用户名: 密码: 验证码:
面向钛合金铣削的变齿距立铣刀研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金以其优异的综合性能广泛应用于航空航天领域,但是由于它具有导热系数低、高温化学活性高和弹性模量小等特点,因此是一种典型的难加工材料。在切削过程中,大幅度的振动导致刀具磨损加快、表面质量难以控制、切削速度难以提高。同时,由于航空钛合金零部件的结构设计特点,大量的材料需要从整块坯料中去除,急需较高的加工效率。因此,效率和质量之间的矛盾成为制约航空航天制造业发展的瓶颈之一。为了解决航空钛合金易产生振动的问题,本课题以Ti-6A1-4V为加工对象,借助于理论分析和试验研究,对具有减振性能的变齿距铣刀减振机理和结构进行系统、深入地研究,该研究对于提供变齿距铣刀结构和加工参数优化具有重要的理论指导意义,对于增强我国航空航天业的竞争力具有重大的实用价值。
     针对钛合金加工易振动,刀具偏心严重等特点,结合变齿距螺旋立铣刀的结构特点,建立了考虑铣刀偏心和铣刀变形影响的变齿距铣刀三维铣削动力学模型。通过铣削力试验结果,用最小二乘法拟合出铣削力系数,并对铣削力进行了仿真。基于铣削力模型分析了齿间角、螺旋角、轴向切深和径向切深对y向铣削力影响,分析了铣刀偏心对离心力的影响。结果表明:从控制y向铣削力的角度来讲,对于钛合金加工应选择较大的螺旋角、小的径向切深和每转进给量。
     考虑铣削干扰因素影响,建立了变齿距铣刀的铣削动态位移和动态铣削力模型,并根据稳定性条件得到了变齿距铣刀铣削的极限切削深。为了深入研究铣削系统的稳定性,开展了铣削系统的模态试验,根据铣削系统的频响函数得到了铣削系统的模态参数,结合铣削力仿真数据,利用MATLAB软件绘制出铣削系统的颤振稳定性叶瓣图,分析了铣刀结构参数、加工工艺参数及铣削系统模态参数对极限切深的影响,为优化铣刀结构及加工工艺参数提供理论指导。结果表明:选择大的齿间角差、小的径向切宽,大的铣削系统刚度和阻尼有助于增加系统的极限切深,从而有助于增加铣削系统的稳定性区域。
     为了分析铣削过程的异常行为,提出了基于时域、频域和时频域分析的铣削力和振动加速度信号分析方法。采用干铣削顺铣方式开展了铣削速度从80m/min增加到360m/min的钛合金铣削试验,并利用信号分析方法分析了不同铣削速度下的铣削力及加速度信号。比较了稳定和非稳定状况下铣削力、已加工表面质量的不同,得到振动对铣削加工的影响以及铣削加工的最佳铣削速度,从而在保证铣刀寿命和加工表面质量的前提下,提高铣削效率。实验结果表明:当颤振发生时,铣削力增加了61.9%-66.8%,表面质量降低,其表面粗糙度增加了34.2%-40.5%。其时频域分析即小波分析结果表明:颤振频率处切削力幅值对铣削力的贡献较大,因此应当避免颤振。
     基于频谱线能量分布理论分析了变齿距铣刀的减振机理。以芯部直径、螺旋角、前角、后角以及齿间角为影响因子,根据正交试验设计方法设计了25把不同结构参数的螺旋立铣刀,借助于有限元软件ABAQUS进行静力学仿真,利用极差分析得到各结构参数对铣刀应力应变的影响规律;在保证铣刀前角、后角及芯部直径恒定的前提下,改变齿间角及变螺旋角进行静态仿真,得到两者对铣刀应力应变的影响规律。基于频谱线能量分布原则,借助于MATLAB软件仿真优化了变齿距铣刀齿间角分布。结果表明:对于四齿铣刀,最优齿间角为83°-97°-83°-97°和87°-93°-87°-93°;对于直径为20mm的铣刀,铣刀芯部直径在11.4mm-13.4mm之间,铣刀前角为7°-11°之间;铣刀后角不超过20°。变螺旋角360-38°时铣刀有较好的刚度。
     基于变齿距铣刀结构优化分析结果,设计出10种结构的铣刀,进行了钛合金铣削加工试验,分析了因改变铣刀齿间角、螺旋角和增加变槽深结构对铣削加工的性能影响。通过时域、频域和时频域分析了铣刀的结构参数、铣削速度的变化对铣削力与铣刀振动位移的影响,得到了不同参数对铣削性能的影响规律。结果表明:变齿间角对铣刀的抑振效果最好,齿间角差越大,振动位移越小。当铣削速度为120m/min和150m/min时,铣削力激振频率和机床固有频率接近,造成了共振,从而加剧了铣削振动;铣削速度为150m/min时的颤振峰值最大,所有结构的铣刀在此切削速度下均有较大的铣刀振动,推断此振动为共振行为;当铣削速度为180m/min时,铣刀振动位移较小,铣削力也最小,而且其材料去除率最大,因此可推荐为最佳铣削速度。
Titanium alloys are extensively used in aerospace industry due to their excellent performance in aerospace environment. However, it is difficult to machine for their poor thermal conductivity, low elastic modulus and high chemical activation. Vibration and high cutting temperature during machining leads to fast wear of tools and gives poor surface quality of the processed parts at high cutting speed. Simultaneously, most materials need to be removed from roughcast due to the characteristics of component design, so machining cost becomes very high when these parts are processed at low cutting speed. These are some of the constraints in the development of aerospace industry. In order to overcome these constraints, vibration characteristics in machining of titanium alloys Ti-6A1-4V are considered in this study. Vibration minimizing mechanism and structure parameters optimization of variable pitch mill which may significantly support in structural optimization of mills are presented.
