chirp in a wavelength converter
     based on a symmetrical-MZI employing SOAs?±, Optical Communications, Vol.209,
     August 2002, 321-328
    [103] S.P.Majumder, B.C.Sarker, T.Yoshino, ?°Performance analysis of an all-optical
     wavelength converter based on XPM in semiconductor optical amplifiers?±, Optical &
     Laser Technology, Vol.35, 2003, 261-265
    [104] B.C.Sarker, T.Yoshino, and S.P.Majumder, ?°All-Optical Wavelength Conversion Based
     on Cross-Phase Modulation (XPM) in a Single-Mode Fiber and a Mach-Zehnder
     Interferometer?±, IEEE Photonics Technology Letters, Vol.14, No.3, March 2002,
     340-342
    [105] S.C.Cao and J.C.Cartledge, ?°Characterization of the Chirp and Intensity Modulation
     Properties of an SOA-MZI Wavelength Converter?±, Journal of Lightwave Technology,
     Vol.20, No.4, April 2002, 689-692
    [106] S.C.Cao and J.C.Cartledge, ?°Time- and Frequency-Domain Characterization of the
     Modulated ASE Noise in SOA-MZI Wavelength Converters?±, IEEE Photonics
     Technology Letters, Vol.14, No.7, July 2002, 962-964.
    [107] S.C.Cao and J.C.Cartledge, ?°Measurement-Based Method for Characterizing the
     Intensity and Phase Modulation Properties of SOA-MZI Wavelength Converters?±,
     IEEE Photonics Technology Letters, Vol.14, No.11, November 2002, 1578-1580
    [108] Byongjin Ma, Yoshiaki Nakano, ?°Realization of All-Optical Wavelength Converter
     Based on Directionally Coupled Semiconductor Optical Amplifiers?±IEEE Photonics
     Technology Letters, Vol.11, No.2, February 1999, 188-190
    [109] Sang-Gyu Park, L.H.spiekman, et al. ?°Chirp Consequences of All-Optical RZ to NRZ
     Conversion Using Cross-Phase Modulation in an Active Semiconductor Photonic
     Intergrated Circuit?±IEEE Photonics Technology Letters, vol.12, No.3, March 2000,
     233-235
    [110] F.Girardin, J.Eckner, G.Guekos et al., ?°Low Noise and Very High-Efficiency
     Four-Wave Mixing in 1.5-mm-Long Semiconductor Optical Amplifier?±, IEEE
     Photonics Technology Letters, Vol.9, No.6, June 1997, 746-748
    [111] 张丽,敖发良,“基于 SOA 中 FWM 效应实现全光波长变换”,桂林电子工业学
     院学报,Vol.23, No.2,April 2003, 1-5
    [112] S.Diez, C.Schmidt, R.Ludwig, et al., ?°Effect of Birefringence in a Bulk Semiconductor
     Optical Amplifier on Four-Wave Mixing?±, IEEE Photonics Technology Letters, Vol.10,
     No.2, February 1998, 212-214
    [113] K.K.Chow, C.Shu, M.W.K.Mak, and H.K.Tsang, ?°Widely Tunable Wavelength
    19
    
    
    吉林大学博士学位论文
     Converter Using a Double-Ring Fiber Laser with a Semiconductor Optical Amplifier?±,
     IEEE Photonics Technology Letters, Vol.14, No.10, October 2002, 1445-1447
    [114] Sun Junqiang, Zhang Xinliang, Liu Deming, and Huang Dexiu, ?°Analytical Solution
     of Four-Wave Mixing Between Picosecond Optical Pulses in Semiconductor Optical
     Amplifiers with Cross-Gain Modulation and Probe Depletion?±, Microwave and
     Optical Technology Letters, Vol.28, No.1, January 2001, 78-82
    [115] G.Contestabile, A.D.Ottavi, et al., ?°Broad-Band Polarization-insensitive Wavelength
     Conversion at 10 Gb/s?±, IEEE Photonics Technology Letters, Vol.14, No.5, May 2002,
     666-668
    [116] Mark W.K, Mak, H.K.Tsang, and K.Chan, ?°Widely Tunable Polarization-Independent
     All-Optical Wavelength converter Using a Semiconductor Optical amplifier?±, IEEE
     Photonics Technology Letters, Vol.12, No.5, May 2000, 525-527
    [117] San-Liang Lee, Pei-Miin Gong, and Chin-Tien Yang, ?°Performance Enhancement on
     SOA-Based Four-Wave-Mixing Wavelength Conversion Using an Assisted Beam?±,
     IEEE Photonics Technology Letters, Vol.14, No.12, December 2002, 1713-1715
    [118] A.E.Kelly, D.D.Marcenac and D.Nesset, ?°40 Gbit/s wavelength conversion over 24.6
     nm using FWM in a semiconductor optical amplifier with an optimized MQW active
     region?±, Electronics Letters, Vol.33, No.25, December 1997, 2123-2124
    [119] R.Ludwig and G.Raybon, ?°BER measurements of frequency converted signals using
     foru-wave mixing in a semiconductor laser amplifier at 1, 2.5, 5 and 10 Gbit/s?±,
     Electronics Letters, Vol.30, No.4, February 1994, 338-339
    [120] S.J.B.Yoo ?°Wavelength Conversion Technologies for WDM Network Applications?±
     Journal of Lightwave Technology, Vol.14, No.6, June 1996, 955-966
    [121] 小林功郎著, 崔凤林译, 《光集成器件》 科学出版社 2002 年,第一版 112-120

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700