用户名: 密码: 验证码:
BTH和SA诱导甜瓜对白粉病抗性的产生及其作用机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以BTH和水杨酸(SA)作为诱导剂对甜瓜植株叶片进行诱导,研究了诱导剂对植物的诱抗作用,并对其作用机制进行了探讨。经研究表明:BTH和SA是非常有效的植物系统获得抗性诱导剂。
     ①用不同浓度的BTH和SA对甜瓜离体叶片处理并接种甜瓜白粉病菌,通过测试白粉菌孢子的萌发率及其萌发形态,表明:在12.5μg/mL—50μg/mL浓度范围内,BTH和SA对甜瓜白粉病菌孢子的萌发及生长均无抑制作用。因此认为BTH和SA处理甜瓜植株叶片而引起的病叶率、病株率下降和诱导效果上升是由于BTH和SA诱导了甜瓜对甜瓜白粉病的抗性所引起的。
     ②在供试的浓度范围内(12.5μg/mL—50μg/mL),BTH和SA均可以诱导甜瓜对甜瓜白粉病产生一定程度的抗病性,并且随着诱导剂浓度的升高,诱导甜瓜植株获得的抗病性也随之提高。诱导效果最明显的浓度是50μg/mL,但50μg/mL SA对植物有轻微的损伤,25μg/mL SA的诱导效果与50μg/mL SA的诱导效果经方差分析,差异不明显。因而,SA的最佳浓度为25μg/mL,BTH的最佳浓度为50μg/mL。50μg/mL BTH和25μg/mL SA处理甜瓜植株,平均诱导效果分别为86.6%和83.7%。
     ③50μg/mL BTH和25μg/mL SA在不同的挑战接种时间间隔均对甜瓜植株有明显的诱抗效果,但挑战接种的时间间隔对BTH和SA处理甜瓜植株所产生诱导效果的影响不明显,诱抗持久期至少可达17d。
     ④诱导剂对植株产生的诱导效果在一定程度上受植物本身生育期的影响。随甜瓜植株苗龄的增长,50μg/mL BTH和25μg/mL SA的诱导效果略微下降,但变化幅度不大,其中2叶期的诱导效果分别为86.3%和84.5%;4叶期的诱导效果分别为80.4%和79.8%;8叶期为76.6%和75.5%。
     ⑤通过用BTH和SA对甜瓜2叶期幼苗叶片的处理,测定植株叶片体内的β—1,3—葡聚糖酶、过氧化物酶(POD)和苯丙氨酸解氨酶(PAL)活性变化,结果表明:叶片中β—1,3—葡聚糖酶、POD和PAL活性在处理后1天即出现了明显的增强。处理后的7天范围内,β—1,3—葡聚糖酶活性提高了2—4倍,POD活性提高了3—5.5倍,PAL活性提高了3.5—5倍。接种后1天测定,这三种酶活性均有所下降,这与诱导抗病性测定结果一致,即β—1,3—葡聚糖酶、POD和PAL活性越高,诱导剂BTH和SA对甜瓜植株的诱抗效果越好,表明这三种酶参与了植株诱导抗性的表达,并在这方面起着重要的作用,
    
     ⑤通过对诱导剂诱抗效果与D一1,3一葡聚糖酶、POD和 PAL活性的相关性分析,
    结果显示这三种酶的升高程度与 BTH和 SA对甜瓜植株的诱导效果呈正相关。其中以
    POD和 PAL活性与这两种诱导剂诱抗效果最相关,而B—1,3一葡聚糖酶的活性与 SA
    诱抗效果的相关性较差。
     本试验不仅表明了 BTH和 SA可有效的诱导甜瓜抵抗甜瓜白粉病菌的侵染,而且
    证实了甜瓜植株体内的0一1,3一葡聚糖酶、POD和 PAL活性的升高与植物诱导抗性
    ‘是呈正相关的,即其抗病性的产生与p—1,3一葡聚糖酶、POD和 PAL活性的提高有
    很大的关系。这些研究结果将为诱导剂BTH和 SA在大田中的利用和开发提供重要的理
    论参考依据。
引文
?
    
    
    [1] 沈文飚,徐明莱,叶茂柄,水杨酸诱导植物抗病性的新进展[J],生物化学与生物物理进展,1999,26(3):237~240.
    [2] 王伟,康之华,周洪友等,BTH对厚皮甜瓜抗病性的诱导作用研究[J],中国农业大学学报,2000,5(5):48~53.
    [3] 刘彩云,不同硅源制剂对小麦白粉病的作用效果及机理研究,甘肃农业大学硕士研究生论文,2002.