     A three dimensional force model for dynamic milling which includes mill eccentricity and deflection is proposed and simulated. Least square method is used for obtaining milling force coefficients by fitting the cutting force data of experiments. Furthermore, the effect of pitch angles, helix angles, the axis depth and the radial depth on milling force is also analyzed; then, the effect of eccentricity on centrifugal force is analyzed. Results show larger helix angle, larger difference value of adjacent pitch angles, small radial depth of cut and small feed are preferred to produce smaller cutting force Fy.
     Dynamic models of displacement and force for variable pitch and variable cutting depth are considered. The effect of different parameters on the limit cutting depth is also analyzed and stability lobe diagram is obtained from MATLAB software. Results indicate that large difference value of adjacent pitch angles, large stiffness, large damping, small radial depth and small feed are significant to produce higher depth of cut.
     Milling force in time, frequency and time-frequency domain is also analyzed. Experiment is carried out at dry, downing milling at variable milling speeds from 80m/min to 360m/min. Quality of titanium parts is compared at stable and unstable cutting and milling speed is optimized by the experimental analysis. The experiment results show that when the chatter occurrence, milling forces were found to increase dramatically by 61.9%-66.8% compared with that of at stable cutting, machining surface quality became poor and machined surface roughness increase by 34.2% -40.5% compared with that of at stable cutting.
     Vibration minimizing mechanism of variable pitch mills is analyzed in frequency domain.25 different types of mills are designed with orthogonal design method. The effects of the core diameter, helix angle, rake angle, clearance angle and pitch angle on the stress and strain are analyzed in FEM simulation software ABAQUS. Pitch angles of variable pitch mills are optimized based on frequency domain in MATLAB. Optimized pitch angles of 83°-97°-83°-97°and 87°-93°-87°-93°are obtained for mills containing 4 cutting edges. Furthermore, the core diameter between 11.4mm and 13.4mm and the rake angle between 7°and 11°for 20mm'diameter mill are found.
     According to the above analysis 10 types of mills with variable pitch angle, variable helix angle and variable groove depth structure are also designed for high-speed milling experiment. The effects of structural parameters of mills and milling speed on milling force and vibration displacement of mills are compared after time domain, frequency domain and time-frequency domain analysis. At last, the effective laws of structural parameters on cutting performance and the optimal milling speed are also presented. Results show that variable pitch have best vibration minimizing effects, and the vibration displacements is smaller when the difference value of adjacent pitch angles is larger; the resonance was produced because the excitation frequency of cutting force close to the machine natural frequency when milling speed are 120m/min and 150m/min, thereby cutting vibration was increased.
引文
[1]E O. Ezugwu, Z.M. Wang. Titanium alloys and their machinability—A review [J]. Journal of Materials Processing Technology,1997,68(3):262-274.
    [2]R.R. Boyer. An overview on the use of titanium in the aerospace industry [J]. Materials Science and Engineering,1996,213 (1-2):103-114.
