用户名: 密码: 验证码:
钢筋混凝土结构损伤性能设计及整体抗震能力分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的发展和人民生活水平的提高,人们对建筑结构的抗震性能提出了更高的要求。基于性能的抗震设计方法的提出,使人们对结构的抗震性能更加明确,符合了时代发展的要求。基于性能的抗震设计方法主要特点就是能够根据用户所提出的某个性能指标或多个性能指标的基础上进行相应的结构抗震设计,改变了以往传统的抗震设计思想中抗震性能不明确的特点,即“小震不坏,中震可修,大震不倒”的思想。如何选择一个合适的性能指标来评价结构的地震损伤,是结构基于性能抗震设计的关键问题。由于Park & Ang提出的双参数损伤模型能够综合考虑结构的最大位移响应和累积滞回耗能的耦合作用,在评估结构地震损伤具有一定的先进性,从而被各国学者广泛采用。本文在该模型基础上提出了直接基于地震损伤性能的结构抗震设计思想,并研究了基于该损伤模型的弹塑性反应谱(损伤谱)及其应用;围绕钢筋混凝土结构构件(梁、柱)和非结构构件(填充墙)的损伤特点,结合实际汶川地震的震害调查,分析了非结构填充墙的自身抗震性能和耗能能力以及其对结构整体抗震能力的影响,研究了填充墙的有限元简化分析模型,并采用有限元法对填充墙的面内开裂和面外倒塌进行了模拟和分析;最后提出了基于填充墙失效可控的结构整体抗震能力提升方法。
     本论文具体研究内容如下:
     首先,Park & Ang提出的双参数损伤模型,主要涉及到结构最大位移响应和累积滞回耗能的计算,尤其是累积滞回耗能的计算比较困难;文中从能量原理出发,寻找出结构累积滞回耗能与最大位移响应的关系,从而为损伤模型的简化计算提供了极大的方便;此外,改变了以往“规范设计+损伤验算”的损伤性能设计模式,即这种设计方法,实际上是将规范的弹塑性变形验算转换为损伤性能指标的验算;文中在此基础上,进一步研究了直接基于Park & Ang损伤模型的结构抗震设计方法,从而真正使损伤性能指标能够在结构抗震设计中就起到控制作用。
     其次,在Park & Ang损伤模型的基础上,研究了基于损伤的弹塑性反应谱——损伤谱(简称“R_D谱”)。通过自编程序和大量的计算,回归得到了四类场地R_D谱的计算公式及其拟合参数。R_D谱综合考虑了结构的最大位移响应和结构累积滞回耗能的耦合作用,更加符合结构在实际罕遇地震作用下的行为,相对于以往的仅考虑单一位移(延性)指标或能量指标的弹塑性反应谱,具有一定的先进性。R_D谱与已有研究的R_μ谱定性比较,说明考虑地震动持时作用的重要性和必要性。另外,Pushover分析方法的提出使得弹塑性反应谱从理论研究走向了应用阶段。文中提出了基于R_D谱的能力谱方法,并结合模态Pushover分析,能够方便快速的求得结构的极限位移(延性)能力,可为结构的抗倒塌性能评估提供依据,从而使R_D谱在结构性能评估中得以应用。
     第三,根据5.12汶川大地震的震害调查,结合钢筋混凝土结构的梁柱构件以及非结构构件填充墙的震害特点,分析了填充墙自身的抗震性能和耗能能力以及其对结构整体抗震性能的影响。研究了填充墙的简化计算模型,并针对填充墙的面外倒塌现象进行有限元模拟,说明了考虑填充墙构造措施的重要性。此外,对填充墙的面内开裂问题,同样进行了有限元分析,得到了各砌体强度的填充墙裂缝宽度与结构层间位移角的曲线,从而可为填充墙的抗震性能设计提供依据。
     最后,根据填充墙自身的材料特性和功能需求,给出了失效填充墙的概念,即允许填充墙预先破坏吸收地震能量,保护重要的结构构件,从而增加结构的抗震设防能力;研究了基于填充墙失效的结构整体抗震能力提升方法;为避免填充墙的失效影响结构的使用功能,研究了失效填充墙的可控措施——铅剪切型阻尼器;由于布置了铅阻尼器,使得填充墙的失效得到了有效地保护,从而达到了既使失效填充墙可控又使结构的整体抗震能力得以提升。
With the development of social economy and increasing living level, seismic performance of buildings has been more and more requested by people. Performace-based seismic design (PBSD) theory is then put forwaR_D, and meets the development of times. The performance of buildings is clear accoR_Ding to PBSD theory. The main characteristic of this theory is that seismic design method is refered to one or more definite performance indices offered by the users of buildings, and then the performance of buildings is very definite after being designed. This idea changes the traditional one, i.e.“little earthquake should not damage, middle earthquake can be repaired, and large earthquake could not collapse”. Therefore, how to choose a reasonable performance index is a key problem in PBSD theory. Double-parameter damage model proposed by Park & Ang is widely used in the world because this model both consider the effect of maximum displacement response and the effect of cumulative hysteretic energy of buildings. In this paper, direct damage-based seismic design method is proposed on the basis of Park & Ang damage model. Also, nonlinear earthquake reponse spectra—damage spectra and its application are presented. Due to damaged characteristics of structural components (beams and columns) and nonconstructural components (infill walls), and combining with Wenchuan earthquake investigation, the analysis of infill walls affecting the global seismic capacity is carried out. A method of improving global seismic capacity based on failure of infill walls is also provided.
