用户名: 密码: 验证码:
水分亏缺对不同抗旱性小麦穗光合及碳同化物分配的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水资源短缺是限制我国小麦主产区小麦稳产、高产的主要因素之一。近年来的研究表明,小麦穗部光合在水分亏缺下具有明显的生理优势。在小麦高产栽培中,充分发挥穗等非叶器官的光合优势,挖掘其同化物生产潜力,对粮食生产具有重要的理论及实际意义。本研究选用不同抗旱性小麦品种,测定穗部净光合速率,可溶性糖及淀粉含量等指标,采用~(14)C-光合标记技术,研究灌浆前期(花后7d)穗部光合产物转运过程,探讨水分亏缺下小麦穗部光合对籽粒形成的贡献。获得如下主要结果:
     1.水分亏缺下,旱地小麦西农1043灌浆前期(花后1-10d)穗部净光合速率略有上升,但差异不显著(P>0.05),而水地品种陕253则明显下降(P <0.01)。~(14)C-穗标记结果表明,花后14d(标记后7d),~(14)C-同化物由颖壳、内外稃迅速向籽粒中积累。水分亏缺下旱地品种西农1043、普冰143籽粒中~(14)C-同化物分配率(74.11%、79.16%)明显高于正常供水(64.61%、74.86%),而水地品种陕253、郑引1号水分亏缺处理(60.73%、70.54%)低于正常供水处理(69.75%、75.42%)。花后25d以后,各处理变化不明显。说明水分亏缺提高了旱地小麦品种灌浆前期穗部的光合速率,促进灌浆前期穗部其他器官的同化物向籽粒转运。
     2.水分亏缺下,旱地品种西农1043颖壳中可溶性总糖含量在花后25d之内显著高于正常供水(P<0.01),而水地品种则低于正常供水;花后25d之后,两品种处理间差异不明显。在整个灌浆期,两个品种颖壳、外稃中淀粉含量均呈先降后升趋势,在花后17d降到最低点。在花后5d时,水分亏缺下两品种颖壳、外稃中淀粉含量均低于正常供水,但旱地品种西农1043颖壳中淀粉含量下降幅度明显低于水地品种陕253。花后5-17d,水分亏缺下水地品种陕253颖壳、外稃中淀粉含量下降幅度明显小于正常供水(P<0.01),而旱地品种西农1043则下降幅度大于正常供水(P<0.01)。值得注意的是,水分亏缺下旱地品种西农1043颖壳中淀粉含量在花后17d降到最低点,而正常供水在花后21d降到最低点,说明水分亏缺加速了旱地品种西农1043颖壳、外稃中淀粉降解,促进颖壳、内外稃中同化物向籽粒转运。
     3.成熟期(花后35d),水分亏缺下旱地品种西农1043、普冰143颖壳、内外稃干物质分配率下降,但差异不显著(P>0.05)。而水地品种陕253、郑引1号穗部颖壳、内外稃、穗轴分配率均上升,表明水分亏缺会导致水地品种颖壳、内外稃滞留同化物。但花后7d的~(14)C-穗标记结果显示,花后35d,水分亏缺下旱地品种小麦西农1043、普冰143颖壳、内外稃中灌浆前期穗光合~(14)C-同化物分配率分别高于正常供水1.49%、0.92%,而水地品种陕253、郑引1号低于正常供水6.18%、5.08%。说明水分亏缺下水地品种颖壳、内外稃滞留的同化物,并非源于灌浆前期的穗部光合产物,可能源于灌浆中、后期的光合产物。
     4.水分亏缺下,旱地品种西农1043、普冰143的小穗数、穗粒重、地上部分生物量、籽粒产量、收获指数的下降幅度小于水地品种陕253、郑引1号,旱地品种千粒重略升。水分亏缺下,水地小麦陕253、郑引1号的产量水分利用率均降低,旱地小麦的西农1043、普冰143的产量水分利用率则变化不明显。表明适度水分亏缺下旱地品种表现出较强的耐旱和水分利用能力。
The shortage of water resources is one of the main factors, which restricts the high andstable yield of wheat.Studies in recent years have shown that the photosynthesis of ears has theobvious physiological advantage in wheat under water deficit. In high yield cultivation, it is theimportant theoretical and practical significance of crop production to give full play tophotosynthetic advantage of ear and mine photosynthetic capacity and assimilates productionpotential. In this study, Xinong1043, Shaan253, Pubing143, Zhenyin1were chose asexperimental material. Mid water stress (50%-55%of field capacity) and the control (70%-75%of field capacity) was given at the early jointing stage. Net photosynthetic rate, soluble sugarcontent and starch content was studied at at grain filling stage under water deficit.~(14)C-isotopelabeling technique was used to investigate accumulation and transportation of~(14)C-assimilates ofears at early filling stage under water deficit. Main results were listed as follow:
