用户名: 密码: 验证码:
难选氧化锑矿分选利用基础理论及工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:氧化锑矿的浮选回收是选矿界的一个难题,浮选工艺和基础理论相关的研究还很少。本文以黄锑矿、石英和方解石晶体结构和主要解理面性质差异研究为基础,通过单矿物浮选试验研究了阴、阳离子捕收剂浮选体系中三种矿物的浮选行为,并结合表面电位、吸附量、X射线光电子能谱、红外光谱及量子化学计算等方法,对浮选药剂与矿物间的作用机理进行了研究。主要研究结果如下:(1)三种矿物晶体结构及表面性质研究
     黄锑矿和石英主要解理面(001)面的表面能分别为1.646J/m2和2.675J/m2,方解石主要解理面(104)面的表面能为0.887J/m2。黄锑矿、石英和方解石表面在费米能级附近的态密度主要均由O2p轨道构成,氧是黄锑矿和石英表面的活性位点,因此二者的表面性质有一定的相似性。XPS检测结果表明:石英和黄锑矿表面氧的相对含量较为接近,方解石表面氧的相对含量则相对较低,表面含氧量差异导致了三种矿物表面电位及浮选药剂在矿物表面作用的差异。黄锑矿、石英和方解石的零电点PZC分别测得为2.4、2.6和7.6。
     (2)阳离子捕收剂浮选体系
     季铵盐31系列捕收剂对黄锑矿具有较强的捕收能力,且随着碳链长度的增加而增强,可浮选的pH区间也相应扩大,但季铵盐31和27系列捕收剂对石英和方解石的捕收能力强于黄锑矿,难以实现黄锑矿与石英和方解石的浮选分离。十二胺为捕收剂,pH>10.5时黄锑矿的浮选受到抑制,而石英和方解石回收率可达85%以上,可实现黄锑矿与石英和方解石的反浮选分离。十二胺在矿物表面吸附量和矿物表面电位的变化与十二胺对三种矿物的浮选行为一致,说明静电作用起重要作用。十二胺分子、水分子和十二胺离子在黄锑矿表面吸附能从大到小顺序为DDA>H2O>DDA+。十二胺阳离子不仅能排挤开黄锑矿表面的水分子而形成疏水吸附层,而且比十二胺分子更容易在黄锑矿表面形成静电吸附和氢键吸附。碱性条件下,十二胺分子仍能在石英和方解石表面产生一定的吸附,却很难吸附于黄锑矿表面,是实现黄锑矿与石英和方解石浮选分离的原因。
     (3)金属离子对三种矿物的活化
     不添加金属离子时,油酸钠对黄锑矿和石英均没有捕收作用,但对方解石具有较好的捕收效果。Ca2+、Mg2+在高碱度条件下能活化石英,但对黄锑矿基本上没有活化作用。Al3+.Fe3+离子能活化黄锑矿,但石英同时也受到活化。Pb2+离子能选择性活化黄锑矿和石英,但二者分选的pH区间较小,Cu2+能实现黄锑矿和石英的选择性活化,可在较大的pH区间实现二者的浮选分离。无论添加何种金属离子,方解石均能得到较高的浮选回收率。
     (4)阴离子捕收剂浮选体系
     以铜离子为活化剂,油酸钠和十二烷基硫酸钠分别在pH=6.7和pH=6.1左右,可实现黄锑矿与石英的浮选分离,对应pH条件下,油酸钠及十二烷基硫酸钠在铜离子活化的黄锑矿表面发生了化学吸附,而在石英表面仅发生物理吸附。两种捕收剂对三种矿物的浮选行为与矿物表面电位及捕收剂吸附量变化规律一致。CuOH+和Cu(OH)2为油酸钠在黄锑矿表面吸附的活性质点,而CuOH+是十二烷基硫酸钠在黄锑矿表面吸附的活性质点。CuOH+和Cu(OH)2均起到“架桥”作用,把黄锑矿表面和捕收剂连接起来,实现黄锑矿的活化。
     (5)两种阴离子捕收剂结构性能差异
     油酸钠和十二烷基硫酸钠对黄锑矿浮选行为差异的原因在于两者结构的差异,[SDS]-、[OH]-、[01]-在氢氧化铜沉淀活化的黄锑矿表面吸附能顺序为[SDS]>[OH]->[01]-,[SDS]-不能排开在氢氧化铜表面重新吸附的[OH]-,而[01]-则能排开氢氧化铜表面重新吸附的[OH]-,实现黄锑矿的浮选。[SDS]-与[Ol]-相比,前者对氢氧化铜的静电排斥作用更强,化学吸附活性相对弱。
     (6)锡矿山氧化锑矿浮选工艺研究
     对锡矿山北选厂含Sb品位1.11%的氧化锑矿,以“直接浮选”工艺可以得到Sb品位2.57%,回收率78.7%的指标。采用“直接浮选-硫化焙烧-浮选”工艺可以得到Sb品位21.8%,回收率64.81%的指标。
Abstract:The recocery of antimony oxide by flotation is now a difficulty subject in mineral processing, and there are few studies on the technology and basic theory for antimony oxide flotation.In this dissertation, based on the studies of crystal structure and the main cleavage plane property differences for three minerals,the flotation behaviors of three minerals in anion and cation flotation collector system have been investigated by flotation.At the same time,the action mechanisms between flotation reagents and minerals have also been revealed by means of surface potential,adsorption capacity, X-ray photoelectron spectroscopy, infrared spectroscopy and quantum chemical calculations.Main conclusions are obtained as following:(1)Crystal structure and surface properties of three minerals
     The surface energy of major cleavage plane (001)of cervantite and quartz are1.646J/m2and2.675J/m2,respectively.The surface energy of calcite's major cleavage plane(104) is0.887J/m2.The density of states near Fermi level of cervantite and quartz are almost from the O2p orbit. It indicates that the reactive sites on surface of cervantite and quartz are O, which results in the similarity of their nature.XPS results show that the relative content of oxygen on quartz and cervantite surface is closer to each other, and the calcite surface relative content of oxygen is the lowest, and these cause the differences both of surface potential and the action of reagent with mineral surface.The measured PZC of cervantite,quartz,and calcite are2.4,2.6,and7.6,respectively.