     The main research contents of this dissertation are as follows:
     Firstly, it is difficult to compute the maximum deformation response and hystertic energy of structure as concerned in Park & Ang damage model, especially for hystertic energy. The relationship between hysteretic energy and maximum deformation response is found on the basis of energy theory. Then, simplifed method of computing both parameters of Park & Ang damage model is presented. Furthermore, the former design mode as“designed by code and checked by damage index”is changed, which changed the check of the maximum deformation into damage index. Then, direct damage-based seismic design theory is advocated accoR_Ding to this damage theory, and indeed makes damage index functional during the seismic design.
     Secondly, inelastic damage spectra based on Park & Ang damage model is researched, called“R_D spectra”. AccoR_Ding to the matlab program and a large amount of computing, the formula and regressive parameters of four kinds of R_D spectra are obtained. R_D spectra can consider both the effect of maximum displacement response and the effect of cumulative hysteretic energy of buildings. It is more advanced than the former response spectra which either considers effect of the maximum deformation (ductility) or energy effect, and more suitable for the inelastic behavior of buildings subjected to rare earthquake action. It is very important to consider the duration of ground motion by comparing R_D spectra with R_μspectra. Furthermore, inelastic response spectra can be used to estimate the deformation performance of buildings combining with the pushover analysis. Therefore, R_D spectra can be conveniently used to estimate the ultimate deformation (ductility) capacity of buildings with pushover analysis in the PBSD theroy, referred as collapse performance.
     ThiR_Dly, accoR_Ding to 5.12 Wenchuan earthquake investigation and combining with typical damaged characteristics of structural components (beams and columns) and nonconstructural components (infill walls), the analysis of infill walls affecting the global seismic capacity is carried out. Simplified FE analytical model of infill walls is also presented. After that, collapse process is simulated by Ansys/Lsdyna software as for out-of-plane problems of infilled frame. The results show that it is very important to consider the construction measures of infill walls to prevent from collapse. Furthermore, as for in-plane cracking problems, FE method is also conducted and the curves of cracking width of different kinds of masonry infills vs. storey drift angle of frame are obtained. The obtained results can be applied to
     PBSD for infilled frames in the future. Finally, the concept of allowed failure of infills (AFIs) is provided accoR_Ding to the fragile material character of infill walls and the function of buildings. AFIs are damaged and absort the earthquake energy first to protect the important structural components, and then increase the seismic fortification capacity of buildings. Hence, a method of improving the global seismic capacity of buildings is advocated by considering the function of AFIs. Also, damage control measure is researched in oR_Der to avoid the bad function of buildings due to damage of AFIs, i.e. Lead shearing damper is used to protect AFIs. After putting lead dampers, not only AFIs are protected, but also the global seismic capacity of buildings is improved.