    [3]成木编著.钛及钛合金铸造[M].北京:机械工业出版社,2005.
    [4]李企芳.难加工材料的加工技术[M].北京:北京科技出版社,1990.
    [5]张春江.钛合金切削加工技术[M].西安:西北工业大学出版社,1986.
    [6]E. Abele, B. Frohlich. High speed milling of titanium alloys [J]. Advances in production engineering & management,2008, (3):131-140.
    [7]C.莱茵斯.皮特尔斯.钛与钛合金[M].北京:化学工业出版社,2003.
    [8]陶春虎,刘庆瑔等.航空用钛合金的失效及其预防[M].北京:国防工业出版社,2003.
    [9]汤立民.飞机结构件的高效数控加工[C].ICHSM,2008:19-36.
    [10]曹春晓.一代新材料,一代大飞机[C].民用飞机制造技术及装备高层论坛,北京,2009.
    [11]C.Leyens, M.peters. Titanium and Titanium alloys [M].2nd ed.,Wiley-VCH Verlag GmbH&Co.KGaA,weinheim,2003.
    [12]L.N. Lopez de lacalle, J. Perez, J. I. Llorente, et al. Advanced cutting conditions for the milling of aeronautical alloys [J]. Journal of Materials Processing Technology, 2000,100(1-3):1-11.
    [13]L. V. Colwell, L J. Quackenbush. A study of high speed milling of titanium alloys-Final report. ORA project 05038 SP-472,1962.
    [14]Molinari, C. Musquar and G. Sutter. Adiabatic shear banding in high speed machining of Ti-6AI-4V:experiments and modeling [J]. International Journal of Plasticity,2002,18(4):443-459.
    [15]R. Komanduri, T.A. Schroeder, D.K. Bandhopadhyay, et al. Titanium: a model material for analysis of the high-speed machining process, advanced processing methods for titanium [J], The Metallurgical Society of ASME,1982:241-256.
    [16]R. Komanduri, W.R. Reed Jr. Evaluation of carbide grades and a new cutting geometry for machining titanium alloys [J]. Wear,1983,92 (1):113-123.
    [17]R. Komanduri. Some clarifications on the mechanics of chip Formation when machining titanium alloys [J]. Wear,1982,76 (1):15-34.
    [18]J. Sun, Y.B. Guo. A new multi-view approach to characterize 3D chip morphology and properties in end milling titanium Ti-6A1-4V [J]. International Journal of Machine Tools and Manufacture,2008,48(12-13):1486-1494.
    [19]陈建岭.钛合金高速铣削加工机理及铣削参数优化研究[D].山东大学博士学位论文,2009.
    [20]姜峰.不同冷却润滑条件Ti6Al4V高速加工机理研究[D].山东大学博士学位论文,2009.
    [21]Y. Shane, Hong, Irel Markus and Woo-cheol Jeong. New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6A1-4V [J]. International Journal of Machine Tools and Manufacture,2001,41 (15):2245-2260.
    [22]E.A. Rahim, H. Sasahara. A study of the effect of palm oil as MQL lubricant on high speed drilling of titanium alloys [J]. Tribology International.2011,44 (3):309-317.
    [23]M. Dhananchezian, M. Pradeep Kumar. Cryogenic turning of the Ti-6A1-4V alloy with modified cutting tool inserts [J]. Cryogenics,2011,51 (1):34-40.
    [24]任开强.高强度钛合金的高速铣削研究[D].南京航空航天大学硕士学位论文,2003.
    [25]L. Z. Man, N. He and K.Wu. Miller wear in milling Ti alloy with nitrogen gas media. Transactions of Nan jing University of Aeronautics & Astronautics [J],2002,19(2): 140-144.
    [26]魏树国,马光锋,钱宇强.BT20钛合金低温铣削试验研究[J].现代制造工程,2005(8):64-65.
    [27]舒彪,何宁.无污染切削介质下钛合金铣削刀具磨损机理研究[J].机械科学与技术,2005,24(4):454-461.
    [28]牟涛.高速铣削钛合金Ti6Al4V的刀具磨损研究[D].山东大学硕士学位论文,2009.
    [29]A.K.M. Nurul Amin, N.V. Talantov. Influence of the instability of chip formation and preheating of work on tool life in machining high temperature resistant steel and titanium alloys [J]. Mechanical Engineering Research Bulletin (Dhaka),1986,9(1): 52-56.