    [4] 云兴富,李荣禧,马立国等,几种化学物质诱导黄瓜对霜霉病的抗性[J],植物保护学报,1997,24(2):159~163.
    [5] 吴岳轩,曾富华,王荣臣,杂交稻对白叶枯病的诱导抗性与细胞内防御酶系统关系的初步研究[J],植物病理学报,1996,26(2):127~131.
    [6] 欧阳光察,薛应龙,植物苯丙烷类代谢的生理意义及其调控[J],植物生理学通讯,1988,3:9~16.
    [7] Kuc J. Concepts and directions of induced systemic resistance in plants and its application [J]. Eur. J. Plant. Pathol, 2001, 107: 7~12.
    [8] Ross A F. Localized acquired resistance to plant virus infection in hypersentive hosts [J], virology 1961, 14: 329~339.
    [9] Ross A. F Systemic acquired resistance induced by localized virus infection in plant [J], virology 1961, 14: 340~358.
    [10] Ryals J. V Neuenschwander and M. G willits et al. Systemic acquired resistance[J]. The plant cell, 1966, 8: 1809~1818.
    [11] Gaumann N. Rimpau R. Phytopathol. Z., 1960, 38: 274.
    [12] Kuc J. In Beiley J A. Deverall N J. (ed.) The Dynamics of Host defence, Acad. Press, Sydney et al., 1983, 191.
    [13] 董合忠,李维江,植物诱导抗病性及其利用[J],莱阳农学院报,2001,18(4):268~273.
    [14] Conrath V. O. Thulke and V. Katz et al. Priming as a mechanism in induced systemic resistance of plant [J]. Eur, J. Plant. Pathol, 2001. 107: 113~119.
    [15] Bernard N. Ann. Sci. Nat. Bot., 1909, 9: 1.
    [16] Kessman H. Staub T Hofmann C. Maetzke T. Herzog J. et al. Induction of systemic acquired disease resistance in plants by chemical [J]. Annu. Rev, Phytopathol 1994, 32: 439~59.
    
    
    [17] Mecht El. Bateman DF. 1964. Nonspecific acquired resistance to pathogens resulting from localized infections by Thielaviopsis basicola or Viruses in tobacco leaves [J]. Phytopathology 54: 523~30.
    [18] Cohen Y. Local and systemic control of Phytophthora infestans in tomato plants by DL —3—Amino—n—butanoic acids[J]. Phytopathology 1994, 84: 55~59.
    [19] Conhen Y. 3—Aminobutyric acid induces systemic resistance against Peronospore tabacina [J]. Physiological and Molecular Plant Pathology 1994, 44: 273~288.
    [20] Conhen Y. Induced resistance against fungal disease by Aminobutyric acids[M]. In: Modern Fungicides and Antifungal Compands. Edited by Lyr H, Russel P. E. and H. D. sisler. Athenaeum Press, UK, 1995, 461~465.
    [21] Conhen Y. M. Reuveni and A. Baider. Local and systemic activity of BABA (DL—3—Aminobutyric acid)against Plasmopara viticola in grapevines [J]. European Journal of plant pathology 1999, 105: 351~361.
    [22] Colson - Hanks.E.S B.J.Deverall.Effects of 2 ,6- dichloroi-sonicotinic acid, its formulation materials and benzothiadiazole on systemic resistance to alternaria leaf spot in cotton. [J]. Plant Pathology, 2000b, 49: 441~456.
    [23] Colson—Hanks E. S S. J. Allen B.J.Deverall. Effects of 2, 6—dichloroisonicotinic acid or benzothiadiazole on alternaria leaf spot, bacterial blight and verticillium wilt in cotton under field conditions [J]. Australasion Plant Pathology, 2000a, 29: 170~177.
    [24] Uknes S. Mauch—Mani B. Moyer M. Potter S. Williams S. et al. Acquired resistance in Arabidopsis[J]. Plant Cell. 1992, 4: 645~56.
    [25] Hwang BK. Heitefuss R. Induced resistance of spring barley to Erysiphe graminis f. sp. Hordei. Phytopathol. Z. 1992, 103: 41~47.
    [26] Gaumann E. Drudk von E. Birkhauser&Cie. AG. Basel, 1951, 412~465.
    [27] Dekker J. 1984, 10th, IPPC 2B-SI.
    [28] Beckman C. H. Phenolic—storing cells: Keys to programmed cell death and peridem formation in wilt disease resistance and in general defense responses in plants[J]. Physiological and Molecular Plant Pathology, 2000, 57: 101~110.
    [29] Bugbee W. M. Vascular response of cotton to infection by Fusarium oxysporum f. sp. Vasinfectum[J]. Phytopathology, 1970, 60: 121~123.