引文
1王亚勇.我国2000年抗震设计模式规范展望.第五届全国地震工程会议论文集(I). 1998
    2 Y.J. Park, A. H-S Ang. Mechanistic Seismic Damage Model for Reinforced Concrete. Journal of Structural Engineering. 1985, 111(4):722-739
    3 Y.J. Park, A. H-S Ang. Seismic Damage Analysis of Reinforced Concrete buildings. Journal of Structural Engineering. 1985, 111(4): 740-756
    4 A M. Chandler, N.T.K Lam. Performance-based Design in Earthquake Engineering: a Multidisciplinary Review, Engineering Structures. 2001, 23:1525-1543
    5 A.Ghobarah. Performance-based Design in Earthquake Engineering: State of Development. Engineering Structures. 2001, 23: 878-884
    6 R. D. Bertero, V.Vertero. Performance-based Seismic Engineering: the Need for a Reliable Conceptual Comprehensive Approach, Earthquake Engineering & Structural Dynamics. 2002, 31: 627-652
    7 A M. Chandler, P. A. Mendis. Performance of Reinforced Concrete Frames Using Force and Displacement Based Seismic Assessment Methods, Engineering Structures. 2000, 22: 352-363
    8王亚勇.我国2000年工程抗震实际模式规范基本问题研究综述.建筑结构学报. 2000, 21(1): 2-4
    9王光远等著.工程结构与系统抗震优化设计的实用方法.中国建筑工业出版社, 1999
    10谢礼立.抗震性态设计和基于性态的抗震设防.大型复杂结构的关键科学问题和设计理论研究论文集.大连理工大学出版社. 2000, 5: 26-34
    11谢礼立,马玉宏.控制人员伤亡的抗震设防标准的决策模型.大型复杂结构的关键科学问题和设计理论研究论文集.同济大学出版社, 2001, 9: 309-320
    12周锡元.基于功能的建筑抗震设计概念和实施方略,大型复杂结构的关键科学问题和设计理论研究论文集(1999).大连理工大学出版社, 2000, 5: 354-360
    13周锡元,曾德民,叶献国,王国权.结构抗震性能设计的可靠度评价.大型复杂结构的关键科学问题和设计理论研究论文集(2000).同济大学出版社, 2001, 9: 356-363
    14程耿东,李刚等.面向二十一世纪的结构抗震设计的实用方法.中国建筑工业出版社, 1999
    15李刚,许林,程耿东.基于ANSYS软件的大型复杂结构可靠度分析.大型复杂结构的关键科学问题和设计理论研究论文集(2000),同济大学出版社, 2001, 9: 309-320
    16程耿东,李刚.基于功能的结构抗震设计中一些问题的探讨.建筑结构学报, 2000, 21(1): 4-10
    17 G. Li, G. D. Cheng. Optimal Decision for the Target Value of Performance Based Structural System Reliability. Structural and Multidisciplinary Optimization. 2001, 22(4): 261-267
    18 G. D. Cheng, G. Li and Y.Cai. Reliability-based structural optimization ender hazaR_D loads. Structural Optimization.1998,16:128-135
    19钱稼茹,罗文斌.建筑结构基于位移的抗震设计.建筑结构, 2001, 4: 3-6
    20马宏旺,吕西林.建筑结构基于性能抗震设计的几个问题.同济大学学报, 2002, 30(12): 1429-1434
    21李应斌,刘伯权,史庆轩.基于结构性能抗震设计理论研究与展望.地震工程与工程振动, 2001, 21(4): 9-15
    22谢晓健,蒋永生,梁书亭,许巍.基于结构功能设计理论的发展综述.东南大学学报(自然科学版). 2000, 30(4): 9-15
    23张新培.基于性能的抗震结构设计理论的若干进展.四川建筑科学研究. 2001, 2791: 24-35
    24 Structural Engineering Association of California (SEAOC). Performance Based Seismic Engineering of Buildings, April, 1995
    25 Federal Emergency Management Agency (FEMA). Performance-based Seismic Design of Buildings. FEMA Report 283, September, 1996
    26 Federal Emergency Management Agency (FEMA). NEHRP Guidelines for the Seismic Rehabilitation of Building Seismic Safety Council, FEMA Report 273, 1997
    27 Applied Technology Council (ATC). Seismic Evaluation and Retrofit of Existing Concrete Buildings. ATC 40, 1996
    28 H.Yamanouchi. Performance-based Engineering for Structural Design of Buildings. Building Research Institute. Japan, 2000
    29谢晓健,蒋永生,梁书亭等.基于结构功能设计理论的发展综述.东南大学学报(自然科学版). 2000, 30(4): 9-15