     1. The net photosynthetic rate of ears in Xinong1043under middle water deficit was raisedduring early filling stage, while in Shaan253fell into a reverse trend.~(14)C-isotope labelingexperiments showed that the~(14)C-assimilates of ears was largely transported to the seed underwater deficit in the mid-filling stage. Accumulation of~(14)C-assimilates in the seed of Xinong1043and Pubing143under middle water deficit (74.11%、79.16%) was significantly higher than thecontrol (64.61%、74.86%), but~(14)C-assimilates in the seed of Shaan253and Zhenyin1undermiddle water deficit (60.73%、70.54%) was significantly lower than the control (69.75%、75.42%). It indicated that middle water deficit can accelerate the transportation of~(14)C-assimilates in ears of Xinong1043and Pubing143to the seed at early filling stage.
     2. Soluble sugar content of glumes in Xinong1043under middle water deficit was raised in25st DAA, while in Shaan253felling into a reverse trend. No significant difference was found intwo varieties after25st DAA. The content of starch in glumes and lemma of two varietiesdecreased first and then increased, and bottomed out at17st DAA. Compared with the normal,the content of starch in glumes and lemma of two varieties decreased, but decline of starchcontent in Xinong1043was significantly lower than that of Shaan253at5st DAA. Comparedwith the normal, the content of starch in glumes and lemma of Shan253decreased from5st to 17st DAA (P<0.01), while in Xinong1043fell into a reverse trend. It is interesting to note thatthe content of starch in glumes of Xinong1043bottomed out at17st DAA under middle waterdeficit, but that bottomed out at21st DAA under the normal. It indicated that water deficit couldaccelerate the degradation of starch in Xinong1043.
     3Distribution rates of palea/lemma, glumes and rachis in Zhenyin1and Shan253was raised atharvesting stages under water deficit, but distribution rates of palea/lemma and glumes in Xinong1043and Pubing143declined very slightly under water deficit. At harvesting stages, Distribution rates of~(14)C-assimilate in palea/lemma and glumes in dry-land wheat under water deficit was a little higherthan the control, while in water sensitive wheat felling into a reverse trend. It indicated thatretention of assimilate in palea/lemma and glumes of water sensitive wheat raised under water deficit.But the retention of assimilate was not from the photosynthate of ear at early filling stage.
     4The drop of spikelet numbers, kernel weight per ear, aboveground biomass, grain yield,harvest index in Xinong1043and Pubing143was smaller than these in Zhenyin1and Shan253,but the thousand kernel weight of Xinong1043and Pubing143rinsed. Water use efficiency of thedry land wheat did not significantly affected by water deficits, but that of water sensitive wheatdeclined significantly.
引文
陈磊,索全义,王金莲,刘景秀,李树凤.2010.春小麦非叶器官光合特性及与籽粒蛋白质关系的氮肥调控效应.华北农学报,25(5):198-201.
    陈晓远,罗远培.2001.土壤水分变动对冬小麦生长动态的影响[J].中国农业科学,34(4):403-409.
    董宝娣,师长海,乔匀周.2011.不同灌溉条件下不同类型冬小麦产量水分利用效率差异原因分析.中国生态农业学报,19(5):10961103.
