用户名: 密码: 验证码:
腐殖酸基水煤浆分散剂的合成、性能及其作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着世界石油资源的日益紧缺和石油价格的不断攀升,煤炭资源的综合利用越来越受到人们的关注,然而煤炭的直接燃烧利用却导致了较低的利用效率及严重的气候恶化和环境污染,水煤浆作为一种煤基“节能减排”流体清洁燃料应运而生。
     水煤浆是煤在水中的粗颗粒分散体系。煤是疏水性物质,水煤浆中的煤粒由于相互之间的疏水作用而易于团聚和沉淀。理想的水煤浆应该在其制备、储存过程中具有较好的稳定性,而在其管道运送和雾化燃烧过程中具有较低的黏度,为了实现这个目的,分散剂的选择使用具有非常重要的意义。
     目前,用于水煤浆的分散剂主要有萘系、木质素系、腐殖酸系、聚烯烃系、聚羧酸盐系、磺化丙酮甲醛缩合物和非离子分散剂等。然而,这些分散剂中的大多数是以石油产品为原料的,不仅价格较高,而且容易产生环境污染。腐殖酸系分散剂由天然产物腐殖酸经改性而制得,具有原料易得、绿色环保、价格低廉、分散性好等优点。然而,由于目前的研究工作仅限于对腐殖酸的硝化、磺化、磺甲基化等初级改性方面,这虽然提高了腐殖酸系分散剂的亲水性和分散性,但由于分散剂相对分子质量依然较小,从而使该类分散剂存在稳定性差的问题。
     本论文通过分散剂分子结构设计,采用接枝共聚和缩合反应两种方法对腐殖酸进行化学改性以合成水煤浆分散剂。首先,以腐殖酸(HA)、烯丙基磺酸钠(SAS)、丙烯酸(AA)、丙烯酰胺(AM)、烯丙醇聚氧乙烯醚(APEG,相对分子质量分别为700,1000,1200,2400)、甲基丙烯酰氧乙基三甲基氯化铵(DMC)等为原料,以过硫酸钾为引发剂,采用水溶液自由基共聚合原理并通过工艺条件优化,合成了七种新型腐殖酸接枝共聚物水煤浆分散剂,即三种二元接枝共聚物——HA-SAS(HAS)、HA-AA(HAA)及HA-AM(HAM);两种三元接枝共聚物——HA-SAS-APEG1000(HSP1000)及HA-AA-APEG1200(HAP1200);两种两性离子型接枝共聚物——HA-SAS-DMC(HSD)及HA-AA-DMC(HAD)。其次,以腐殖酸、甲醛、尿素、亚硫酸钠等为原料,利用磺甲基化及缩合反应合成了两种腐殖酸缩合物分散剂——磺化腐殖酸甲醛缩合物(SHF)和磺化腐殖酸脲醛缩合物(SHUF),并对其合成工艺条件进行了优化。采用FT-IR、GPC、TG及DSC对九种新型腐殖酸基分散剂进行了结构表征和性能测试。以神木煤、沟口煤、彬长煤及霍林河煤为实验用煤,研究了所合成的分散剂对水煤浆分散性和稳定性的影响,探讨了分散剂分子化学结构与水煤浆应用性能之间的相关性。结果表明,各种新型腐殖酸基分散剂的分散及稳定性均优于传统的萘磺酸盐甲醛缩合物(NSF)分散剂。对于接枝共聚物分散剂,适量磺酸基的引入有利于分散剂应用性能的改善,而适量具有一定链长的聚氧乙烯醚及季胺基阳离子基团的引入可进一步提高煤浆的应用性能。此外,利用尿素进行共缩合因可有效改善缩合物分散剂分子链的柔顺性而有利于分散剂应用性能的改善。
     以分散和稳定性能良好而又化学结构不同的HSP1000及HSD分散剂制取神木煤水煤浆(煤浓度为66wt%,分散剂加量为0.5wt%)并研究了其流变学行为。结果表明,HSP1000及HSD水煤浆的表观黏度均随剪切速率的增大显著下降,表现出明显的剪切变稀的假塑性流体特征。以Power-law模型、Bingham模型及Herschel-Bulkley模型对浆体的剪切应力/剪切速率关系进行了拟合,结果表明,HSP1000及HSD水煤浆的流变学行为在Herschel-Bulkley模型下吻合度最高,其拟合相关系数R2分别为0.9857和0.9988。在该模型下,HSD水煤浆的流动特性指数n较HSP1000水煤浆小,表明其具有更为明显的假塑性流体特征。
     研究了九种新型腐殖酸基分散剂在神木煤表面的吸附量、分散剂溶液在煤表面的接触角以及分散剂复合煤粒表面的Zeta电位。结果表明,缩合物分散剂、二元接枝共聚物分散剂及三元接枝共聚物分散剂在神木煤表面的吸附行为均符合Langmuir等温吸附方程,而两性离子型接枝共聚物分散剂服从Freundlich等温吸附方程。两性离子型分散剂具有最大的吸附量,这与其分子中的阳离子基团与煤表面的阴离子基团形成的较强静电引力及其在煤表面易于形成多层吸附有关。所合成的分散剂均能有效降低煤/水界面的接触角,接触角的大小与分散剂分子在煤表面形成的定向排列的紧密程度、分子中亲水基团的亲水性强弱及其数量有关。九种新型分散剂均能有效提高煤粒表面的Zeta电位绝对值,Zeta电位绝对值的高低不仅取决于分散剂分子结构中阴离子基团的种类及其含量,也与分散剂分子链的柔顺性有关。通过SEM对原煤粉和HSD分散剂复合煤粉进行了表面形貌观察,并对分散剂复合煤粉的比表面和孔隙度进行了研究。依据上述测试及分析结果,阐述了不同种类的腐殖酸基分散剂与煤之间的作用机理。
     总之,本论文对腐殖酸基水煤浆分散剂的合成、表征、性能及其与煤之间的作用机理进行了一系列基础性研究,合成了一系列高性能的分散剂,探索了分散剂分子化学结构与水煤浆性能之间的关系,揭示了分散剂分子与煤之间的作用机理,对水煤浆分散剂的分子结构设计及合成具有一定的理论和实践参考价值。
In recent years, with the increasing shortage of petroleum resources andrising price of oil in the world, the comprehensive utilization of coal resources ismore and more interested. However, the direct combustion utilization of coal hasresulted in low efficiency, serious climate deterioration and environmentalpollution. The coal-water slurry (CWS), as a clean coal-based liquid fuel forenergy conservation and emission reduction, has emerged as the times require.