     (2) Cationic collector flotation system
     31series quaternary ammonium salt collector have strong collect ability for flotation of cervantite,and the flotation pH range of cervantite expands with the increasing of collectore's carbon chain length.However, the collecting capacity of31and27series collector for quartz and calcite are stronger than that of cervantite,and it makes difficult to achieve flotation separation of cervantite from quartz and calcite.The flotation of cervantite is depressed while the recovery of quartz is more than85%at pH>10.5,so the reverse flotation separation of cervantite from quartz and calcite can be achieved under this condition.Changes of surface potential and adsorption capacity of dodecylamine on mineral's surface are consistent with flotation behaviors of minerals using dodecylamine as collector, indicating that electrostatic interaction play an important role in flotation of three minerals by dodecylamine. The order of adsorption energy of dodecylamine molecules,water molecules and dodecylamine ions on cervantite surface is DDA>H2O>DDA+.Dodecylamine cation can not only supplant water molecules from cervantite surface to form hydrophobic layer, but also easy to adsorb on cervantite surface by electrostatic and hydrogen bond adsorption than dodecylamine molecular. The reason for achieving separation of cervantite from quartz and calcite under alkalinite conditions is that dodecylamine molecule can adsorb on quartz and calcite surface to some extent, while it is difficult for dodecylamine molecule adsorbing on cervantite surface in the pulp.
     (3) Activation of metal ions on three minerals
     Without adding metal ions,sodium oleate has no collectting capacity for cervantite and quartz, but has a good collectting capacity for calcite. Quartz can be activated by Ca+and Mg+under high alkalinity conditions,but cervantite can not be activated.Cervantite can be activated by Al3+and Fe3+, while quartz can be activated meanwhile. Flotation separation of cervantite from quartz and calcite can not be achieved. Cervantite and quartz can be selectively activated by Pb2+ions in a small range of pH. Cervantite and quartz can be selectively activated by Cu2+ions to achieve flotation separation in a lager pH range.Calcite gets a high flotation recovery with adding six metal ions.
     (4) Anionic collector flotation system
     Sodium oleate and sodium dodecyl sulfate are the effective collectors for the flotation of cervantite from quartz using copper ions as the activator at pH of6.7and6.1,respectively.Sodium oleate and sodium dodecyl sulfate occured chemical adsorption on activated cervantite surface by copper ions,and only physical adsorption on quartz surface under conditions of pH=6.7and6.1,respectively. Changes of surface potential and adsorption capacity of three minerals in the presence of two reagents are consistent with flotation behavior of three minerals. CuOH+and Cu(OH)2become active sites for oleate ion adsorbing on cervantite surface.CuOH+becomes active site for sodium dodecyl sulfate adsorbing on cervantite surface. CuOH+and Cu(OH)2both act as a "bridge" to connect cervantite surface and anionic collectors, play an important role in activating cervantite.