    30吕大刚,王光远.基于损伤性能的抗震结构最优设防水准的决策方法.土木工程学报. 2001, 34(1): 44-49
    31梁兴文,田野,瞿岳前.基于能量分析法的地震损伤性能智能优化设计.工业建筑. 2005, 35(6): 5-10
    32蒋建,丁建.框架结构直接基于损伤性能的抗震设计方法研究.结构工程师. 2006, 22(1): 6-10
    33何浩祥,闫维明,周锡元.基于性能的钢混框架结构多元模糊地震损伤评估.工程抗震与加固改造. 2006, 28(1): 100-106
    34孙彬,牛荻涛.在役结构基于能力谱方法的抗震性能评估.世界地震工程. 2006, 22(1): 9-15
    35雷鸿君,缪升,王爱文.钢筋混凝土结构构件的震害损伤失效分析.昆明理工大学学报. 2001, 26(2): 43-46
    36李宏男,何浩祥.利用能力谱法对结构地震损伤评估简化方法.大连理工大学学报. 2004, 44(2): 267-271
    37欧进萍,何政,吴斌,龙旭.钢筋混凝土结构的地震损伤控制设计.建筑结构学报. 2000, 21(1): 63-71
    38欧进萍,何政,吴斌,邱法维.钢筋混凝土结构基于地震损伤性能的设计.地震工程与工程振动. 1999, 19(1): 21-30
    39欧进萍,何政,吴斌,龙旭,邹向阳.振戎中学食堂楼耗能减震分析与设计(II)—能力谱法与地震损伤性能控制设计.地震工程与工程振动. 2001, 21(1): 115-122
    40欧进萍,邹向阳,吴斌,潘凯云,王凤霞,张杰民.振戎中学食堂楼耗能减震分析与设计(I)—反应谱法.地震工程与工程振动. 2001, 21(1): 109-114
    41吕大刚.基于最优设防荷载和性能的抗灾结构智能优化设计研究.哈尔滨建筑大学博士学位论文.1999: 9-11
    42 G.H.Powell and R.Allahabad. Seismic Damage Prediction by Deterministic Method: Concept and Procedures. Earthquake Engineering and Structural Dynamics. 1988,16
    43 H. Babon. Seismic Damage in Reinforced Concrete Frames. ASCE, 1981, 107(ST9)
    44杜修力,欧进萍.建筑结构地震破坏评估模型.世界地震工程. 1991, 7(3): 52-58
    45 P. Fajfar. Equivalent Ductility Factors Taking into Account Low-cycle Fatigue. Earthquake Engineering and Structural Dynamics. 1992, 21
    46 E. Cosenza, G.Manfredi. A Seismic Design Method Including Damage Effect. In: 11th European Conference on Earthquake Engineering. Paris, 1998
    47 Chai Y.H., Romstad K.M., and S.M. BiR_D. Energy-based Linear Damage Model for High-intensity Seismic Loading. Journal of Structural Engineering. 1995, 121(5): 857-864
    48 Y.J. Park, A. H-S. Ang and Y.K.Wen. Damage-limiting a Seismic Design of Buildings. Earthquake Spectra. 1987, 3(1): 1-26
    49牛荻涛,任利杰.改进的钢筋混凝土结构的双参数地震破坏模型,地震工程与工程振动. 1996, 16(4): 44-54
    50欧进萍,牛荻涛,王光远.多层非线性抗震钢结构的模型动力可靠性分析与设计,地震工程与工程振动. 1990, 10(4): 27-37
    51 Y. Nakamura, T.Kabeyasawa. A Study on Maximum Inelastic Displacement of Responses Based on Characteristic of Earthquake Motion. J. Struct. Engng. 1997, 43(B): 485-491
    52胡冗冗,王亚勇.地震动瞬时能量与结构最大位移反应关系研究.建筑结构学报. 2000, 21(1): 71-76
    53肖明葵,白绍良,赖明等.基于滞回耗能的抗震结构最大位移反应.重庆大学学报. 2003, 26(3): 133-137
    54 Y. LiePing, O. Shunsuke. Maximum Seismic Displacement of Inelastic System Based on Energy Concept. Earthquake Engineering and Structural Dynamics. 1999, 28, 1483-1499
    55朱建华,沈蒲生.基于能量原理的钢筋混凝土框架结构层间弹塑性位移求解.工程抗震与加固改造. 2005, 27(5): 01-04
    56陈光华.地震作用下多层剪切型结构弹塑性位移反应的简化计算.建筑结构学报. 1984, 5(1): 45-57
    57高小旺.地震作用下多层剪切型结构弹塑性位移反应的实用计算方法.土木工程学报. 1984, 17(3): 79-87
    58何广乾,魏琏,戴国莹.论地震作用下多层剪切型结构的弹塑性变形计算.土木工程学报. 1982, 15(3): 10-19
    59《建筑抗震设计规范》(GB50011-2001).北京:中国建筑工业出版社, 2001
    60叶燎原,潘文.结构静力弹塑性分析(push-over)的原理和计算实例.建筑结构学报. 2000, 21(1): 37-43
    61钱稼茹,罗文斌.静力弹塑性分析——基于性能/位移抗震设计的分析工具.建筑结构. 2000, 30(6): 23-26
    62 FEMA 273. NEHRP Commentary on the Guidelines for the Rehabilitation ofBuildings. Federal Emergency Management Agency, Washington, D.C. September, 1996
    63 FEMA 274. NEHRP Guidelines for the Rehabilitation of Buildings. Federal Emergency Management Agency, Washington, D.C. September, 1996