     The CWS is a suspension system of the coarse coal particles in water. Coalis hydrophobic substance, due to hydrophobic interaction, the coal particles inCWS are apt to agglomerate mutually and precipitate. The ideal CWS shouldhave good stability during its manufacture and storage, meantime have a lowviscosity in the process of its pipeline transportation and atomization. To achievethis, the selection of a dispersant plays a very important role.
     At present, the dispersants for CWS include naphthalene series, lignin series,humic acid series, polyolefin series, polycarboxylate series, sulfonatedacetone-formaldehyde and non-ionic dispersing agents etc.. However, most ofthe dispersants are synthesized using petroleum products as raw materials, andnot only have high prices, but also are very harmful to environment. The humicseries dispersants are obtained by modifying natural humic acid, and the rawmaterial for their syntheses are readily available, while they areenvironment-friendly, and have cheap prices and good dispersion properties.Whereas, the current research works on humic acid series dispersants are limitedto the primary modifications of humic acid, such as nitration, sulfonation,sulfomethylation etc.. Despite the modifications will help to improve thehydrophilicity and dispersion performance of humic acid, owing to relativelysmall molecular mass, the dispersants exhibit poor stability.
     The thesis adopts the graft copolymerization and condensation reactions tomodify humic acid for the syntheses of CWS dispersants by dispersant molecularstructure design. Firstly, using humic acid (HA), allylsulfonate (SAS), acrylicacid (AA), acrylamide (AM), allyl alcohol polyoxyethylene ether (APEG,relatively molecular mass is700,1000,1200and2400, respectively) andmethacryloyloxyethyl trimethyl ammonium chloride (DMC) as raw materials,persulfate as initiator, the seven new-style humic acid graft copolymerdispersants have been synthesized, namely, three binary graftcopolymers—HA-SAS (HAS), HA-AA (HAA) and HA-AM (HAM); twotribasic graft copolymers—HA-SAS-APEG1000(HSP1000) and HA-AA-APEG1200(HAP1200); two zwitterionic graft copolymers—HA-SAS-DMC (HSD)and HA-AA-DMC (HAD). Secondly, using humic acid, formaldehyde, urea andsodium sulfite as raw materials, two humic acid condensate dispersingagents—sulfonated humic acid-formaldehyde (SHF) and sulfonated humic acid-urea-formaldehyde (SHUF) have been synthesized by sulfomethylation andcondensation reactions, and the synthesis conditions are optimized. EmployingFT-IR, GPC, TG and DSC, the chemical structures of the nine dispersants arecharacterizated and their performances are also examined. Using Shenmu coal,Goukou coal, Binchang coal and Huolinhe coal as experimental coals, the effectsof the nine dispersants synthesized on the dispersion properties and stabilities ofthe CWSs are investigated, and the relationships between dispersant chemicalstructures and CWS capabilities are also discussed. The experimental resultsshow that the dispersion properties and stabilities of the CWSs prepared from thenine new-style dispersants synthesized are superior to those of the CWSs froman industrialized naphthalene sulfonate formaldehyde condensate (NSF)dispersant. As for a graft copolymer dispersant, the certain amount of sulfonicacid groups introduced in the dispersant molecule could improve the applicationproperties of the dispersant. While the moderate polyoxyethylene chains withspecific length and the quaternary amine cationic groups introduced in the abovemolecule could strengthen further the properties of the dispersant. In addition,the urea introduced in the condensate dispersant molecule may make themolecular chain become flexible, which is helpful to the application properties ofthe dispersant.
     The Shenmu CWSs (coal mass concentration=66wt%and dispersantdosage=0.5wt%) are prepared from HSP1000and HSD with relatively exellentdispersion properties and stabilities, and the rheological behaviors of the CWSshave been examined. The experimental results show that the apparent viscositiesof the CWSs prepared from HSP1000and HSD decrease significantly with anincrease of shear rate, and the CWSs exhibit pseudoplastic shear-thinning fluidcharacteristics. The relationships between shear stresses and shear rates of theCWSs are fitted by the Power-law model, Bingham model and Herschel-Bulkleymodel. The results show that the Herschel-Bulkley model has the highestmatching degree, and the correlation coefficient R2is0.9857and0.9988,respectively. With the model, the flow behavior index n of the CWS from HSDis smaller than that from HSP1000, which shows the CWS from HSD has moreevident pseudoplastic fluid characteristics.
     The adsorption amounts of the dispersants synthesized on Shenmu coalsurfaces, contact angles of the dispersant solutions on the coal surface and zetapotentials of the complex coal particle surface with adsorbed dispersantmolecules, are all investigated. The results show that the adsorption behaviors ofthe condensate dispersants, binary graft copolymer dispersants and tribasic graftcopolymer dispersants, are all according to the Langmuir isotherm equation, andthose of the zwitterionic graft copolymer dispersants are in line with theFreundlich model. The zwitterionic dispersants have the highest adsorptionamounts, which could be related not only to forceful electrostatic interactionbetween the cationic groups in the dispersant molecules and anionic groups ofcoal surface, but also to their multilayer adsorptions on the surface. Thedispersants synthesized could all diminish effectively the contact angles atcoal-water interface, which relies not only on the orientation tightness extent ofthe dispersant molecules adsorbed on the coal surface, but also on the numberand hydrophilic ability of the hydrophilic functional groups in dispersantmolecule. The nine new-style dispersants synthesized may all raise markedly thezeta potential absolute values of coal particle surfaces, which relates to the typeand number of the anionic groups in dispersant molecule, as well as theflexibility of the dispersant molecule. The surface morphology of the raw coalparticles and complex coal particles adsorbing HSD molecules is observed by SEM, while the specific surface and porosity of the complex coal particles is alsoinvestigated. Based on the above test results, the action mechanisms between thedispersants synthesized and coal have been described further.