     (5)Differences of structure and property of two anionic collectors
     The different flotation behavior on cervantite are caused by the different structure of sodium oleate and sodium dodecyl sulfate.The adsorption energy order ofthree adsorbates on activated cervantite surface by Cu(OH)2is [SDS]->[OH]->[Ol]-.Dodecyl sulfate ions can not repel hydroxyl ions on activated cervantite surface by Cu(OH)2while oleic acid ions can repel hydroxyl ions on activated cervantite surface by Cu(OH)2to achieve flotation.Different from oleic acid ion, dodecyl sulfate ion has stronger electrostatic repulsion to copper hydroxide and weaker chemical adsorption activity.
     (6) Research on flotation process of Xikuangshan antimony oxide ore
     A antimony oxide ore with Sb grade about1.11%from Xikuangshan is used as raw material for flotation tests.By "direct flotation" technological process, a concentrate obtained with Sb grade and recovery of2.57%and78.7%, respectively. By"direct flotation-sulfidation roasting-flotation" process, the Sb grade and recovery of obtained concentrate are21.8%and64.81%, respectively.
引文
[1]Anderson, C. G. The metallurgy of antimony[J]. Chemie der Erde-Geochemistry,2012,72(Supplement 4):3-8.
    [2]朱训.中国矿情[M].北京:科学出版社,1999,446.
    [3]丁建华,杨毅恒,邓凡.中国锑矿资源潜力及成矿预测[J].中国地质,2013,40(3):846-858.
    [4]桂华.我国有色金属工业产业结构现状分析(七)-锡锑钽工业现状分析[J].有色金属工业,1999(10):8-11.
    [5]王淑玲.中国锑资源现状及可持续发展问题探讨[J].世界有色金属,2001(8):16-18.
    [6]何谷先.我国锑矿资源现状浅析[J].新疆有色金属,1998(1):39-42.
    [7]周兴良,全铁军.湖南省有色金属资源现状及发展建议[J].科技资讯,2008(21):99-100.
    [8]周维陶.中国的锑都-锡矿山[J].湖南冶金,1984(02):62-63.
    [9]陈世明,瞿开流,艾澄清,等.巍山氧化锑矿石处理方法研究[J].云南冶金,1994(4):43-49.
    [10]余礼扬.难选氧化锑矿石的浮选工艺初探[J].矿产综合利用,1992(5):11-13.
    [11]郑剑洪,谷新建,陈代雄.东安锑矿难选氧化锑矿选矿试验研究[J].矿业工程研究,2009,24(2):68-70.
    [12]Rehim Abd El, S. S., Awad, A., El Sayed, A. Electroplating of antimony and antimony-tin alloys[J]. Journal of Applied Electrochemistry,1987,17 (1):156~164.
    [13]Marius J. H., Robert I. M. The determination of antimony in lead-antimony alloys usingICP-OES and internal standardisation[J]. Journal of Analytical Atomic Spectrometry,2002,17(10):1411-1414.
    [14]Bradwell D. J., Kim H., Sirk A.H. C, et al. Magnesium-Antimony Liquid Metal Battery for Stationary Energy Storage[J]. Journal of the American Chemical Society,2012,134(4):1895-1897.
    [15]Brennan, M. P. J., Stirrup, B. N., Hampson, N. A. The role of antimony in the lead-acid battery:Part 1. The effect of antimony on the anodic behaviour of lead[J]. Journal of Applied Electrochemistry,1974,4(1):49- 52.
    [16]Desai, H. B., Parthasarathy, R. A radiochemical neutron activation analysis method for the determination of tin, arsenic, copper and antimony for the forensic comparison of bullet lead specimens [J]. Journal of Radioanalytical Chemistry,1983,77(1):235-240.
    [17]赵天从.锑[M].北京:冶金工业出版社,1987,56-67.
    [18]Shaw, J. B. Antimony oxide as an opacifier in cast iron enamels.[J]. Journal of the American Ceramic Society,1918,1(7):502-513.
    [19]King, B. W., Andrews, A. I. Reactions taking place during smelting of superopaque antimony enamel [J] Journal of the American Ceramic Society, 1940,23(8):225-228.
    [20]Abrams, R. L. The effect of antimony oxide flame retardants on color of vinyl films[J]. Journal of Vinyl Technology,1981,3(4):205-207.
    [21]卢裕隆.用横流皮带溜槽选别氧化锑细泥试验[J].云南冶金,1991(4):31-33.
    [22]余礼扬.氧化锑矿细泥探索性选别试验[J].新疆有色金属,1993(4):26-27.
    [23]赖仁魁,喻坚意,刘邦瑞.氧化锑矿物与石英浮选分离新法[J].有色矿山,1991(2):44-45.
    [24]赖仁魁,刘邦瑞.掩蔽抑制剂对氧化锑矿物及石英可浮性的影响[J].有色金属:选矿部分,1991(6):24-26.