    [30]A.K.M. Nurul Amin, A.F. Ismail and M.K.Nor Khairusshima. Effectiveness of uncoated WC-Co and PCD inserts in end milling of titanium alloy—Ti-6A1—4V [J]. Journal of Materials Processing Technology,2007,192-193:147-158.
    [31]Z.A. Zoya, R. Krishnamurthy. The performance of CBN tools in the machining of titanium alloys [J]. Journal of Materials Processing Technology,2000,100 (1-3): 80-86.
    [32]S. K. Bhaumik, C. Divakar and A. K. Singh. Machining Ti-6A1-4V alloy with Wbn-Cbn composite tool [J]. Materials & Design,1995,16(4):221-226.
    [33]Farhad Nabhani. Machining of aerospace titanium alloys. Robotics and Computer Integrated Manufacturing,2001,17:99-106.
    [34]Z. G. Wang, Y. S. Wong and M. Rahman. High-speed milling of titanium alloys using binderless CBN tools [J]. International Journal of Machine Tools and Manufacture, 2005,45(1):105-114.
    [35]Z.G. Wang, M. Rahman and Y.S. Wong, Tool wear characteristics of binderless CBN tools used in high-speed milling of titanium alloys [J]. Wear,2005,258 (5-6): 752-758.
    [36]M. Rahman, Z.G. Wang and Y.S. Wong. A review on high-speed machining of titanium alloys [J]. JSME international journal,2006,49(1):11-20.
    [37]E.O. Ezugwu, J. Bonney and Y. Yamane. Evaluation of the performance of CBN tools when turning Ti-6A1-4V alloy with high pressure coolant supplies [J]. International Journal of Machine Tools and Manufacture,2005,45, (9):1009-1014.
    [38]E.O.Ezugwu, J. Bonneya, R.B.D. Silvab, et al. Surface integrity of finished turned Ti-6A1-4V alloy with PCD tools using conventional and high pressure coolant supplies [J].International Journal of Machine Tools and Manufacture,2007,47 (6): 884-891.
    [39]S. Basturk, F. Senbabaoglu, C. Islam, et al. Titanium machining with new plasma boronized cutting tools [J]. CIRP Annals-Manufacturing Technology,2010,59(1): 101-104.
    [40]刘鹏,徐九华,冯素玲等.PCD刀具高速铣削TA15钛合金切削力的研究[J].南京航空航天大学报,2010,42(2):224-229.
    [41]刘战强,艾兴,李甜甜等.PCBN刀具加工TC4钛合金的切削加工性[J], 山东大学学报(工学版),2009,39(1):77-83.
    [42]李友生,邓建新,李甜甜,李剑峰.不同刀具材料高速车削钛合金的性能研究[J].武汉理工大学学报,2009,31(15):29-32.
    [43]任军学.球头铣刀结构参数对钛合金铣削表面完整性的影响航空制造技术[J].2010,(1):81-84.
    [44]刘月萍.铣削Ti6A14V刀具刃口钝化研究[D].山东大学硕士学位论文,2010.
    [45]孙杰,李剑峰.钛合金整体结构件加工关键技术研究[J].山东大学学报,2009,39(3):81-88.
    [46]葛茂杰,孙杰,李剑峰.石蜡辅助加固钛合金薄壁件铣削稳定性研究[J].山东大学学报(工学版),2011,41(1):71-77.
    [47]何理瑞.金属切削加工中的振动及其抑制措施分析[J].机床与液压,2009,37(6):249-250.
    [48]R. S. Hahn. On the theory of regenerative chatter in precision grinding operations [J], Trans. ASME, B,1954,76(1):593-597.
    [49]J. Tlusty, L. Spacek. Self-Excited Vibrations in machine tool [J]. Czech. Nakladateistvi, VSAV, Prague,1954.
    [50]邹亚军.基于转子动力学的车削颤振模型建立及其动态特性分析[D].大连理工大学硕士学位论文,2009.
    [51]R.N. Arnold. The mechanism of tool vibration in cutting of steel [J]. Proc. I. Mech. E.,1946,154:261-284.
    [52]T.R. Sisson, R.L. Kegg. An explanation of low speed chatter effects [J]. Trans, ASME,B,1969,91:951.