     In summary, this thesis has studied the syntheses, characterizations,capabilities and action mechanisms of the humic acid-based dispersants for CWS,and a series of high-performance dispersants have been obtained. Therelationships between dispersant chemical structures and CWS capabilities havebeen explored, and the action mechanisms between the dispersants synthesizedand coal have also been disclosed. Therefore, the thesis is of theoretical andpractical significance in research on the molecular structure design and synthesisof a dispersant for CWS.
引文
[1]何国锋,段清兵.水煤浆新技术研发及实践[M].北京:中国石化出版社,2012.
    [2]刘明华.水煤浆添加剂的制备及应用[M].北京:化学工业出版社,2006.
    [3]何国锋,詹隆,王燕芳.水煤浆技术发展及应用[M].北京:化学工业出版社,2011.
    [4]张荣曾.水煤浆制浆技术[M].北京:科学出版社,1996.
    [5] Mishra S K, Kanungo S B. Factors affecting the preparation of highly concentrated coalwater slurry (HCCWS)[J]. J Sci Ind Res,2000,59(10):765-790.
    [6] Zhu S Q, Fu X H, Wang Z N, et al. Study on the influence of wetting heat on coalslurryability[J]. Journal of Coal Science&Engineering,1997,3(1):17-21.
    [7] Zhu S Q, Wang Z N, Zhang W F. The PSD characteristic for different ran of coals and theireffects on slurryability[A].21st Int Tech Conf on Coal Uti&Fuel System[C]. Florida:Clean Water Press,1996,245-248.
    [8] Zhi X H, Zhu S Q, Yang Q W, et al. Research on relationship between the wetting heat andthe slurry-forming ability[J]. Journal of China University of Mining&Technology,2000,10(1):95-98.
    [9] Kaji R, Muranaka Y, Otsuka K, et al. Effect of ions on the rheology of CWM[A].Proceedings seventh international symposiumon coal slurry fuels preparation andutilization[C]. New Orleans: Louisiana Press,1985,16-23.
    [10]邹立壮,朱书全.不同分散剂对煤成浆性的促进作用[J].煤炭学报,2003,28(6):636-640.
    [11]邹立壮,朱书全,王晓玲,等.不同水煤浆分散剂与煤之间的相互作用规律研究X.分散剂在煤粒表面的吸附作用特征[J].燃料化学学报,2006,34(1):10-14.
    [12]邹立壮,朱书全,王晓玲,等.水煤浆分散剂与煤之间的相互作用VIII.木质素磺酸钠对煤的成浆性与水煤浆流变特性的影响[J].应用化学,2005,22(5):479-483.
    [13]邹立壮,朱书全,王晓玲.不同水煤浆分散剂与煤之间的相互作用规律研究VII.酸碱脱灰处理煤的性质变化及其对成浆性的影响[J].燃料化学学报,2005,33(2):134-138.
    [14] Crawford R J, Guy D W, Mainwaring D E. The influence of coal rank and mineral mattercontent on contact angle hysteresis[J]. Fuel,1994,73(5):742-746.
    [15]邹立壮,朱书全,王晓玲.不同水煤浆分散剂与煤之间的相互作用规律研究V.煤在分散剂水溶液中的溶出离子及其对CWS性质的影响[J].燃料化学学报,2004,32(4):400-406.
    [16]朱书全,邹立壮,黄波,等.水煤浆添加剂与煤之间的相互作用规律研究I.复合煤粒间的相互作用对水煤浆流变性的影响[J].燃料化学学报,2003,31(6):519-524.
    [17]贾传凯,谢惠珠.水煤浆燃烧技术的现状与发展[J].洁净煤技术,2011, l7(4):67-69.
    [18]郑福尔,刘以凡,刘明华.利用高浓度印染废水制备水煤浆的研究[J].煤炭工程,2012,(2):85-91.
    [19]高志芳.提质褐煤制浆及配煤成浆特性的研究[D].北京:中国矿业大学,2009.
    [20]李艳昌,程军,刘剑,等.配煤提高神华煤成浆性能的研究[J].煤炭转化,2008,31(4):72-74.
    [21]尹宝华.水煤浆分散剂的研制与性能评价[D].北京:北京化工大学,2003.
    [22]邹立壮,朱书全,王晓玲,等.不同水煤浆分散剂与煤之间的相互作用规律研究Ⅵ.分散剂对水煤浆静态稳定性的影响[J].煤炭转化,2005,28(2):42-47.
    [23] Sayeda G H, Ghuibab F M, Abdoub M I, et al. Synthesis, surface and thermodynamicparameters of some biodegradable nonionic surfactants derived from tannic acid[J].Colloids Surf, A: Physicochem Eng Aspects,2012,393:96-104.
    [24]周志军,李摇响,周俊虎,等.生物质水煤浆及添加剂的研究[J].煤炭学报,2012,37(1):147-153.
    [25]冉千平,刘加平,缪昌文,等.梳形共聚物分散剂侧链长度对浓水泥浆体分散保持性能的影响及机理[J].东南大学学报(自然科学版),2010,40(S2):138-143.
    [26]张光华,郝皓,朱军峰.柠檬酸酯型聚羧酸水煤浆分散剂的合成与研究[J].煤炭科学技术,2011,39(9):121-124.
    [27]黄仁和,曾凡.煤对CWM分散剂吸附性能的研究[J].煤炭转化,1997,20(1):59-65.