    [30] Smit F. I. A. Dubery. Cell wall reinforcement in cotton hypocotyls in response to a Verticillium dahliae elicitor[J]. Phytochemistry, 1997, 44: 811~815.
    [31] Kessmann H. T. Staub and C. Hofman et al. Induction of systemic acquired disease resistance in plants by chemical [J]. Annual. Review of Phytopathology, 1994, 32: 439~459.
    
    
    [32] Jeun Y. C. J Siegrist and H. Buchenauer. Biochemical and cytological studies on mechanisms of systemically induced resistance to Phytophthora infestans in tomato plants [J]. Joural of Phytopathology, 2000, 148: 129~140.
    [33] Tuzun S. W. Nesmith and R. S. Ferriss et al. Effects of stem injections with Peronospora tabacina on growth of tabacco and protection against blue mold in the field [J]. Phytopathology, 1986, 76: 938~941.
    [34] Van Loon L. C. Induced resistance in plants and the role of pathogenesis—related protein [J]. European Journal of Plant Pathology, 1997, 103: 753~765.
    [35] Dubery Ian A. V. Slater. Induced defence response in cotton leaf disks by elicitors from Verticilium dahliae [J]. Phytochemistry, 1997, 44: 1429~1434.
    [36] Christ V. and E. Mosinger. Pathogenesis—related proteins of tomato: 1. Induction by Phytophthora infestans and other biotic and abiotic inducers and correlations with resistance [J]. Physiology and Molecular Plant Pathology, 1989, 35: 53~65.
    [37] Dong HZ and Y. Cohen. Extracts of killed Penicillium chrysogenum induce resistance against Fusarium wilt of melon [J]. Phytoparasitica, 2001, 29(in press).
    [38] Kuc J. Cellular and Molecular Biology of Plant Strees [M] In: Alan R. Liss Inc. 1985, 303~318.
    [39] 宋从凤,潘小玫,杨悦等,水稻白叶枯病菌及其毒素引起烟草叶片组织坏死机制的研究[J],植物病理学报,1999,29(1):57~62.
    [40] Dixon.R.A. & Harrison.M.J. et.al. Early events in the activation of plant defense response [J]. Annu. Rev. Phytopathol. 1994, 32: 479~501.
    [41] Corders.M.J. Rarent S.D. et.al. Differential expression and induction of chitinases and β-1, 3-guleaneses in response to fungal infection during germination of maize seeds[J]. The American Phytopathological Society, 1994, 7(1): 23~31.
    [42] 吴中伟,朱友林,尚俊军等,植物防卫基因研究进展[J],江西植保,2001,24(1):30~33.
    [43] 梅丽艳,郭梅,李志勇,镰刀菌对玉米青枯病的诱导免疫研究[J],黑龙江农业科学,2000(4):11~13.
    [44] 梁元存,商明清,刘爱新等,病菌激发子诱导烟草抗赤星病的研究[J],山东农业大学学报(自然科学版),2000,31(1):8~10.
    [45] Gottstein HD.Kuc JA. Induction of systemic resistance to anthracnsse in cucumber by phosphates [J], Phytopathology, 1989, 79: 176~179.
    [46] Fernandez E. Hernandez S. Solorzano E. et. al. Effect of different concentrations of NaH_2PO_4 in induction of resistance to Alternaria Solani in tomato [J],
    
    Revistade-Protect-Vegetal, 1996, 11: 113~115.
    [47] Schmider M. Schweizer P. Meuwly P.Metraux JP. Systemic acquired resistance in plants [J], Int.J.Cytol, 1996, 168: 303~340.
    [48] Cherif M. Aselin A. Belanger RR. Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp[J]. Phytopathology, 1993, 82: 236~242.
    [49] Sandermann HJr. Ernst D. Heller W.Langebartels C. Oione: an abiotic elicitor of plant defense reactions [J], Trends in Plant Science, 1998, 3: 47~50.
    [50] Malamy J. Klessing D. F. Plant J. 1992, 2: 643~654.
    [51] White RF. Acetylsalicylic acid(aspirin) induces resistance to tobacco mosaic virus in tobacco[J]. Virology, 1979, 99: 410~412.
    [52] Van Loon L C. The induction of pathogenesis-related protein by pathogens and specific chemicals [J]. Neth J Plant Pathol, 1983, 89: 265~273.
    [53] Malamy J. et.al. Salicylic acid: a likely endogenous signal in the resistance responses of tobacco to virus infection [J]. Science, 1990, 250: 1002~1004.