    董宝娣,张正斌,刘孟雨等.2007.不同小麦品种的水分利用特性及对灌溉制度的响应[J].农业工程学报,23(9):2733.
    高志红,陈晓远,刘晓英.2007.土壤水变动对冬小麦生长产量及水分利用效率的影响[J].农业工程学报,23(8):52-58.
    何中虎,夏先春,陈新民.2011.中国小麦育种进展与展望[J].作物学报,37(2):202215.
    李朝霞,赵世杰,孟庆伟,邹琦,田纪春.2004.不同粒叶比小麦品种非叶片光合器官光合特性的研究[J].作物学报,30(5):419-426.
    李成龙,吕金印,高俊凤.2007.水分亏缺对小麦抽穗期穗轴维管束系统的影响[J].中国农学通报,23(1):111-111.
    李木英,石庆华,潘晓华,张荣珍.1999.影响两系杂交稻结实期茎鞘贮藏碳水化合物转运的生理因素研究[J].江西农业大学学报,21(3):329-332.
    李秀菊,职明星,石晓华,陈春艳.2006.小麦穗光合对不同花位籽粒及颖壳的影响[J].麦类作物学报,26(5):146-148.
    吕金印,刘军,高俊凤.1999.春小麦花前~(14)C同化物分配与累积研究[J].核农学报,13(06)357-361.
    吕金印,山仑,高俊凤.2004.土壤干湿交替对小麦花前碳同化物分配的影响[J].西北植物学报,24(9):1565-1569
    吕金印,山仑,高俊凤.2002.水分亏缺对小麦碳同化物的动员与分配[J].核农学报,16(4):228-231.
    孟兆江,贾大林,刘安能.2003.调亏灌溉对冬小麦生理机制及水分利用效率的影响[J].农业工程学报,19(4):66-68.
    聂朝娟,邓西平,陈炜.2010.花后水分亏缺对冬小麦光合特性及产量的影响[J].麦类作物学报,30(4):665-669.
    邵国堃.2011.中国旱情对小麦的影响. http://wenku.baidu.com/view/b63183ebe009581b6bd9eb7d.html[2012-4-1]
    施生锦,黄彬香,王志敏.2003.小麦不同光合器官的光合性能研究[J].中国生态农业学报,11(4):10-11.
    孙宏勇,张喜英,陈素英.2011.亏缺灌溉对冬小麦生理生态指标的影响及应用[J].中国生态农业学报,19(5):10861090.
    王仕稳.2011.外源遗传资源在小麦旱地育种中的应用[J],北方缺水地区半干旱地农业学术研讨会论文摘要集,pp19-21.
    王志敏,张英华,张永平,吴永成.2004.麦类作物穗器官的光合性能研究进展[J].麦类作物学报,24(4):136-139.
    王忠.2000.植物生理学.北京.农业出版社,221-263.
    卫云宗.2008.国审小麦品种临旱6号选育及栽培要点[J].农业科技通讯,(2):78-79.
    魏爱丽,王志敏.小麦不同光合器官对穗粒重的作用及基因型差异研究[J].麦类作物学报,21(2):57-61
    魏爱丽,王志敏,陈斌,翟志席,张英华.2004.土壤干旱对小麦绿色器官光合电子传递和光合磷酸化活力的影响[J].作物学报,30(5):487-490.
    魏爱丽,王志敏,翟志席,龚元石.2003.土壤干旱对小麦旗叶和穗器官C4光合酶活性的影响[J].中国农业科学,36(5):508-512.
    魏爱丽,邢勇,张小冰,宋敏丽.2005.小麦穗光合作用对干旱胁迫的响应[J].太原师范学院学报(自然科学版),4(4):78-80.
    魏爱丽,张小冰,邢勇,王志敏.2005.小麦旗叶和穗光合作用与耐旱性关系研究[J].西北植物学报,25(11):2245-2249.
    魏凤桐,陶洪斌,王璞.2010.旱稻297非结构性碳水化合物的生产与产量构成因子的关系[J].作物学报,2010,36(12):21352142.