    [28]李干佐,房秀敏.表面活性剂在能源和选矿工业中的应用[M].北京:中国轻工业出版社,2002.
    [29]周明松,邱学青,王卫星.水煤浆分散剂的研究进展[J].化工进展,2004,23(8):846-851.
    [30] Tiwari K K, Basu S K, Bit K C, et al. High-concentration coal-water slurry from Indiancoals using newly developed additives [J]. Fuel Processing Technology,2004,85:31-42.
    [31]倭富士樱,藤田修一.萘磺酸甲醛缩合物的制造方法[P].日本专利:200610006327.5,2006-8-9.
    [32]冉宁庆,戴郁菁,朱光,等.亚甲基萘磺酸-苯乙烯磺酸-马来酸盐对水煤浆的分散作用研究[J].南京大学学报(自然科学版),1999,35(5):643-647.
    [33]郭照冰,郑正,吴国光,等.萘油制备新型水煤浆添加剂的研究[J].燃料化学学报,2004,32(5):627-631.
    [34]吴国光,王晓春,刘炯天.水煤浆添加剂NSF制浆试验及其效能的研究[J].中国矿业大学学报(自然科学版),2005,34(6):704-706.
    [35]戴郁菁,何其慧,谢力,等.水煤浆添加剂NDF[J].精细化工,1999,16(S):195-198.
    [36]范丽娟.水煤浆添加剂的研究进展[J].日用化学工业,2002,32(1):46-48.
    [37]李凤起,支献华,梁存珍,等.木质素磺酸盐化学改性及制浆性能研究[J].煤炭加工与综合利用,2000,(2):26-28.
    [38]李淑琴,朱书全,李凤起.木钠接枝丙烯酸添加剂在水煤浆制备中的应用[J].煤炭加工与综合利用,2001,(2):24-25.
    [39]邱学青,周明松,王卫星,等.不同分子质量木质素磺酸钠对煤粉的分散作用研究[J].燃料化学学报,2005,33(2):179-183.
    [40] Zhang Y L, Qiu X Q, Wang W X. Influence of the sodium lignosulfonate surfactant on therheological behavior of coal-water suspensions[J]. Journal of Sichuan University,2005,37(3):42-46.
    [41]任军哲,张安琪,魏辉,等.一种新型聚羧酸系水煤浆分散剂的合成及性能研究[J].陕西科技大学学报(自然科学版),2011,29(2):40-43.
    [42]吴晓华,朱书全,茅晔辉,等.聚羧酸系列水煤浆添加剂的合成及性能研究[J].选煤技术,2007,(4):37-40.
    [43]吴晓华,朱书全,王奇,等.聚羧酸系水煤浆添加剂的合成研究[J].洁净煤技术,2007,13(1):40-46.
    [44]朱雪丹,张光华.聚羧酸系分散剂合成单体对水煤浆性能的影响[J].煤炭科学技术,2010,38(7):122-125.
    [45]朱雪丹,张光华,来智超等.两性聚羧酸系水煤浆分散剂的合成及性能研究[J].选煤技术,2010,(1):20-24.
    [46]张光华,魏辉,费菲等.马来酸型聚羧酸水煤浆分散剂的合成研究[J].选煤技术,2010,(6):5-8.
    [47]王金华.我国煤炭高效洁净利用新技术[J].煤炭科学技术,2012,40(1):18-22.
    [48]苏毅,王世兵,朱书全等.烷基酚聚氧乙烯醚亲水链长度对水煤浆性能的影响[J].过程工程学报,2011,11(3):524-528.
    [49]张佳丽,张如意,谌伦建.腐殖酸类水煤浆分散剂的化学改性研究[J].河南化工,2005,(22):18-21.
    [50]李华民,初茉.风化褐煤腐殖酸水煤浆添加剂的研究[J].煤炭工程,2003,(8):27-28.
    [51]曾凡,高明球,胡坤模,等.高浓度水煤浆添加剂[P].中国专利:91105733.1,1993-3-10.
    [52]潘相卿,曾凡,傅晓燕.腐殖酸类水煤浆添加剂性能与其级分的关系研究(1):分散性能与级分的关系[J].煤炭转化,1999,22(1):38-43.
    [53]孙慈忠.表面活性剂在水煤浆制浆中的应用[J].精细与专用化学品,2002,10(8):17-19.
    [54]王村彦,李克健,史士东.新型水煤浆分散剂——聚苯乙烯磺酸钠的研制[J].煤炭科学技术,1996,(6):24-25.
    [55]张安琪,张光华,任军哲,等.新型聚醚类水煤浆分散剂的合成与性能研究[J].煤炭科学技术,2011,39(7):116-119.
    [56]曾凡.分散剂在煤表面吸附膜厚度的研究[J].中国矿业大学学报,1995,24(2):20-24.
    [57]李永昕,胡奇林,王千杰.不同类型添加剂对灵武煤成浆性的影响规律——灵武煤改质制取高浓度水煤浆研究之三[J].宁夏大学学报(自然科学版),1994,1(1):75-81.
    [58] Maeda S, Ohki A, Gonohara Y, et al. Combined use of cation-masking agent with anionicdispersant for the preparation of high performance CWM[J]. Chemistry Letters,1989,3(9):407-410.
    [59] Atesok G, Dincer H, Ozer M, et al. The effects of dispersants (PSS-NSF) used incoal-water slurries on the grind ability of coals of different structures[J]. Fuel,2005,84(7-8):801-808.
    [60]李寒旭,汤永新,李虎,等.复配添加剂对水煤浆性能的影响[J].淮南工业学院学报,2000,20(4):37-40.
    [61]丁永杰.添加剂的分子结构特性与煤质及水煤浆浆体各性质间的匹配规律研究[D].银川:宁夏大学,2005.
    [62]周霞萍.腐植酸应用中的化学基础[M].北京:化学工业出版社,2007.
    [63] Uyguner C S, Bekbolet M. Evaluation of humic acid photocatalytic degradation byUV-vis and fluorescence spectroscopy[J]. Catalysis Today,2005,1(3-4):267-274.