    [54] Malamy J. Henning J. Klessing D. F. Temperature depended induction of salicylic acid and its conjugates during the resistance response to tobacco mosaic virus infection[J]. Plant Cell, 1992, 359~365.
    [55] Rasmussen J B. Hammerschmidt R. Zook M N. Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae PV. syringae [J]. Plant Physiol, 1991, 97: 1342~1347.
    [56] Bowling S A. Guo A. Cao H. Gordon A S. Klessing D F. Dong X. A mutation in Arabidopsis thay leads to constitutive expression of systemic acquired resistance [J], Plant Cell, 1994, 6: 1845~1857.
    [57] Yalpani W. et. al. Salicylic acid is a systemic signel and an inducer or pathogenesis-related proteins in virus-infected tobacco[J], Plant Cell, 1991, 3: 809~818.
    [58] Chen I. Klessing D F. Identification of a soluble salicylic acid-binding protein that may function in signel transduction in the plant disease resistance response [J], Prol Natl Acad Sci USA, 1991, 88: 8179~8183.
    [59] Chen I. Ricigliano J W. Klessing D F. Purification and characterization of a soluble salicylic acid-binding protein from tobacco [J], Prol Natl Acad Sci USA, 1993,90:9533~9537.
    [60] Neuenschwander U. et. al. Is hydrogen peroxide a second messenger of salicylic acid in systemic acquired resistance[J], Plant J, 1995, 8: 227~233.
    [61] Wagner A M. A role for active oxygen species as second messengers in the induction of
    
    alternative oxidase gene expression in petunia hybrida cell, FEBS Lett, 1995, 368: 339~342.
    [62] Vanlerberghe G G. McIntosh L. Signal regulating the expression of the nuclear gene encoding alternative oxidase of plant mitochondria[J], Plant Physiol, 1996, 111: 589~595.
    [63] 丁秀英,张军,苏宝林等,水杨酸在植物抗病中的作用[J],植物学通报,2001,18(2):163~168.
    [64] 梁元存,刘爱新,植物系统获得抗性中的信号[J],山东农业大学学报(自然科学版),2001,32(1):251~255.
    [65] Uernoojj B. et al. Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction[J]. Plant Cell, 1994, 6: 959~965.
    [66] Mucharromah E. et al. Crop Protection, 1991, 10: 265~270.
    [67] Stemer B A. et al. Mol. Plant Microbe Interaction, 1990, 3: 281~288.
    [68] 张宗申,彭新湘,姜子德等,非生物诱抗剂草酸对黄瓜叶片中过氧化物酶的系统诱导作用[J],植物病理学报,1998,28(1):145~150.
    [69] Pundie CS. et al. Phyochem, 1984, 23: 1871~1874.
    [70] Evans C S. et al. EEMS Micobiology Review, 1994, 13: 235~240.
    [71] Jones A M. Science, 1994, 263: 183~184.
    [72] Mehdy M. Plant Physiol, 1994, 105: 467~472.
    [73] Choi D. Bostock R M. Avdiushko S. et al. Lipid-derived signals that discriminate wound and pathogen-responsive isoprenoid pathways in plants: Mehtyl jasmonate and the fugel elicitor arachidonic acid induce different 3-hydroxy-3-methylglutaryl-coenzyme A reductase genes and antimicrobial isoprenoids in solanium tuberosum Ⅰ[J] Proc Natl Acad Sci, 1994, 91: 2329~2333.
    [74] Sembder G. Parthier B. The biochemistry and the physiological and molecular action of jasmonates [J], Plant Mol Biol, 1993, 44: 569~589.
    [75] Sticher L. et al. Systemic acquired resistance [J], Annu Rev. Phytopathol., 1997, 345: 235~270.
    [76] Gundlach H. et al. Jasmonic acid is a signal transducer in elicitor-induced plant cell culture[J], Prol. Natl. Acad. Sci., 1992, 89: 2389~2393.
    [77] Ryall C. The search for the proteinase inhibitor-inducing factor, PIIF [J], Plant Mol. Biol., 1992, 19: 123~133.
    [78] Cohen Y. et al. Local and systemic protection against phytophthora infestans induced on potato and tomato plants by jasmonic acid and jasmonic methtl ester[J], Phytopathol., 1993, 83: 1054~1062.
    
    
    [79] Penninkx L A M A. et al. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway involoing components of the ethylene and jasmonate acid responses [J], Plant Cell, 1997, 8: 2309.
    [80] 马崇坚,柳俊,谢从华,茉莉酸类物质的功能与胁迫防御[J],华中农业大学学报,2001,20(6):603~608.