    夏军,刘孟雨,贾兆凤.2004.华北地区水资源及水安全问题的思考与研究[J].自然资源学报,19(5):550560
    肖婷婷,吕金印.水分亏缺对小麦穗部维管束系统发育的影响[J].中国生态农业报,2010,18(5):977-981.
    徐晓玲,王志敏,张俊平.2001.灌浆期热胁迫对小麦不同绿色器官光合性能的影响[J].植物学报,43(6):571-577.
    许迪,龚时宏.2005.中国节水农业技术与产品需求分析[J].灌溉排水学报,24(1):17.
    张永平,王志敏,黄琴,谢岷.2008.不同水分供给对小麦叶与非叶器官叶绿体结构和功能的影响[J].作物学报,34(7):1213-1219.
    张永平,王志敏,王璞,赵明.2003.冬小麦节水高产栽培群体光合特征[J].中国农业科学,36(10):1143-1149.
    张永平,王志敏,吴永成,张霞.2006.不同供水条件下小麦不同绿色器官的气孔特性研究[J]、作物学报32(1):70-75.
    张永平,王志敏,张英华,史海滨.2009.节水栽培条件下不同粒叶比小麦的光合性能研究[J].麦类作物学报,29(5):859-866.
    张永平,张英华,王志敏.2011.不同供水条件下冬小麦叶与非叶绿色器官光合日变化特征[J].生态学报,31(5):1312-1322.
    周秋峰,黄长志,王保林.2011.干旱胁迫对小麦生长发育及产量形成的影响[J].粮食作物,(9):129-133.
    Abbad H.,El Jaafari S, Bort J, Araus J L.2004.Comparison of flag leaf and ear photosynthesis with biomassand grain yield of durum wheat under various water conditions and genotypes. Agronomie,24(1):19-28.
    Abebe T,Melmaiee K, Berg V, Wise R P.2010.Drought response in the spikes of barley: gene expression in thelemma, palea, awn, and seed.Functional&integrative genomics,10(2):191-205.
    Aoyagi K, Bassham J A.1984.Pyruvate orthophosphate dikinase of C3seeds and leaves as compared to the enzyme from maize.Plant Physiol,75(2):387.
    Araus J L, Brown H R, Febrero A, Bort J, Serret M D.Ear photosynthesis, carbon isotope discrimination andthe contribution of respiratory CO2to differences in grain mass in durum wheat.Plant Cell&Environment,16(4):383-392.
    ArausJ L, Brown R H, Febrero A, et al.1993. Earphotosynthesis, Carbonisotope discrimination and the con-tribution of respiratory CO2to differences in grain mass in durum wheat[J]. Plant CellandEnviroment,1993,16(4):383-392.
    Barlow, Ew,rLee J W, Munns R, Smart M G.1980. Water relations of the developing wheat grain.Funct PlantBiol,7(5):519-525.
    Biscoe P V, Gallagher J N, Littleton E J, Monteith J L,Scott R K.1975.Barley and its environment. IV. Sourcesof assimilate for the grain.J Appl Ecol,12(1)295-318.
    Blum A.1985. Photosynthesisandtranspiratim inleavesand earsof wheatand barley varieties[J].J. Exp. Bot.,36(3):432-440.
    Blum A,Mayer J,Golan G.1988.The effect of grain number per ear (sink size) on source activity and its water-relations in wheat.J Exp Bot,39(1):106-114
    Blum A,Zhang J,Nguyen H T.1999.Consistent differences among wheat cultivars in osmotic adjustment andtheir relationship to plant production.Field Crop Res,64(3):287-291
    Bort J, Brown R H, Araus J L.1995.Lack of C4photosynthetic metabolism in ears of C3cereals.Plant Cell&Environment,18(6):697-702.
    Bort J, Brown R H, Araus, J. L.1996.Refixation of respiratory CO2in the ears of C3cereals.J Exp,47(10):1567-1575.