    [64] Vernon S L, David J. Water chemistry[M]. New York: John Willey&Son Inc,1980.
    [65]高明球,曾凡.腐植酸——木质素类复合水煤浆添加剂[J].腐植酸,1992,(2):6-9.
    [66]张光华,刘龙,韩文静,等.腐殖酸系分散剂合成条件及对水煤浆黏度的影响[J].煤炭科学技术,2012,40(7):120-124.
    [67]张贵才,何小娟,蒋平,等.腐植酸高温堵水剂的制备及评价[J].石油与天然气化工,2006,(4):21-24.
    [68]成绍鑫.面向21世纪的国外腐植酸农业应用研究和技术开发——文献浏览与思考[J].腐植酸,2000,(4):10-12.
    [69]钟桐生.土壤腐殖酸性质及其化学传感器的研究[D].长沙:湖南大学,2009.
    [70]李仲谨,李铭杰,王海峰,等.腐植酸类物质应用研究进展[J].化学研究,2009,20(4):103-107.
    [71]李善祥.腐植酸的研究与开发进展[J].腐植酸,1999,(2):1-5.
    [72]李淑琴,朱书全,黄占斌,等.聚丙烯酸钠/腐植酸型高吸水性树脂的合成与应用[J].石油化工,2004,33(3):24-26.
    [73]朱书全,李淑琴,黄占斌,等. PAMHA型高吸水性树脂的合成与性能[J].西安石油大学学报(自然科学版),2004,19(3):63-65.
    [74]邹立壮,李威,朱书全,等.腐植酸基农林保水生态治理剂及其制备方法[P].中国专利:10105506,2005-9-23.
    [75] Santosa S J, Siswanta D, Kurniawan A, et al. Hybrid of chitin and humic acid as highperformance sorbent for Ni(II)[J]. Surface Science,2007,601(22):5155-5161.
    [76] Santosa S J, Siswanta D, Sudiono S, et al. Synthesis and utilization of chitin-humic acidhybrid as sorbent for Cr(III)[J]. Surface Science,2007,601:5148-5154.
    [77] Luo D, Yu Q W, Yin H R, et al. Humic acid bonded silica as a novel sorbent for solidphase extraction of benzo a pyrene in edible oils[J]. Anal Chim Acta,2007,588(2):261-267.
    [78] Jones K D, Huang W H. Evaluation of toxicity of the pesticides, chlorpyrifos and arsenic,in the presence of compost humic substances in aqueous systems[J]. Journal ofHazardous Materials,2003,103(1-2):93-105.
    [79] Hesketh N, Jones M N, Tipping E. The interaction of some pesticides and herbicides withhumic substances[J]. Analytica Chimica Acta,1996,327(3):191-201.
    [80]宣日成,王琪全,郑巍,等.吡虫啉在土壤中的吸附剂作用机理研究[J].环境科学学报,2000,20(2):198-201.
    [81]李克斌,刘维屏,许中坚,等.灭草松在腐植酸上的吸附及其机理[J].环境科学学报,2002,22(6):754-758.
    [82]叶常明,雷志明,王杏君.丁草胺在土壤中的吸附剂环境物质的影响[J].环境化学,2003,22(1):4-18.
    [83]杨炜春,王琪全,刘维屏.除草剂莠去津在土壤——水环境中的吸附及其机理[J].环境科学,2000,21(4):94-97.
    [84]王琪全,刘维屏.乙草胺和异丙甲草胺在土壤中吸附的研究[J].土壤学报,2000,37(1):95-101.
    [85]李克斌,王琪全,刘维屏.除草剂苯达松与腐植酸作用机理的研究[J].上海环境科学,1998,17(5):18-20.
    [86] Chen C L, Xu D, Tan X L, et al. Sorption behavior of Co(II) on-Al2O3in the presence ofhumic acid[J]. Journal of Radioanalytical and Nuclear Chemistry,2007,273(1):227-233.
    [87] Melamed R, Trigueiro F E, Villas B as R C. The effect of humic acid on mercurysolubility and complexation[J]. Applied Organometallic Chemistry,2000,14(9):473-476.
    [88] David G K, Christopher J M, Marc F B, et al. Metal ion binding by humic acid:application of the NICA-donnan model[J]. Environ Sci Technol,1996,30(5):1687-1698.
    [89]马淞江,李方文.腐植酸树脂处理含重金属离子废水可行性探讨[J].煤化工,2008,22(3):36-38.
    [90]李勇,张东,魏巍.腐植酸树脂的制备及其对Cr(VI)和Cr(III)的吸附性能[J].电镀与精饰,2008,30(3):32-34.
    [91]罗道成,易平贵,陈安国,等.腐殖酸树脂对电镀废水中重金属离子的吸附[J].材料保护,2002,35(4):54-56.
    [92] Ou X X, Quan X, Chen S, et al. Atrazine photodegradation in aqueous solution inducedby interaction of humic acids and iron: photoformation of iron(II) and hydrogenperoxide[J]. J Agric Food Chem,2007,55:8650-8656.
    [93] Liang Y N, David W B, Joan E M, et al. Humic acid effect on pyrene degradation: findingan optimal range for pyrene solubility and mineralization enhancement[J]. AppliedMicrobiology Biotechnology,2007,74(6):1368-1375.
    [94] Laor Y, Rebhun M. Evidence for nonlinear binding of PAHs to dissolved humic acids[J].Environ Sci Technol,2002,36(5):955-961.
    [95] Holman H N, Nieman K, Sorensen D, et al. Catalysis of PAH biodegradation by humicacid shown in synchrotron infrared studies[J]. Environ Sci Technol,2002,36(6):1276-1280.
    [96] Zhang J H, He M C, Shi Y H. Comparative sorption of benzo [] phrene to differenthumic acids and humin in sediments[J]. Journal of Hazardous Materials,2009,166(2-3):802-809.