    [81] Boller J. Ethylene and plant-pathogen interactions [J], Curr. Top. Plant. Physiol., 1990, 5: 138~145.
    [82] Grosskopf D G. et al. A yeast-derived glycopeptide elicitor and chitosan of digitonin differentially induce ethylene biosynthesis, phenylalanine ammonia-lyase and callose formation in suspension-cultued tomato cells[J], J Plant Physiol., 1991, 138: 741~746.
    [83] Abeleo F B. et al. Preparation and purification of glucanase and chitinae from bean leaves[J], Plant Physiol., 1971, 47: 129~134.
    [84] Mauch F. et al. Ethylene: symptom, not signal for the induction of chitinase and β-1,3-glucanase in peapod, by pathogens and elicitor [J], Plant Physiol., 1984, 76: 607~611.
    [85] Raz V. Fluhr R. Ethylene signal is transducted Via protein phosphorylation events plants [J], Plant Cell, 1993, 5: 523~530.
    [86] O'Donnel P J. et al. Ethylene as signal mediating the wound response of tomato plants [J], Science, 1996, 274: 1914~1917.
    [87] Cohen Y. Gisi V. Mosinger E. Systemic resistance of potato plant against Phytophthora infestans induced by wnsaturated fatty acids [J], Physiol. Mol. Plant. Pathol., 1991, 38: 255~263.
    [88] Cohen Y. Gisi V. System translocation of ~(14)C-DL-3-aminobutiric acid in tomato plants in relation to induced resistance against Phytophthora infestans[J]. Physiol. Mol. Plant. Pathol., 1994, 45: 441~456.
    [89] Cohen Y. 3-Aminobutiric acid induces system resistance against Peronospora tabaina [J]. Physiol. Mol. Plant. Pathol., 1994, 44: 273~288.
    [90] Schlosser E. Systemic Activated Resistance-a new dimension in Plant Protection. Arab. J. PI. 1994, 15(2): 147~149.
    [91] 余迪逑,岑川,李宝健等,植物系统获得抗病性和信号传导[J],植物学报,1999,41(2):115~124.
    [92] Benhamous N. B. & Belanger R. R. Benzothiadiazole-mediated induced resistance to Fusarium oxysporum f.sp.radicis-lycopersici in Tomato[J], Plant Physiol, 1998, 118: 1203~1212.
    [93] 葛银林,李德葆,二硝基苯类化合物对棉花抗枯萎病的诱导作用及机理[J],植物
    
    保护学报,1995,22:62~66.
    [94] 董汉松,植物诱导抗病性原理和研究[M],科学出版社出版,1995,144~159.
    [95] Legrand M. Kauffmann S. Geoffroy P. et al. Biological function of pathogenesis-related proteins: Four tobacco Pathogenesis-related proteins are chitinase [J] Proe Natl Acad Sci USA, 1987, 84: 6750~6754.
    [96] 杜良成,王钧,病原相关蛋白及其在植物抗病中的作用[J],植物生理学通讯,1990,(4):1~6.
    [97] Ernst D. Schraunder M. Langebartels C. Sandermann H. -Jr.Ozone-induced changes of mkNA levels of β-1,3-glucanase, chitinase and pathogenesis-related protein 1b in tobacco plants [J], Plant Mol. Biol. Int. J. Mol. Biol. Biochem. Genet. Eng. 1992, 20: 673~682.
    [98] Friedrich L. Moyer M. Ward E. Ryals J. Pathogenesis-related protein 4 is structurally homologous to the carboxy-terminal domains of hevein, Win-1 and Win-2[J], Mol. Plant Plant-Microbe Mol. Gen. Genet, 1991, 230: 113~119.
    [99] Payne G. Middlesteadt W. Williams S. Dsai N. Parhs T.D. Dincher S. Carnes M. Ryals J. Isolation and nuclotide sequence of a novel cDNA clonc encoding the major from of pathogenesis-related protein R [J], Plant Mol. Biol. Int. J. Mol. Biol. Biochem. Genet. Eng. 1988, 11: 223~224.
    [100] Linthorst H.J.M. Menwissen R.L.J. Kauffmann S. Bol J. F. Constitutive expression of pathogenesis-related proteins PR-1, GRP, and PR-s in tobacco has no effect on virus infection [J], The Plant Cell, 1989, 1: 285~291.
    [101] 李怀方,植物抗病毒侵染的电生理学研究,博士论文,北京农业大学,1992.
    [102] Bol J. F. Linthorst J.M. Cornelissen B.J.C. Plant pathogenesis-related protein induced by virus infection [J],Annu. Rev. Phytopathol., 1990, 28: 113~138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700