    64 Fajfar P and Gaspersic P. The N2 Method: the Seismic Damage Analysis of RC Buildings. Earthquake Engineering and Structural Dynamics. 1987, 15: 91-104,
    65 ATC-40. Seismic Evaluation and Retrofit of Concrete Buildings. Applied Technology Council. Red Wood City, California, 1996
    66 S. A. Freeman, J. P.Nicoletti and Tyrell. Evaluation of Existing Buildings for Seismic Risk—A Case Study of Puget Sound Naval ShipyaR_D Bremerton. Procceedings of 1st U.S. National Conference on Earthquake Engineering, Washington, Earthquake Engineering Research Institution, 1975:113-122
    67 A.K.Chopra and B.K.Goel. Capacity-Demand-Diagram Methods for Estimating Seismic Deformation of Inelastic Structures: SDOF Systems. Report No. PEER-1999/02. Pacific Earthquake Engineering Research Center. University of California at Berkeley, 1999
    68刘大海,杨翠如,钟锡根.高层建筑抗震设计.北京:中国建筑工业出版社, 1993
    69欧进萍,牛荻涛,杜修力.设计用随机地震动的模型及其参数确定.地震工程与工程振动. 1991, 11(3): 45-53
    70 T. Vidic, P. Fajfar and M. Fschinger. Consistent Inelastic Design Spectra: Strength and Displacement. Earthquake Engineering & Structural Dynamics. 1992, 23:507-521
    71 Y. J. Park, A. M. Reinhorn, S. K. Kunnath. IDARC: Inelastic Damage Analysis of Reinforced Concrete Frame-shear-wall Structures. Report No. NCEER-87-0008, State University of New York at Buffalo, 1987
    72 FEMA 274. NEHRP Guidelines for the Rehabilitation of Buildings. Federal Emergency Management Agency, Washington, D.C. September, 1996
    73 Chopra, A. K. Dynamics of Structures: Theory and Applications to Earthquake Engineering (2nd edition), New Jersey: Prentice Hall, 2000
    74 A. M. Reinhorn, R. E. Valler and S. K. Kunnath. IDARC 2D version 6.1: user’s guide. State University of New York at Buffalo, 2006
    75周云,宗兰,张文芳等.《土木工程抗震设计》.北京:科学出版社, 2005
    76 A.S.Veletos, N.M. Newmark. Effect of Inelastic Behavior on the Response of Simple Systems to Earthquake Motion. 2WCEE, 1960
    77 N.M. Newmark, W.J. Hall. Earthquake Spectra and Design.EERI MonographSeries. Earthquake Engineering Research Institute. Okakland. California. USA. 1982
    78 H. Krawinkler, A.A.Nassar. Seismic Design Based on Ductility and Cumulative Damage Demands and Capacities. Nonlinear Seismic Analysis and Design of Reinforced Concrete Buildings.Fajfar and Krawinkler, ed. Elsevier Applied Science. New York.USA.1992: 23-40
    79 E. Miranda. Site-dependent Strength-reduction Factors. Journal of Structural Engineering. 1993, 119(12): 3503-3519
    80 E. Miranda and V.V. Bertero. Evaluation of Strength Reduction Factor for Earthquake-resistance Design. Earthquake Spectra.1994, l0(2): 357-379
    81 T.Vidic, P. Fajfar and M. Fischinger. Consistent Inelastic Design Spectra: Strength and Displacement. Earthquake Engineering and Structural Dynamics, 1994, 23(3): 507-521
    82 B.Borzi and A.S. Elnashai. Refined Force Reduction Factors for Seismic Design. Journal of Engineering Structures. 2000, 22(5): 1244-1260
    83卓卫东,范立础.结构抗震设计中的强度折减系数研究[J].地震工程与工程振动. 2001, 21(1): 84-88.