    [25]郭昌槐,邓竹声,陈荩.疏水絮凝浮选新工艺处理难选细粒氧化锑矿[J].中南工业大学学报,1995(3):329-333.
    [26]余礼扬.难选氧化锑矿石的浮选工艺[J].有色金属(选矿部分),1993(3):17-20.
    [27]安顺辰.硫化锑氧化锑混合矿选矿研究[J].有色金属,1983,35(4):27-31.
    [28]邓竹声,郭昌槐,余雪花.变性水玻璃对难选细粒氧化锑矿物浮选的影响[J].中南矿冶学院学报,1991,22(2):137-141.
    [29]邓竹声,郭昌槐.Mn2+离子对细粒氧化锑矿物浮选的影响[J].矿冶工程,1987,7(3):36-39.
    [30]Xiao, L.P., Liao, P.J., Hu, W.B. Effect of physico-chemical characteristics of surfactant emulsion on antimony oxide flotation[J]. Colloids and Surfaces,1987,26:273-289.
    [31]陈代雄,杨建文,曾惠明.某难选氧化锑矿选矿工艺的研究[J].有色金属(选矿部分),2008(5):20-24.
    [32]P. Solozhenkin,何发钰.复杂锑矿石的浮选[J].国外金属矿选矿,1993(02):15-20.
    [33]康大平,柯家骏.氧化锑矿处理方法的研究[J].铀矿冶,1991,10(1):34-39.
    [34]潘朝群,邓先和,宾万达,等.NaOH、甘油的水溶液浸出三氧化二锑的机理研究[J].矿冶,2001,10(2):50-54.
    [35]周淑珊,罗绍尧.氧化锑矿还原焙烧-碱浸矿浆电积法提取锑[J].有色金属(冶炼部分),1992(04):27-29.
    [36]庞曼萍,王蓓,陈锐钊.某高度氧化锑矿选矿工艺试验[J].矿产综合利用,1991(2):15-17.
    [37]夏丹葵,戴永年,曹阳,等.难选氧化锑矿的真空热还原[J].真空科学与技术,1994,14(1):51-56.
    [38]刘伯龙,戴永年.锑氧化矿或硫氧混合矿真空处理问题初探[J].湖南有色金属,1989,5(6):37-40.
    [39]陈厚德,胡雪芹.锑选矿技术研究[J].湖南有色金属,1995,11(1):19-23.
    [40]陈代雄.伊朗某难选氧化锑矿选矿新工艺研究[J].有色金属(选矿部分),2007(2):5-9.
    [41]潘兆橹.结晶学与矿物学下册[M].北京:地质出版社,1988,87-89.
    [42]廖品钧.氧化锑矿物表面电性与可浮性研究[J].中南矿冶学院学报,1983(1):21-29.
    [43]王淀佐.浮选剂作用原理及应用[M].北京:冶金工业出版社,1982,84-170.
    [44]孙伟,杨帆,胡岳华,等.前线轨道在黄铜矿捕收剂开发中的应用[J].中国有色金属学报,2009,19(8):1524-1532.
    [45]王淀佐,龙翔云,孙水裕.硫化矿的氧化与浮选机理的量子化学研究[J].中国有色金属学报,1991,1(1):15-23.
    [46]张剑锋,胡岳华,徐競,等.苯氧乙酸类浮选抑制剂性能的量子化学计算[J].中国有色金属学报,2004,14(8):1437-1441.
    [47]李海普,胡岳华,王淀佐,等.阳离子表面活性剂与高岭石的相互作用机理[J].中南大学学报(自然科学版),2004,35(2):228-233.
    [48]周灵初,张一敏.红柱石与捕收剂作用机理的量子化学研究[J].武汉理工大学学报,2011,33(6):99-102.
    [49]陈建华,曾小钦,陈晔,等.含空位和杂质缺陷的闪锌矿电子结构的第一性原理计算[J].中国有色金属学报,2010,20(4):765-771.
    [50]李玉琼,陈建华,陈晔,等.黄铁矿(100)表面性质的密度泛函理论计算及其对浮选的影响[J].中国有色金属学报,2011,21(4):919-926.
    [51]陈建华,钟建莲,李玉琼,等.黄铁矿、白铁矿和磁黄铁矿的电子结构及可浮性[J].中国有色金属学报,2011,21(7):1719-1727.
    [52]Yekeler, H., Yekeler, M. Predicting the efficiencies of 2-mercapto-benzothiazole collectors used as chelating agents in flotation processes:a density-functional study[J]. Journal of Molecular Modeling,2006,12(6): 763-768.
    [53]Yekeler, M., Yekeler, H. Molecular modeling study on the relative stabilities of the flotation products for arsenic-containing minerals: dixanthogens and arsenic(III) xanthates[J]. Journal of Colloid and Interface Science,2005,284(2):694-697.