    Bort J, Febrero A, Amaro T, Araus J L..1994.Role of awns in ear water-use efficiency and grain weight inbarley.Agronomie,14(2):133-139.
    Caley C Y, Duffus C M, Jeffcoat B.1990.Photosynthesis in the pericarp of developing wheat grains.J ExpBot,41(3):303-307.
    Carr D J, Wardlaw I F.1965.The supply of photosynthetic assimilates to the grain from the flag leaf and ear ofwheat.Aust. J. Biol. Sci,18(71):1-19.
    Chollet R, Vidal J, O'Leary M H.1996.Phosphoenolpyruvate carboxylase: a ubiquitous, highly regulatedenzyme in plants.Annu Rev Plant Biol,47(1):273-298.
    Clarke J M.1987.Use of physiological and morphological traits in breeding programmes to improve droughtresistance of cereals.Drought tolerance in winter cereals,171-189.
    Cochrane M P, Duffus C M.1979.Morphology and ultrastructure of immature cereal grains in relation to trans-port.Ann Bot-London,44(1):67-72.
    Cushman J C.2001.Crassulacean acid metabolism. A plastic photosynthetic adaptation to arid environments.Plant Physiology,127(4):1439-1448.
    Duffus C M, Cochrane M P.1993.Formation of the barley grain: Morphology, physiology and biochemistry.Barley: chemistry and technology. St Paul. Minnesota, USA: American Association of CerealChemists, Inc., pp.31–72.
    Evans L T, Wardlaw I F, Fischer R A. Wheat[A].1992.In Crop Physiology:somecase histories(ed LT Evans)[C]. Cambridge University Press,101-150.
    Frey N M, Moss D N, Johnson R R.1974.Effect of water stress on photosynthesis and transpiration of flagleaves and spikes of barley and wheat.Crop Sci,14(5):728-731
    Frey-Wyssling, A., Buttrose, M. S.、Photosynthesis in the ear of barley. Nature,184:2031–2032.
    Gebbing T, Schnyder H.13C labeling kinetics of sucrose in glumes indicates significant refixation of respire-atory CO2in the wheat ear.Funct Plant Biol,28(10):1047-1053.
    Gupta A S, Berkowitz G A.1987.Osmotic adjustment, symplast volume, and nonstomatally mediated waterstress inhibition of photosynthesis in wheat.Plant Physiol,85(4):1040.
    Imaizumi N, Usuda H, Nakamoto H, Ishihara K.1990.Changes in the rate of photosynthesis during grain fillingand the enzymatic activities associated with the photosynthetic carbon metabolism in rice panicles.Plant Cell Physiol,31(6):835-844.
    Johnson Rr, Moss D N.1976. Effctof waterstresson14CO2fixation and translocationin wheat during grainfilling[J]. Crop Sci.,16:697—701.
    Khaliq I, Irshad A, Ahsan M.2008.Awns and flag leaf contribution towards grain yield in spring wheat(Triticum aestivum L.).Cereal Res Commun,36(1):65-76
    Kikuta S B,Richter H.1986.Graphical evaluation and partitioning of turgor responses to drought in leaves ofdurum wheat.Planta,168(1):36-42.
    Knoppik D, Selinger H, Ziegler J ns A.1986.Differences between the flag leaf and the ear of a spring wheatcultivar (Triticum aestivum cv. Arkas) with respect to the CO2response of assimilation, respirationand stomatal conductance.Physiol Plantarum,68(3):451-457.
    Kriedemann P.1966.The photosynthetic activity of the wheat ear.Ann Bot-London,30(3):349-363.
    Kumar R, Ram H, Singh R.1982.Some of the metabolic activities of immature pericarp in developing wheatgrains.Natl. Acad. Sci. Lett.(India),5:153-155.
    Lawlor D W.2002.Limitation to Photosynthesis in Water‐stressed Leaves: Stomata vs. Metabolism and theRole of ATP.Ann Bot-London,89(7):871-885.