    [97] Chen H, Berndtsson R, Ma M G, et al. Characterization of insolubilized humic acid andits sorption behaviors[J]. Environ Geol,2009,57:1847-1853.
    [98]陈仙.腐钠处理染色废水研究[J].辽宁工程技术大学学报,2002,21(2):255-256.
    [99] Anirudhan T S, Suchithra P S, Radhakrishnan P G. Synthesis and characterization ofhumic acid immobilized-polymer/bentonite composites and their ability to adsorb basicdyes from aqueous solutions[J]. Applied Clay Science,2009,43:336-342.
    [100]邱广明,邱广亮.改性腐殖酸新型阻垢缓蚀剂的制备及应用[J].工业水处理,2001,21(2):1-3.
    [101]吴敏.国外铅酸蓄电池负极添加剂研究综述[J].蓄电池,2004,41(4):180-185.
    [102]吴寿松.有机膨胀剂使用的一些经验[J].蓄电池,2000,39(4):33-34.
    [103]李炳焕,曹文华.高铁含量风化煤生产铅蓄电池用腐植酸[J].腐植酸,2000,(2):41-45.
    [104]谢楚资.用腐植酸钠生产铅酸蓄电池用腐植酸的研究[J].湖南化工,1997,27(3):45-47.
    [105]石永丽,沈勤长.腐植酸在石油钻井液中的应用[J].腐植酸,1996,(4):1-5.
    [106]舒福昌,史茂勇,向兴金.改性腐植酸合成油基钻井液降滤失剂研究[J].应用化工,2008,9(37):9-10.
    [107]张敬畅,范国辉,曹维良.新型磺化腐植酸钻井液添加剂的研究[J].钻井液与完井液,2007,24(5):1-5.
    [108]金军,王好平.一种改性腐植酸(SAH)钻井液添加剂的研究[J].精细化工,1988,5(1):18-23.
    [109]张广平,杨正宇,杨国仪,等.腐植酸类钻井泥浆添加剂在泥浆中的性质及作用机理研究[J].腐植酸,1990,(1):7-13.
    [110]潘蕾,孙晓然.多功能陶瓷添加剂及腐植酸钠应用[J].江苏陶瓷,2005,38(5):31-34,40.
    [111]周志航,许艳,过旭平.腐植酸树脂的合成及其在铝合金分析中的应用[J].南京化工大学学报,1996,18(4):93-97.
    [112] Li R, Yang D J, Lou H M, et al. Influence of sulfonated acetone-formaldehydecondensation used as dispersant on low rank coal-water slurry[J]. Energy Conversionand Management,2012,64:139-144.
    [113]周明松,邱学青,王卫星,等.水煤浆添加剂磺化丙酮-甲醛缩聚物的合成与性能[J].精细化工,2005,22(3):185-188.
    [114] Das D, Panigrahi S, Misra PK, et al. Effect of organized assemblies. Part4. Formulationof highly concentrated coal-water slurry using a natural surfactant[J]. Energy Fuels,2008,22(3):1865-1872.
    [115]周明松,邱学青,杨东杰.木质素系和萘系分散剂在煤水界面的吸附性能[J].高等学校化学学报,2008,29(5):987-992.
    [116] Das D, Panigrahi S, Senapati PK, et al. Effect of organized assemblies. Part5: Study onthe rheology and stabilization of a concentrated coal-water slurry using saponin of theacacia concinna plant[J]. Energy Fuels,2009,23(6):3217-3226.
    [117]周明松,邱学青,杨东杰,等.不同来源木质素磺酸钠的结构特征及用作水煤浆分散剂[J].化工学报,2006,57(10):2245-2249.
    [118] Senapati P K, Das D, Nayak A, et al. Studies on preparation of coal water slurry using anatural additive[J]. Energy Sources, Part A: Recovery, Utilization, and EnvironmentalEffects,2008,30(19):1788-1796.
    [119]周明松,杨东杰,邱学青.不同来源木质素磺酸钠对水煤浆流变特性的影响[J].高校化学工程学报,2007,21(3):386-391.
    [120] Das D, Dash U, Nayak A, et al. Surface engineering of low rank Indian coals bystarch-based additives for the formulation of concentrated coal-water slurry[J]. EnergyFuels,2010,24(2):1260-1268.
    [121]胡文莉,王玥,邱学青.改性木质素磺酸钠对水煤浆成浆性能的影响[J].煤炭科学技术,2009,37(12):107-112.
    [122]邱学青,周明松,王卫星.改性木质素磺酸盐水煤浆添加剂的性能研究[J].煤炭科学技术,2004,32(11):44-50.
    [123]张光华,尚婷,韩文静,等.马来海松酸醇酰胺的合成及其对神华煤的分散作用[J].精细化工,2012,29(8):827-832.
    [124]张群彩,杨东杰,楼宏铭,等.改性木质素磺酸盐水煤浆添加剂对神华煤制浆性能的影响[J].精细化工,2006,23(3):246-249.
    [125] Zhou M S, Kong Q, Pan B, et al. Evaluation of treated black liquor used as dispersant ofconcentrated coal-water slurry[J]. Fuel,2010,89(3):716-723.
    [126]张娜娜,杨东杰,楼宏铭,等.木质素系高效分散剂对水煤浆制浆性能的影响[J].煤炭转化,2008,31(1):42-47.
    [127] Zhou M S, Qiu X Q, Yang D J, et al. High-performance dispersant of coal-water slurrysynthesized from wheat straw alkali lignin[J], Fuel Process Technol,2007,88:375-382.
    [128]张延霖,邱学青,王卫星.木钠添加剂对水煤浆流变行为的影响研究[J].煤炭转化,2005,28(2):48-52.
    [129]邢其毅,徐瑞秋,周政.基础有机化学(下册)[M].北京:高等教育出版社,1983.
    [130]牛育华,李仲谨,余丽丽,等.从泥炭中提取腐殖酸的工艺及其结构研究[J].安徽农业科学,2009,37(35):17823-17825.