    [54]Bag, B., Das, B., Mishra, B. K. Geometrical optimization of xanthate collectors with copper ions and their response to flotation[J]. Minerals Engineering,2011,24(8):760-765.
    [55]Hung A, Yarovsky I, Russo ASP. Density-functional theory studies of xanthate adsorption on the pyrite FeS2 (110) and (111) surfaces[J], Journal of Chemical Physics,2003,118(13):6022-6028.
    [56]Edelbro R, Sandstrom A, Paul J. Full potential calculations on the electron bandstructures of Sphalerite, Pyrite and Chalcopyrite[J]. Applied Surface Science,2003,206(1-4):300-313.
    [57]Hellstrom, P., Oberg, S., Fredriksson, A., et al. A theoretical and experimental study of vibrational properties of alkyl xanthates[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2006,65(3-4):887-895.
    [58]Cooper T G, de Leeuw N H. A combined ab initio and atomistic simulation study of the surface and interfacial structures and energies of hydrated scheelite:introducing a CaWO4 potential model [J]. Surface Science,2003, 531(2):159-176.
    [59]Basso R., Lucchetti G., Zefiro L., et al. Clinocervantite, β-Sb204, the natural monoclinic polymorph of cervantite from the Cetine mine, Siena, Italy[J]. European Journal of Mineralogy,1999(11):95-100.
    [60]Thornton, G. A neutron diffraction study of α-Sb2O4[J]. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry,1977,33(4):1271-1273.
    [61]Amador J G E M M. Diantimony tetraoxides revisited[J]. Inorganic Chemistry,1988(27):1367-1370.
    [62]Glinnemann J., King H. E., Schulz H. Crystal structures of the low-temperature quartz-type phases of Si02 and GeO2 at elevated pressure [J]. Zeitschrift fur Kristallographie,1992,198:177-212.
    [63]Cowley E. R. Symmetry properties of the normal modes of vibration of calcite and α-corundum[J]. Canadian Journal of Physics,1969,47(13): 1381-1391.
    [64]Smyth J. R. The crystal structure of calcite Ⅲ[J]. Geophysical research Letters,1977,24(13):1595-1598.
    [65]Clark,S. J., Segall, M. D., Pickard, C.J., et al. First principles methods using CASTEP[J]. Computational Crystallography,2005,220(5-6):567-570.
    [66]Jones R. O., Gunnarsson O. The density functional formalism, its applications and prospects[J]. Reviews of Modern Physics,1989,61(3): 689-746.
    [67]Hendirk J., Monkhorst J. D. P. Special points for Brillouin-zone integrations[J]. Physical Review B,1976,13(12):5188-5192.
    [68]Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B,1990,41(11):7892-7895.
    [69]Orosel, D., Balog, P., Liu, H., et al. Sb2O4 at high pressures and high temperatures[J]. Journal of Solid State Chemistry,2005,178(9):2602-2607.
    [70]Le Page, Y., Donnay, G. Refinement of the crystal structure of low-quartz [J]. Acta Crystallographica Section B,1976,32(8):2456-2459.
    [71]De Leeuw N. H., Parker S. Surface Structure and Morphology of Calcium Carbonate Polymorphs Calcite, Aragonite, and Vaterite:An Atomistic Approach[J]. The Journal of Physical Chemistry B,1998,102(16):2914-2922.
    [72]Segall M. D., Shah R., Pickard C. J. Population analysis of plane-wave electronic structure calculations of bulk materials[J]. Physical Review B, 1996,54(23):16317-16320.
    [73]Segall M. D., Shah R., Pickard C. J. Population analysis in plane wave electronic structure calculations[J]. Molecular Physics,1996,89(2):571-577.
    [74]Chen Y.W., Cao C, Cheng H. P. Finding stable α-quartz (0001) surface structures via simulations [J]. Applied Physics Letters,2008,93(18):181911.
    [75]Han, J. W., James, J. N., Sholl, D. S. First principles calculations of methylamine and methanol adsorption on hydroxylated quartz [J]. Surface Science,2008,602(14):2478-2485.
    [76]Du, Z.M., de Leeuw N H. A combined density functional theory and interatomic potential-based simulation study of the hydration of nano-particulate silicate surfaces[J]. Surface Science,2004,554(2-3):193-210.
    [77]De Leeuw N. H., Parker S. Atomistic simulation of the effect of molecular adsorption of water on the surface structure and energies of calcite surfaces [J]. Journal of the Chemical Society, Faraday Transactions,1997,93(3): 467-475.