    Lawson T,Oxborough K,Morison J I L.2002. Baker, N. R.、Responses of photosynthetic electron transport instomatal guard cells and mesophyll cells in intact leaves to light,CO2, and humidity.Plant Physiol,128(1):52-62
    Leegood R C.Biochemical studies of photosynthesis: from CO2to sucrose.Plant Biology,8:457-473
    Li X, Hou J, Bai K, Yang X, Lin J, Li Z, Kuang T.2004.Activity and distribution of carbonic anhydrase in leafand ear parts of wheat (Triticum aestivum L).Plant Sci,166(3):627-632.
    Li X, Wang H, Li H, Zhang L, Teng N, Lin Q, Wang J, Kuang T, Li Z, Li B.2006.Awns play a dominant rolein carbohydrate production during the grain‐filling stages in wheat (Triticum aestivum L).PhysiolPlantarum,127(4):701-709.
    Lu Q, Lu C.2004.Photosynthetic pigment composition and photosystem II photochemistry of wheat ears.PlantPhysiol Bioch,42(5):395-402.
    Martinez D E, Luquez V M, Bartoli C G, Guiamet J J.2003.Persistence of photosynthetic components andphoto-chemical efficiency in ears of water‐stressed wheat (Triticum aestivum L).Physiol Plantarum,119(4):519-525
    Matsuhashi S, Fujimaki S, Uchida H, Ishioka N S, Kume T.2006.A new visualization technique for the studyof the accumulation of photoassimilates in wheat grains using11CO2.Appl Radiat Isotopes,64(4):435-440.
    Maydup M L, Antonietta M, Guiamet J J, Graciano C, López J R, Tambussi E A.2010.The contribution of earphotosynthesis to grain filling in bread wheat (Triticum aestivum L.).Field Crop Res,119(1):48-58.
    Meyer A O, Kelly G J, Latzko E.1982.Pyruvate orthophosphate dikinase from the immature grains of cerealgrasses.Plant Physiol,69(1):7.
    Morgan J M.1980.Osmotic adjustment in the spikelets and leaves of wheat.J Exp Bot,31(2):655-665.
    Morgan J M.1984.Osmoregulation and water stress in higher plants.Annual Review of Plant Physiology,35(1):299-319.
    Morgan J M, Condon A G.1986.Water use, grain yield, and osmoregulation in wheat. Australian Journal ofPlant Physiology13(4):523–532.
    Motzo R, Giunta F.2002.Awnedness affects grain yield and kernel weight in near-isogenic lines of durumwheat.Aust J Agr Res,53(12):1285-1293.
    Nutbeam A R, Duffus C M.1976.Evidence for C4photosynthesis in barley pericarp tissue.Biochem Bioph ResCo,70(4):1198-1203.
    Nutbeam A R, Duffus C M.1978.Oxygen exchange in the pericarp green layer of immature cereal grains.PlantPhysiol,62(3):360
    O'Brien T P, Sammut M E, Lee J W, Smart M G.The vascular system of the wheat spikelet.Funct Plant Biol,12(5):487-511)
    Olugbemi L B,Bingham J,Austin R B.1976.Ear and flag leaf photosynthesis of awned and awnless Triticumspecies.Ann Appl Biol,4(2):231-240.
    Pate J S.2001.Carbon isotope discrimination and plant water-use efficiency,Stable isotope techniques in thestudy of biological processes and functioning of ecosystems. Kluwer, Boston,19-36
    Pic E,Teyssendier dela Serve B, Tardieu F, Turc O.2002. Leaf senescence induced by mild water deficitfollows the same sequence of macroscopic, biochemical, and molecular events as monocarpicsenescence in pea.Plant Physiol,128:236-246.
    Sánchez-Díaz M, Garcia J L, Antolin M C, Araus J L.2002.Effects of soil drought and atmospheric humidityon yield, gas exchange, and stable carbon isotope composition of barley.Photosynthetica,40(3):415-421.
    Santamaria J M, Ludlow M M, Fukai S.1985.Contribution of osmotic adjustment to grain yield in sorghum forcertain physiological characters under water stress condition.Crop Improvement,20:45-50.