    [53]J. Tlusty, F. Ismail. Basic non-linearity in machining chatter [J]. Anna. CIPP,1981, 30(1):299-304.
    [54]王跃辉,王民.金属切削过程颤振控制技术的研究进展[J].机械工程学报.2010, 46(7):166-174.
    [55]T. Delio, S. Smith, J. Tlusty, et al. Stiffness, stability, and loss of process damping in high speed machining [C]//American Society of Mechanical Engineers, Production Engineering Division, (Publication), ASME, New York,1990:171-191.
    [56]E.I. Rivin, H.L. Kang. Enhancement of dynamic stability of cantilever tooling structures [J]. International Journal of Machine Tools and Manufacture,1992,32(4): 539-561.
    [57]C.S. Anderson, S.E. Semercigil and O.F. Turan. A passive adaptor to enhance chatter stability for end mills [J]. International Journal of Machine Tools and Manufacture, 2007,47(11):1777-1785.
    [58]S. Haranath, N. Ganesan, B.V.A. Rao. Dynamic analysis of machine tool structures with applied damping treatment [J]. International Journal of Machine Tools and Manufacture,1987,27(1):43-55.
    [59]D.G. LEE, H.Y. HWANG and J.K. KIM. Design and manufacture of a carbon fiber epoxy rotating boring bar [J]. Composite Structures,2003,60(1):115-124.
    [60]费仁元,王民.切削颤振在线监控的研究现状及进展[J].中国机械工程,2001,12(9):1075-1079.
    [61]翁泽宇,鲁建厦,谢伟东等.切削颤振控制研究进展[J].浙江工业大学学报,2002,30(4):323-327.
    [62]于英华,徐兴强,徐平.切削颤振的在线监测与控制研究现状分析[J].振动与冲击,2007,26(1):130-135.
    [63]赵婷婷.切削颤振控制技术的研究现状[J].山东理工大学学报,2006,20(3):107-111.
    [64]李彬,邓建新,张松.高速切削加工稳定性研究的现状和发展趋势[J].制造技术与机床,2008(4):33-36.
    [65]N.D. Sims. Vibration absorbers for chatter suppression: A new analytical tuning methodology [J]. Journal of Sound and Vibration,2007,301(3-5):592-607.
    [66]P.J. Riehle, D. Brown. Machine tool modifications with tuned dampers [J]. S. V. Sound and Vibration,1984,18(1):34-39.
    [67]K.J. Kim, J.Y. Ha. Suppression of machine tool chatter using a viscoelastic dynamic damper [J]. Journal of Engineering for Industry, Transactions ASME,1987,109(1): 58-65.
    [68]T. Aiba, R. Murata, N. Henmi, et al. An investigation on variable-attractive-force impact damper and application for controlling cutting vibration in milling process [J]. Journal of the Japan Society of Precision Engineering,1995.61(1):75-79.
    [69]S. Ema, E. Marui. Suppression of chatter vibration of boring tools using impact dampers [J]. International Journal of Machine Tools and Manufacture,2000,40(8): 1141-1156.
    [70]E. Edhi, T. Hoshi. Stabilization of high frequency chatter vibration in fine boring by friction damper [J]. Precision Engineering,2001,25(3):224-234.
    [71]N. D. Sims, A. Amarasnghe and K.Ridgway. Particle dampers for workpiece chatter mitigation [C]//2005 ASME International Mechanical Engineering Congress and Exposition, New Orleans, LA, USA. New York, USA:ASME,2005:825-832.
    [72]N.H. Kim, D. Won and J.C. Ziegert. Numerical analysis and parameter study of a mechanical damper for use in long slender end mills [J]. International Journal of Machine Tools and Manufacture,2006,46(5):500-507.
    [73]T.R. Comstock, F.S. Tse and J.R. Lemon. Application of controlled mechanical impedance for reducing machine tool vibration [J]. Journal of Engineering for Industry,1969,91(4):1057-1062.
    [74]C. Nachtigal. Design of a force feedback chatter control system [J]. Transactions of the ASME. Series G, Journal of Dynamic Systems, Measurement and Control,1972, 94(1):5-10.
    [75]D.J. Glaser, C.L. Nachtigal. Development of a hydraulic chambered, actively controlled boring bar [J]. Journal of Engineering for Industry, Transactions of the ASME,1979,101(3):362-368.