    [78]刘世宏,王当憨,潘承璜.X射线光电子能谱分析[M].北京:科学出版社,1988,
    [79]Yoon, R. H., Salman, T., Donnay, G. Predicting points of zero charge of oxides and hydroxides[J]. Journal of Colloid and Interface Science,1979, 70(3):483-493.
    [80]Chvedov, D., Logan, E. L. B. Surface charge properties of oxides and hydroxides formed on metal substrates determined by contact angle titration[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2004,240(1-3):211-223.
    [81]刘亚川,龚焕高,张克仁.石英长石矿物结晶化学特性与药剂作用机理[J].中国有色金属学报,1992,2(4):21-25.
    [82]Kim J., Lawler D. F. Characteristics of Zeta Potential Distribution in Silica Particles[J]. Bulletin of the Korean Chemical Society,2005,26(7):1083-1089.
    [83]Mishra, S. K. The electrokinetics of apatite and calcite in inorganic electrolyte environment[J]. International Journal of Mineral Processing, 1978,5(1):69-83.
    [84]Somasundaran, P., Agar, G. E. The zero point of charge of calcite[J]. Journal of Colloid and Interface Science,1967,24(4):433-440.
    [85]何伯泉.氧化矿的零电点与等电点及其测定方法[J].有色金属(选矿部分),1983(1):17-23.
    [86]张智宏,沈钟,邵长生.新型季铵盐型表面活性剂应用研究[J].日用化学工业,1999(3):1-3.
    [87]王永君.双季铵盐的合成及污水浮选性能考察[J].精细化工,2002,19(S1):85-87.
    [88]赵传山,唐杰斌,陈克复,等.表面活性剂在造纸工业中的应用和研究进展[J].中国工程科学,2009(4):17-20.
    [89]Hu, Y. H., Chen, P., Sun, W. Study on quantitative structure-activity relationship of quaternary ammonium salt collectors for bauxite reverse flotation[J]. Minerals Engineering,2012,26:24-33.
    [90]Zhao S. G., Zhong H., Liu G.Y. Effect of quaternary ammonium salts on flotation behavior of aluminosilicate minerals[J]. Journal of Central South University of Technology,2007,14(4):500-503.
    [91]Wang, Y. H., Hu, Y. H., He P B, et al. Reverse flotation for removal of silicates from diasporic-bauxite[J]. Minerals Engineering,2004,17(1):63-68.
    [92]Wang Y. H., Hu Y. H., Chen X. Q. Aluminum-silicates flotation with quaternary ammonium salts[J]. Transactions Of Nonferrous Metals Society Of China,2003,13(3):715-719.
    [93]Wang Y.H., Ren J.W. The flotation of quartz from iron minerals with a combined quaternary ammonium salt[J]. International Journal of Mineral Processing,2005,77(2):116-122.
    [94]Abdel-Khalek, N. A., Yehia, A., Ibrahim, S. S. Technical note beneficiation of egyptian feldspar for application in the glass and ceramics industries[J]. Minerals Engineering,1994,7(9):1193-1201.
    [95]Rodrigues, O. M. S., Peres, A. E. C, Martins, A. H., et al. Kaolinite and hematite flotation separation using etheramine and ammonium quaternary salts[J]. Minerals Engineering,2013,40:12-15.
    [96]Hu, Y.H., Yang, F., Sun, W. The flotation separation of scheelite from calcite using a quaternary ammonium salt as collector[J]. Minerals Engineering,2011,24(1):82-84.
    [97]Hosseini, S. H., Forssberg, E. Physicochemical studies of smithsonite flotation using mixed anionic/cationic collector[J]. Minerals Engineering, 2007,20(6):621-624.
    [98]Li, H. P., Zhang, S.S., Jiang, H., et al. Selective depression of diaspore with waxy maize starch[J]. Minerals Engineering,2010,23(15):1192~1197.
    [99]Peng F., Gu Z. Processing Florida dolomitic phosphate pebble in a double reverse fine floatation process[J]. Minerals and Metallurgical Processing, 2005,22(1):23-30.
    [100]Liu, W.G., Wei, D.Z., Wang, B.Y., et al. A new collector used for flotation of oxide minerals[J]. Transactions of Nonferrous Metals Society of China, 2009,19(5):1326-1330.
    [101]Ackerman, P. K., Harris, G. H., Klimpel, R. R., et al. Evaluation of flotation collectors for copper sulfides and pyrite, III. Effect of xanthate chain length and branching[J]. International Journal of Mineral Processing, 1987,21(1-2):141-156.
    [102]Guan F., Zhong H., Liu, G. Y., et al. Flotation of aluminosilicate minerals using alkylguanidine collectors[J]. Transactions of Nonferrous Metals Society of China,2009,19(1):228-234.