    [131] Li P W, Yang D J, Lou H M, et al. Study on the stability of coal water slurry usingdispersion-stability analyzer[J]. J Fuel Chem Technol,2008,36(5):524-529.
    [132] Dong W L, Se J P, Jong S B, et al. Preparation and characterization ofco al! wa ter! alcohol slurry for efficient entrained-flow gasification[J]. Ind Eng ChemRes,2011,50:59-66.
    [133] Andrzej S, Adam W. The effect of chemicals on the rheology of highly loaned coal waterslurrles (CWS)[J]. Physicochem Probl Miner Process,2012,48(1):141-148.
    [134] Gu T Y, Wu G G, Li Q H, et al. Blended coals for improved coal water slurries[J]. JChina Univ Mining&Technol,2008,18:50-54.
    [135] Wang R K, Liu J Z, Yu Y J, et al. The slurrying properties of coal water slurriescontaining raw sewage sludge[J]. Energy Fuels,2011,25:747-752.
    [136] Boylu F, Atesok G, Dincer H. Effect of coal particle size distribution, volume fractionand rank on the rheology of coal-water slurries[J]. Fuel Processing Technology,2004,85:241-250.
    [137] Zhou M S, Qiu X Q, Yang D J, et al. High-performance dispersant of coal-water slurrysynthesized from wheat straw alkali lignin[J]. Fuel Processing Technology,2007,88:375-382.
    [138]邹立壮,朱书全.不同水煤浆分散剂与煤之间的相互作用规律II.复合煤颗粒间的相互作用对CWM表观粘度的影响[J].化工学报,2004,55(5):775-782.
    [139] Das D, Panigrahi S, Misra P K, et al. Effect of organized assemblies. Part4. Formulationof highly concentrated coal-water slurry using a natural surfactant[J]. Energy Fuels,2008,22(3):1865-1872.
    [140]江红艳.竹浆木质素系高效分散剂在水煤浆中的应用研究[D].广州:华南理工大学,2012.
    [141] Xu R F, Zhuang W, He Q H, et al. Effects of chemical structure on the properties ofcarboxylate-type copolymer dispersant for coal-water slurry[J]. AIChE J,2009,55:2461-2467.
    [142]李俊国,张光华,朱军峰,等.腐殖酸基水煤浆分散剂的制备及性能研究[J].陕西科技大学学报(自然科学版),2014,32(1):95-100.
    [143] Zhang G H, Li J G, Zhu J F, et al. Syntheses and evaluations of three sulfonatedpolycondensate dispersants for coal-water slurries[J]. Powder Technology,2014,254:572-578.
    [144] Misra P K, Dash U, Somasundaran P. Effect of organized assemblies, Part VII:Adsorption behavior of polyoxyethylated nonyl phenol at silica-cyclohexane interfaceand its efficiency in stabilizing the silica-cyclohexane dispersion[J]. Ind Eng Chem Res,2009,48(7):3403-3409.
    [145] Misra P K, Mishra B K, Somasundaran P. Organization of amphiphiles: V. In situfluorescence probing of the adsorbed layers of polyoxyethylated alkyl phenols atsilica-water interfaces[J]. J Colloid Interface Sci,2003,265(1):1-8.
    [146] Das D, Panigrahi S, Senapati P K, et al. Effect of organized assemblies. Part5: Study onthe rheology and stabilization of a concentrated coal-water slurry using saponin of theacacia concinna plant[J]. Energy Fuels,2009,23(6):3217-3226.
    [147] Qiu X Q, Zhou M S, Yang D J, et al. Evaluation of sulphonated acetone-formaldehyde(SAF) used in coal water slurries prepared from different coals[J]. Fuel,2007,86(10):1439-1445.
    [148]邹立壮,朱书全,王晓玲,等.不同水煤浆分散剂与煤之间的相互作用规律研究XI.分散剂改性煤粒的界面性质及其对CWS性质的影响[J].燃料化学学报,2006,34(2):160-165.
    [149]孙振平,赵磊.聚羧酸系减水剂大单体MPEGMA的制备[J].建筑材料学报,2009,12(1):101-105.
    [150]陈小平,周忠群,申迎华,等.聚羧酸系减水剂大单体PEGMAA的制备[J].硅酸盐通报,2010,29(6):1492-1496.
    [151] Zhu J F, Zhang G H, Miao Z, et al. Synthesis and performance of a comblike amphotericpolycarboxylate dispersant for coal-water slurry[J]. Colloids and Surface A:Physicochem Eng Aspects,2012,412:101-107.
    [152] Zhu J F, Zhang G H, Liu G J, et al. Investigation on the rheological and stabilitycharacteristics of coal-water slurry with long side-chain polycarboxylate dispersant[J].Fuel Processing Technology,2014,118:187-191.
    [153]宋金梅.水煤浆用木质素添加剂改性研究[D].北京:中国矿业大学,2012.
    [154]邹立壮,朱书全,支献华,等.不同水煤浆添加剂与煤之间的相互作用规律研究——分散剂用量对水煤浆流变特性的影响(IV)[J].中国矿业大学学报,2004,33(4):370-374.
    [155] Mishra S K, Kanungo S B. Factors affecting the preparation of highly concentratedcoal-water slurry(HCCWS)[J]. J Sci Ind Res,2000,59(10):765-790.
    [156]孙成功,谢亚雄,李宝庆,等.分散剂分子结构特征对煤浆流变特性的影响[J].燃料化学学报,1997,25(3):213-217.
    [157]朱书全,王祖讷.煤浸出液中的阴阳离子测定及其与水煤浆成浆性的关系[J].燃料化学学报,1992,20(1):45-51.
    [158]孙成功,吴家珊,李宝庆.高浓度煤浆的制备和流变性的研究I.改质温度对煤浆性质的影响[J].燃料化学学报,1996,24(2):131-136.
    [159]朱书全.煤的性质对其成浆性影响的研究综述[J].煤炭加工与综合利用,1996,(2):5-8.