    Sharkey T D.1985.O2-insensitive photosynthesis in C3plants: its occurrence and a possible explanation.PlantPhysiol,78(1):71.
    Singal H B, Sheoran I S, Singh R.1998.In vitro enzyme activities and products of14CO2assimilation in flagleaf and ear parts of wheat (Triticum aestivum L.).Photosynth Res,8(2):113-122.
    Smirnoff N.1998.Plant resistance to environmental stress.Curr Opin Biotech,9(2):214-219.
    Srivalli S, Khanna-Chopra R.2009.Delayed wheat flag leaf senescence due to removal of spikelets is associatedwith increased activities of leaf antioxidant enzymes, reduced glutathione/oxidized glutathione ratio andoxidative damage to mitochondrial proteins.Plant Physiol Bioch,47(8):663-670.
    Tambussi E A, Bort J, Guiamet J J, Nogues S, Araus J L.2007.The photosynthetic role of ears in C3cereals:metabolism, water use efficiency and contribution to grain yield.Crit Rev Plant Sci,26(1):1-16
    Tambussi E A, J Bort and J L Araus.2007. Water use efficiency in C3cereals under Mediterranean conditions: areview of physiological aspects. Ann. Appl. Biol,150(3):307-321
    Tambussi E A, Nogués S, Araus J L.2005.Ear of durum wheat under water stress: water relations and photosyn-thetic metabolism.Planta,221(3):446-458.
    Thorne G N.1966.Physiological aspects of grain yield in cereals.In:The growth of cereals and grasses,pp88-105.
    Tschakalova E, Hoffmann P.1976.Strukturelle and funktionelle Grundlagen des photosynthetischen Gaswechs-els bei Triticum aestivum L.Wiss. Z. Humboldt-Univ. Berlin, math.-naturwiss. Reihe,25:723-736
    Wang T, Zhang X, Li C.2007.Growth, abscisic acid content, and carbonisotope composition in wheat cultivarsgrown under different soilmoisture[J].Biologia Plantarum,51(1):181-184.
    Wang Z M, Wei A L, Zheng D M.2001.Photosynthetic characteristics of non-leaf organs of winter wheatcultivars differing in ear type and their relationship with grain mass per ear.Photosynthetica,39(2):239-244.
    Wardlaw I F.2002.Interaction between drought and chronic high temperature during kernel filling in wheat in acontrolled environment.Ann Bot-London,90(4):469-476.
    Wechsung F, Garcia R L, Wall G W, Kartschall T, Kimball B A, Michaelis P, Wechsung G, Grossman ClarkeS, Lamorte R L, Adamsen F J.200.Photosynthesis and conductance of spring wheat ears: fieldresponse to free‐air CO2enrichment and limitations in water and nitrogen supply.Plant Cell&Environment,23(9):917-929.
    Wirth E, Kelly G J, Fischbeck, G, Latzko E.1977.Enzyme activities and products of CO2fixation in variousphotosynthetic organs of wheat and oat.Zeitschrift für Pflanzenphysiologie,82:78-87
    Wullschleger S D, Oosterhuis D M, Hurren R G, Hanson P J.1991.Evidence for light-dependent recycling ofrespired carbon dioxide by the cotton fruit.Plant Physiol,97(2):574.
    Xu H L, Ishii R, Yamagishi T, Kumura A.1990.Effects of water deficit on photosynthesis in wheat plants. III.Effect on non-stomatal mediated photosynthesis and RuBP carboxylase content in different plant parts.Japanese Journal of Crop Science,59(1):153-157.
    Xu X L, Zhang Y H, Wang Z M.2004.Effect of heat stress during grain filling on phosphoenolpyruvatecarboxylase and ribulose-1,5-bisphosphate carboxylase/oxygenase activities of various green organsin winter wheat.Photosynthetica,42(2):317-320.
    Ziegler-J ns A.1989.Gas-exchange of ears of cereals in response to carbon dioxide and light. II: Occurrence ofa C3-C4intermediate type of photosynthesis.Planta,178(2):164-175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700