    [76]N. Tanaka, M. Miyashita, N. Suzuki, et al. On the suppression of self-excited vibration by servo damper [J]. Bulletin of the JSME,1980,23(176):265-272.
    [77]S.G. Tewani, T.C. Switzer, B.L. Walcott, et al. Active control of machine tool chatter for a boring bar: Experimental result[C]//American Society of Mechanical Engineers, Design Engineering Division (Publication), Albuquerque, NM, USA. New York, USA:ASME,1993:103-115.
    [78]S.K. Choudhury, M.S. Sharath. On-line control of machine tool vibration during turning operation [J]. Journal of Materials Processing Technology,1995,47(3-4): 251-259.
    [79]D. Segalman, J. Redmond. Chatter suppression through variable impedance and smart fluids[C]//Proceedings of SPIE-The International Society for Optical Engineering, San Diego, CA, USA. Bellingham, WA 98227-0010, United States, 1996:353-363.
    [80]王民,费仁元.切削系统可变刚度结构及其颤振控制方法的研究[J].机械工程学报,2002,38(增刊):219-222.
    [81]王茂华,于骏一,张永亮.电流变技术在机床颤振控制中应用的研究[J].机械工程学报,2000,36(11):94-97.
    [82]E.I. Rivin, L. Xu. Damping of NiTi shape memory alloys and its application for cutting tools [C]//American Society of Mechanical Engineers, Noise Control and Acoustics Division (Publication), Chicago, IL, USA. New York, USA:ASME,1994: 35-41.
    [83]J. Tlust and M. Polacek. The Stability of machine tools against self exicited vibration in machining [J]. International Research in Production Engineering, ASME,1963: 465-474.
    [84]Y. Altintas, E. Budak. Analytical prediction of stability lobes in milling [J]. Annals of the CIRP,1995,44(1):357-362.
    [85]E.Budak and YAltinatas. Analytical prediction of chatter stability in milling. Part i: General formulation, Part ii:Application of the general formulation to common milling systems [J]. Trans. ASME Journal of dynamic systems, Measurement and control.1998,120:22-36.
    [86]T. Insperger, B.P. Mann, G. Stepan etc. Stability of up-milling and down-milling, part 1:alternative analytical methods [J]. International journal of machine tools and manufacture.2003,43(1):25-34.
    [87]J. Gradisek, M. Kalveram, T. Insperger, et al. On stability prediction for milling [J]. International journal of machine tools and manufacture,2005,209 (5):769-781.
    [88]唐委校.高速切削稳定性及其动态优化研究[D].山东大学博士学位论文,2005.
    [89]E.Budak. Analytical models for high performance milling. Part Ⅱ:Process dynamics and stability [J]. International journal of machine tools and manufacture, 2006,46 (12-13):1489-1499.
    [90]刘安民,彭程,刘吉兆等.高速铣削时颤振的诊断和稳定加工区域的预报[J].机械工程学报.2007,43(1):164-169.
    [91]G.Quintana, J.Ciurana and D.Teixidor. A new experimental methodology for identification of stability lobes diagram in milling operations [J]. International journal of machine tools and manufacture,2008,48(15):1637-1645.
    [92]李忠群,刘强.基于频响函数的高速铣削颤振稳定域快速分析与研究[J].制造技术与机床.2008(4):53-61.
    [93]宋清华.高速铣削稳定性及加工精度研究.[D].山东大学博士学位论文,2009.
    [94]M. Wan, Y.T. Wang, W.H. Zhang, etal. Prediction of chatter stability for multiple-delay milling system under different cutting force models [J]. International journal of machine tools and manufacture,2011,51(4):281-295.
    [95]E. Turkes, S. Orak, S. Neseli et al. Linear analysis of chatter vibration and stability for orthogonal cutting in turning [J]. International Journal of refractory metals and hard materials,2011,29(2):163-169.
    [96]K. Jemielniak, A. Widota. Suppression of self-excited vibration by the spindle speed variation method [J]. International Journal of Machine Tool Design & Research, 1984,24(3):207-216.
    [97]于骏一,吴博达,孟祥龙.变速切削过程中电机电流的变化特征[J].吉林大学学报,1993(2):15-23.
    [98]Y.S. Tarng, T.C. Li, The change of spindle speed for the avoidance of chatter in end milling [J]. International Journal of Materials Processing Technology,1994,41(2): 227-236.