    [160]朱书全,詹隆.中国煤的成浆性研究[J].煤炭学报,1998,23(2):198-204.
    [161] Plank J, Hirsch C. Impact of zeta potential of early cement hydration phases onsuperplasticizer adsorption[J]. Cement and Concrete Research,2007,37:537-542.
    [162] Borget P, Galmiche L, Meins J F L, et al. Microstructural characterisation and behaviourin different salt solutions of sodium polymethacrylate-g-PEO comb copolymers[J].Colloids and Surfaces A: Physicochem Eng Aspects,2005,260:173-182.
    [163]吴晓华.聚丙烯酸系列水煤浆添加剂的合成及其应用机理研究[D].北京:中国矿业大学,2009.
    [164]李瑜煜,吴荣标,潘润锦,等.生物质煤浆制备技术研究[J].广东农业科学,2011,(18):149-151.
    [165] Zhou M S, Qiu X Q, Yang D J, et al. Synthesis and evaluation of sulphonatedacetone-formaldehyde resin applied as dispersant of coal-water slurry[J]. EnergyConversion&Management,2007,48:204-209.
    [166] Zhou M S, Pan B, Yang D J, et al. Rheological behavior investigation of concentratedcoal-water suspension[J]. Journal of Dispersion Science and Technology,2010,31:838-843.
    [167] Mishra S K, Senapati P K, Panda D. Rheological behavior of coal-water slurry[J].Energy Sources,2002,24(2):159-167.
    [168] Crawford R J, Mainwaring D E. The infuence of surfactant adsorption on the surfacecharacterisation of Australian coals[J]. Fuel,2001,80(3):313-320.
    [169] Wang W D, Xu Z Q, Chong L Q. Experimental study of coal-water slurry preparationwith printing and dyeing desizing wastewater[J]. J China Univ of Min Technol,2012,41(3):488-492.
    [170] Atesok G, Boylu F, Sirkeci A A, et al. The effect of coal properties on the viscosity ofcoal-water slurries[J]. Fuel,2002,81(14):1855-1858.
    [171] Miao Z Y, Li T T, Meng X L, et al. Effect of Gemini dispersing additive onperformances of coal water slurry prepared from low-rank coal[J]. J China Univ of MinTechnol,2013,42(6):1054-1059.
    [172] Zhou M S, Yang D J, Qiu X Q. Influence of dispersant on bound water content incoal-water slurry and its quantitative determination[J]. Energy Conv Manag,2008,49(11):3063-3068.
    [173] Kakui T, Kamiya H. Effect of sodium aromatic sulfonate group in anionic polymerdispersant on the viscosity of coal-water mixtures[J]. Energy Fuels,2004,18(3):652-8.
    [174] Atesok G, Dincer H, Ozer M, et al. The effects of dispersants (PSS-NSF) used incoal-water slurries on the grindability of coals of different structures[J]. Fuel,2005,84(7):801-808.
    [175] Pawlik M. Polymeric dispersants for coal-water slurries[J]. Colloids Surf A:Physicochem Eng Aspects,2005,266(1):82-90.
    [176] Wang F Y, Zhang R Z, Xu Z Q, et al. Research on preparation and combustionapplication technology of coal-black liquor mixture[J]. China Pulp Pap,2005,24(10):23-27.
    [177] Boylu F, Atesok G, Dincer H. The effect of carboxymethyl cellulose (CMC) on thestability of coal-water slurries[J]. Fuel,2005,84(2):315-319.
    [178] Misra K P, Mishra B K, Somasundaran P. Organization of amphiphiles: Part IV.Characterization of the microstructure of the adsorbed layer of decylethoxylene nonylphenol[J]. Colloids Surf A: Physicochem Eng Aspects,2005,252(2):169-174.
    [179] Misra P K, Dash U, Somasundaran P. Effect of organized assemblies, Part VII:Adsorption behavior of polyoxyethylated nonyl phenol at silica-cyclohexane interfaceand its efficiency in stabilizing the silica-cyclohexane dispersion[J]. Ind Eng Chem Res,2009,48(7):3403-3409.
    [180] Misra P K, Mishra B K, Somasundaran P, Organization of amphiphiles. Part5. In situfluorescence probing of the adsorbed layer of polyoxyethylated alkyl phenols atsilica-water interface[J]. J Colloids Interface Sci,2003,265:1-8.
    [181] Misra K P, Panigrahi S, Somasundaran P. Organization of amphiphiles. Part VIII: Roleof polyoxyethylated alkyl phenols in optimizing of the beneficiation process of ahydrophilic mineral[J]. Int J Miner Process,2006,80:229-237.
    [182] Zhou M S, Qiu X Q, Yang D J, et al. Physicochemical behavior of sulphonatedacetone-formaldehyde resin and naphthalene sulfonate-formaldehyde condensate incoal-water interface[J]. Journal of Dispersion Science and Technology,2009,30:353-360.
    [183] Yang D J, Qiu X Q, Zhou M S, et al. Properties of sodium lignosulfonate as dispersantof coal water slurry[J]. Energy Conversion&Management,2007,48:2433-2438.
    [184]张延霖,邱学青,杨东杰.木钠、改性木钠的微观结构及其在煤表面吸附膜厚度的测定[J].华南师范大学学报(自然科学版),2007,(2):85-88.
    [185]雷西萍,李辉.聚羧酸减水剂支链密度对水泥水化行为的影响[J].硅酸盐通报,2009,28(6):1254-1258.
    [186]段建平,吕生华,高瑞军,等.聚羧酸系减水剂结构与分散性能研究进展[J].混凝土,2011(11):59-66.
    [187]傅乐峰,邓最亮,张毅,等.聚羧酸超塑化剂稳定分散石膏浆体的研究[J].建筑材料学报,2010,13(5):589-594.
    [188]兰自栋.聚羧酸减水剂与改性木质素磺酸钠复配应用研究[J].商品混凝土,2012,(1):31-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700