    [103]Somasundaran P., Healy T. W., Fuerstenau D. W. Surfactant Adsorption at the Solid-Liquid Interface-Dependence of Mechanism on Chain Length [J]. The Journal of Physical Chemistry,1964,68(12):3562-3566.
    [104]Jiang H., Xu L.H., Hu Y.H., et al. Flotation and adsorption of quaternary ammonium cationic collectors on diaspore and kaolinite[J]. Transactions of Nonferrous Metals Society of China,2011,21(11):2528-2534.
    [105]Jiang, H., Liu, G.R., Hu, Y.H., et al. Flotation and adsorption of quaternary ammonium salts collectors on kaolinite of different particle size[J]. International Journal of Mining Science and Technology,2013,23(2):249-253.
    [106]王淀佐胡岳华.浮选溶液化学[M].长沙:湖南科学技术出版社,1988,27-131.
    [107]Mittal K L, Moudgil B M, Ince D. Role of pH and Collector Concentration in Separation of Phosphates from Dolomitic Gangue Using DDA-HC1[J]. Surfactants in Solution,1989:457-465.
    [108]格列姆博茨基B.A.浮选过程物理化学基础[M].北京:冶金工业出版社,1985,272-276.
    [109]Andrea R., Andries P. B. Factors Affecting the Ionization Efficiency of Quaternary Ammonium Compounds in Electrospray/Ionspray Mass Spectrometr[J]. Rapid Communications in Mass Spectrometry,1991,5(6): 269-275.
    [110]张晓萍.微细粒高岭石与伊利石疏水聚团的机理研究[D].长沙:中南大学,2007.
    [111]Xia L.Y., Zhong H., Liu G.Y., et al. Electron bandstructure of kaolinite and its mechanism of flotation using dodecylamine as collector[J]. Journal of Central South University of Technology,2009,16(1):73~79.
    [112]Lu Z.L., Fu C. Y., Cao X. P. Inhibition performance and adsorption behaviour of dodecylamine on N80 steel in CO2-saturated brine solution[J]. Anti-Corrosion Methods and Materials,2007,54(5):301-307.
    [113]Vidyadhar, A., Hanumantha Rao, K. Adsorption mechanism of mixed cationic/anionic collectors in feldspar-quartz flotation system [J]. Journal of Colloid and Interface Science,2007,306(2):195-204.
    [114]Kou, J., Tao, D., Xu, G. A study of adsorption of dodecylamine on quartz surface using quartz crystal microbalance with dissipation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2010,368(1-3):75~ 83.
    [115]刘亚川,龚焕高,张克仁.十二胺盐酸盐在长石石英表面的吸附机理及pH值对吸附的影响[J].中国矿业,1992,1(2):92-96.
    [116]Dichmann, T. K., Finch, J. A. The role of copper ions in sphalerite-pyrite flotation selectivity [J]. Minerals Engineering,2001,14(2):217-225.
    [117]Chen, J.H., Chen, Y., Li, Y.Q. Effect of vacancy defects on electronic properties and activation of sphalerite (110) surface by first-principles[J]. Transactions of Nonferrous Metals Society of China,2010,20(3):502-506.
    [118]Laskowski, J. S., Liu, Q., Zhan, Y. Sphalerite activation:Flotation and electrokinetic studies[J]. Minerals Engineering,1997,10(8):787-802.
    [119]Yao J., Yin W.Z., Hou Y. Effects of Solution Chemistry on the Flotation of Magnesite, Dolomite and Quartz with Sodium Oleate as a Collector using SEM Analysis[J]. Research Journal of Chemistry and Environment,2013, 17(7):44-49.
    [120]李丽匣,印万忠,冯丹,等.油酸钠体系下铁矿物及石英的浮选性能[J].金属矿山,201 1(8):68-71.
    [121]董宏军,毛钜凡.金属离子对蓝晶石可浮性的影响及机理研究[J].非金 属矿,1996(1):27-29.
    [122]石云良,邱冠周.石英的油酸盐浮选化学[J].有色金属,1999,51(1):31-34.
    [123]Fuerstenau M.C., Raghavan S. Some aspects of the thermodynamics of flotation, in flotation-A.M. Gaudin Memorial Volume[M]. AIME. New YorK:1976.
    [124]James R.O., Healy T. W. Adsorption of hydrolyzable metal ions at the oxide-water interface. Co(Ⅱ) adsorption on SiO2 and TiO2 as model systems[J]. Journal of Colloid And Interface Science,1972,40(1):42-52.
    [125]董宏军,陈荩,毛钜凡.金属离子对红柱石的吸附与活化[J].有色金属,1996,48(2):35-39.