    [99]Y.S. Liao, Y.C. Young. New on-line spindle speed regulation strategy for chatter control [J]. International Journal of Machine Tools and Manufacture,1996,36(5): 651-660.
    [100]M. Pakdemirli, A.G Ulsoy. Perturbation analysis of spindle speed vibration in machine tool chatter [J]. JVC/Journal of Vibration and Control,1997,3(3):261-278.
    [101]Yilmaz, E. Al-Regib and J. Ni. Machine tool chatter suppression by multi-level random spindle speed variation [J]. Journal of manufacturing science and engineering,2002,24:208-216.
    [102]T. Inamura, T. Senda and T. Sata. Computer control chattering in turning operation [J]. Anna. CIPP,1977,25(1):181-186.
    [103]G.D. Vasilyuk. Vibration damping in turning [J]. Sov. Engres,1985,5(12):73-74.
    [104]C.R. Liu, T.M. Liu. Automated chatter suppression by tool geometry control [J]. Journal of Engineering for Industry, Transactions ASME,1985,107(2):95-98.
    [105]梅志坚,杨叔子,昌松等.在线调整刀具前角和后角抑制颤振的原理与试验研究[J].武汉理工大学学报,1989(1):53-61.
    [106]F. Yang, B. Zhang and J. Yu. Chatter suppression with multiple time-varying parameters in turning [J]. Journal of Materials Processing Technology,2003,141(3): 431-242.
    [107]F. Yang, B. Zhang and J. Yu. Chatter suppression via an oscillating cutter [J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME,1999,121(1): 54-60.
    [108]J. Slavicek.The Effect of Irregular Tooth Picth on Stability of Milling.6th MTDR Conference Proceedings, London, Pergamon Press,1965.
    [109]S. K. Choudhury, Jose. Mathew. Investigations of the effect of non-uniform insert pitch on vibration during face milling [J]. J. Mach. Tools Manufact.1995,35 (10): 1435-1444.
    [110]K.Shirase. Cutting Force and Dimensional Surface Error Generation in Peripheral Milling With Variable Pitch Helical End Mills [J]. Int. J. Mach. Tools Manufacture, 1996,36(5):567-584.
    [111]Y. Altmtas, S. Engin and E. Budak. Analytical Stability Prediction and Design of Variable Pitch Cutters [J]. Journal of Manufacturing Science and Engineering.1999, 121:173-178.
    [112]E. Budak. An Analytical Design Method for Milling Cutters with Nonconstant Pitch to Increase Stability, Part I:Theory [J]. Journal of Manufacturing Science and Engineering.2003,125:29-34.
    [113]E. Budak. An Analytical Design Method for Milling Cutters with Nonconstant Pitch to Increase Stability, Part 2:Application [J]. Journal of Manufacturing Science and Engineering.2003,125:35-38.
    [114]S. Turner, D. Merdolb. Modelling of the Stability of Variable Helix End Mills [J]. International Journal of Machine Tools & Manufacture.2007,47 1410-1416.
    [115]N. Olgac, R. Sipahi. Dynamics and Stability of Variable-pitch Milling [J]. Journal of Vibration and Control,2007,13(7):1031-1043.
    [116]A.R. Yusoff, N.D Sims. Optimisation of variable helix end millings tools by minimising self excited vibration [C]//7th International Conference on Modern Practice in Stress and Vibration Analysis, Journal of Physics:IOP Publishing,2009.
    [117]V. Sellmeier, B. Denkena. Stable islands in the stability chart of milling processes due to unequal tooth pitch [J]. International Journal of Machine Tools & Manufacture.2011,51:152-164.
    [118]杜全兴,周汝忠,张继仪.消振节能的新型面铣刀[J].机械.1987,14(4):11-16.
    [119]王满元,陆滨.计算机设计不等齿距端铣刀[J].哈尔滨科技技术大学学报.1987,(1):8-13.
    [120]李辉,刘凤利.新型减振端铣刀的研究.唐山工程技术学院学报[J].1994,16(4):16-22.
    [121]苌浩,何宁,满忠雷.TC4的铣削加工中铣削力和刀具磨损研究[J].机械工程师,2003.39(3):30-33.
    [122]秦旭达,赵剑波,张剑刚等.基于回归法的钛合金(Ti-6A1-4V)插铣铣削力建模分析[J].北京工业大学学报,2006,32(8):737-740.
    [123]万熠.高速铣削航空铝合金刀具失效机理及刀具寿命研究[D].山东大学博士学位论文,2006.
    [124]Zaghbani, V. Songmene. A force-temperature model including a constitutive law for Dry High Speed Milling of aluminium alloys [J]. Journal of Materials Processing Technology,2009,209(5):2532-2544.
    [125]姜峰.钛合金高速铣削动态力建模的新方法[C].全国博士生论坛文集,上海:同济大学出版社,2008.
    [126]H.Z. Li, X.P. Li. Milling force prediction using a dynamic shear length model [J]. International Journal of Machine Tools and Manufacture.2002,42(2):277-286.
    [127]C.L. Tsai, Y. S. Liao. Prediction of cutting forces in ball-end milling by means of geometric analysis [J]. Journal of Materials Processing Technology,2008,205(1-3): 24-33.
    [128]周泽华.金属切削理论[M].北京:机械工业出版社,1992.
    [129]W.J. Endres, R.E. Devor and S.G. Kapoor. A dual-mechanism approach to the prediction of machining forces, Part 1:model development [J]. Journal of Engineering for Industry,1995,117:526-533.
    [130]W.J. Endres, R.E. Devor and S.G. Kapoor. A dual-mechanism approach to the prediction of machining forces, Part 2:calibration and validation [J]. Journal of Engineering for Industry,1995,117:534-541.
    [131]G.V. Stabler. The chip flow law and its consequences [J]. Advances in Machine Tool Design and Research,1964,243-251.
    [132]E.J.A. Amarego, R.C. Whitefield. Computer based modeling of popular machine operations for for and power predictions [J]. Ann. CIRP,1985,34:65-69.
    [133]Y.Altinats. manufacturing automation-metal cutting mechanics, machine tool vibrations, and CNC design [M]. Cambridge:Cambridge University Press,2000.
    [134]Moufki, A. Devillez, D. Dudzinski, et al. Thermomechanical modelling of oblique cutting and experimental validation [J]. International Journal of Machine Tools and Manufacture,2004,44(9):971-989.
    [135]Yusuf Altintas数控技术与制造自动化[M].化学工业出版社,2002.
    [136]杨蕾,史耀耀,杨巧风等.钛合金TC11铣削力分析与建模[J].制造技术与机床,2007(1):35-37.
    [137]J.J. Junz Wang. C.M.Zheng. An analytical force model with shearing and ploughing mechanisms for end milling [J]. International Journal of Machine Tools & Manufacture,2002,42(7):761-771.
    [138]冯志勇,张大卫,黄田.一种新的铣削力模型[J].天津大学学报,1998,31(2)314-320.
    [139]李忠群,刘强.R刀切削力系数辨识及动态切削力建模[J].农业机械学报2008 39(4):207-211.
    [140]杨彬,郑敏利,李振加等.球头铣刀切削力的预报[J].哈尔滨理工大学学报,2001,6(6):20-24.
    [141]张滢,梁万勤,杨者青.球头铣削力模型的建立[J].工具技术.2006,40(8):47-50.
    [142]C.K. TOH. Vibration analysis in high speed rough and finish milling hardened steel [J]. Journal of Sound and Vibration,2004,278(1-2):101-115.
    [143]Y. Ning, M. Rahman and Y.S. Wong. Monitoring of chatter in high speed end milling using audio signals method [C]//HAYHURST D R. Proceedings of the 33rd International MATADOR Conference.Manchester. England:Springer-Verlag New York,2000:421-426.
    [144]李宏德.立铣刀优化设计[J].切削刀具,2007,(5):25-27.
    [145]R. Jalili Saffar, M.R. Razfar, O.Zarei, et al. Simulation of three-dimension cutting force and tool deflection in the end milling operation based on finite element method [J].2008,16(10):1677-1688.
    [146]徐铭,文东辉,戴勇等.PCBN刀具切削中锯齿形切屑形状的动态力识别[J].金刚石与磨料磨具工程,2005,150(6):62-65.
    [147]江涌涛,张春良,胡耀斌等.小波变换在切削颤振特征提取中的应用[J].中国测试技术,2006,32(5):7-15.
    [148]石莉,贾春德,孙玉龙.应用小波研究动态铣削力及预报铣削颤振[J].哈尔滨工业大学学报,2006,38(10):1778-1780.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700