    [126]Fuerstenau, M. C, Han, K. N. Metal-Surfactant Precipitation and Adsorption in Froth FlotationfJ]. Journal of Colloid and Interface Science, 2002,256(1):175-182.
    [127]Sun, Z. X., Willis, F., Chen, J. The SiO2-H2O interface and effects on quartz activation in flotation system [J]. Nonferrous Metals Society of China. Transactions,1992,2(2):16-22.
    [128]Mackenzie J. M. W. Zeta potential of quartz in the presense of ferric ions[J]. AIME Transactions,1966,253(1):82-87.
    [129]王淀佐,邱冠周,胡岳华.资源加工学[M].北京:科学出版社,2005,206-207.
    [130]Ince D. E., Johnston C.T., Moudgil B. M. Fourier Transform Infrared Spectroscopic Study of sorption of Oleic Acid/Oleate on Surfaces of Apatite and Dolomite [J]. Langmuir,1991,7(7):1453-1457.
    [131]Rao, K. H., Cases, J. M., Forssberg, K. S. E. Mechanism of oleate interaction on salt-type minerals:V. Adsorption and precipitation reactions in relation to the solid/liquid ratio in the synthetic fluorite-sodium oleate system[J]. Journal of Colloid and Interface Science,1991,145(2):330-348.
    [132]张琴芝,戴琴,陈方楠.表面活性剂的红外光谱鉴定[J].日用化学工业,1992(2):37-46.
    [133]张国范,鄢代翠,朱阳戈,等.pH对油酸钠在钛铁矿与钛辉石表面吸附的影响[J].中南大学学报(自然科学版),2011,42(10):2898-2904.
    [134]松全元.红外光谱在浮选理论研究中的应用[J].金属矿山,1984(7):53-54.
    [135]冯其明,赵岩森,张国范.油酸钠在赤铁矿及磷灰石表面的吸附机理[J].中国有色金属学报,2012,22(10):2902-2907.
    [136]Leitch J.J, Collins J., Friedrich A.K., et al. Infrared Studies of the Potential Controlled Adsorption of Sodium Dodecyl Sulfate at the Au(111) Electrode Surface[J]. Langmuir,2012,28(5):2455-2464.
    [137]Viana R.B., da Silva A.B., Pimentel A.S. Adsorption of Sodium Dodecyl Sulfate on Ge Substrate:The Effect of a Low-Polarity Solvent[J]. International Journal of Molecular Sciences,2012,13(7):7980-7993.
    [138]张锡凤,殷恒波,程晓农,等.吐温和十二烷基硫酸钠作修饰剂对水热合成法制备纳米铜的影响[J].中国有色金属学报,2006,16(2):327-332.
    [139]周志良,薛玉兰,陈荩.氢氧化铜沉淀浮选中十二烷基硫酸钠作用机理的研究[J].有色金属,1986,38(3):16-20.
    [140]Nedjar Z., Bouhenguel M, Djebaili A. E. Synthesis and Structural Characterization of Xanthate (KEX) in Sight of Their Utilization in the Processe s of Sulphides Flotation [J]. Journal of Minerals & Materials Characterization & Engineering,2009,8(6):469-477.
    [141]Liu, G.Y., Xiao, J.J., Zhou, D. W., et al. A DFT study on the structure-reactivity relationship of thiophosphorus acids as flotation collectors with sulfide minerals:Implication of surface adsorption[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2013,434:243-252.
    [142]Abdel-Khalek N. A., Omar A. M. A., Barakat Y. Relationship of Structure to Properties of Some Anionic Surfactants as Collectors in the Flotation Process.1. Effect of Chain Length[J]. Journal of Chemical & Engineering Data,1999,44(1):133-137.
    [143]俞庆森,朱龙观.分子设计导论[M].北京:高等教育出版社,2000
    [144]Merta, J., Stenius, P. Interactions between cationic starch and mixed anionic surfactants[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1999,149(1-3):367-377.
    [145]Mahieu N., Canet D., Cases J. M., et al. Micellization of sodium oleate in D2O as probed by proton longitudinal magnetic relaxation and self-diffusion measurement[J]. Journal of physical chemistry,1991,4(95):1844-1846.
    [146]Rahman, A., Brown, C. W. Effect of pH on the critical micelle concentration of sodium dodecyl sulphate [J]. Journal of Applied Polymer Science,1983,28(4):1331-1334.
    [147]Khan A. M., Shah S. S. Determination of critical micelle concentration (Cmc) of sodium dodecyl sulfate (SDS) and the effect of low concentration of pyrene on its Cmc using ORIGIN software [J]. Journal-Chemical Society of Pakistan,2008,30(2):186~191.
    [148]余世磊.黄锑矿硫化浮选理论与工艺研究[D].长沙:中南大学,2013

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700