    84翟长海,公茂盛等人.工程结构等延性地震抗力谱研究[J].地震工程与工程振动. 2004, 2(1): 22-30
    85吕西林,周定松.考虑场地类别与设计分组的延性需求谱和弹塑性位移反应谱.地震工程与工程振动. 2004, 24(1): 39-48
    86陈聃.抗震结构的延性谱.清华大学抗震抗爆工程研究报告集.清华大学出版社, 1980
    87韦承基.弹塑性结构的位移比谱.建筑结构学报. 1983, 1: 40-48
    88肖明葵,王耀伟等人.抗震结构的弹塑性位移谱.重庆建筑大学学报. 2000, 22(增刊): 34-40
    89 G.W. Housner. Behavior of Structures During Earthquakes. J. of the Engrg. Mech. Div. ASCE. 1959, 85(4)
    90 G.W. Housner. Limit design of Structures to Resist Earthquakes, Proc. of first World Conf. on Earthquake Engrg., Berkerly, CA,1956
    91 P. Fajfar, T. Vidic and M. Fischinger. Seismic Demand in Medium and Long-term Period Structures. Earthquake engrg. and Struct. Dyn. 1989,18
    92 V.V.Bertero, C. M.Uang. Issues and future directions in the use of an energy approach for seismic-resistant design of structures, Nonlinear Seismic Analysis and Design of Reinforced Concrete Buildings, Ed. by P. Fajfar, and H.Krawinkler. Elsever Applied Scinece. 1992
    93 P. Fajfar, T. Vidic. Consistent Inelastic Design Spectra: Hysteretic and Input Energy. Earthquake Engineering and Structural Dynamics.1994,23
    94程民宪,陈聃.考虑结构低周疲劳特性的地震反应谱.地震工程与工程振动. 1988, 8(4): 67-77
    95周云,周福霖.耗能减震体系的能量设计方法.世界地震工程. 1997, 13(4): 7-13
    96周云,徐彤,周福霖.耗能与减震结构的能量分析方法研究与应用.地震工程与工程振动. 1999, 19(4): 133-139
    97周云,徐彤,贺明玄.基础隔震结构的能量分析设计方法.地震工程与工程振动. 2000, 20(3): 116-122
    98肖明葵,刘刚等人.抗震结构的滞回耗能谱.世界地震工程. 2002, 18(3): 110-115
    99肖明葵.基于性能的抗震结构位移及能量的分析方法.重庆大学博士论文. 2004
    100 P. Fajfar. Capacity Spectrum Method Based on Inelastic Demand Spectra. Earthquake Eng. Stru. Dyn. 1999, 28: 979-993
    101 A. K.Chopra, R.K. Goel. Direct Displacement-based Design: Use of Inelastic vs. Elastic Design Spectra. Earthquake Spectra. 2001, 17(1): 47-64
    102 E.Miranda, J. Ruiz-Garcia. Evaluation of Approximate Methods to Estimate Maximum Inelastic Displacement Demands. Earthquake Eng. Stru. Dyn. 2002, 31(3): 539-560
    103 A.K. Chopra, R.K. Goel. A Modal Pushover Analysis Procedure to Estimate Seismic Demands for Unsymmetric-plan Buildings. Earthquake Engineering and Structural Dynamics. 2004, 33:903-927
    104 J.J. Bommer, A.Martinez-Pereira. The Effective Duration of Earthquake Strong Motion. J Earthquake Eng. 2006, 26(1):1-13
    105 A.K.Chopra, R.K. Goel. Direct Displacement-based Design: Use of Inelastic vs. Elastic Design Spectra . Earthquake Spectra. 2001, 17(1):47-64
    106 A.K.Chopra, R.K.Goel. Capacity-demand-diagram Methods for Estimating Seismic Deformation of Inelastic Structures: SDOF systems. Report NO. PEER-1999/02. Pacific Earthquake Engineering Research Center. University of California at Berkeley, 1999.
    107 D.Vamvatsikos, C.A.Comell. Incremental Dynamic Analysis. Earthquake Engineering and Structural Dynamics. 2002, 31(3): 491-514
    108中国地震局灾害应急救援司.汶川8.0级地震烈度分布图. 2008年8月29日, http://www.cea.gov.cn
    109中华人民共和国建设部.建筑地震破坏等级划分标准. 1990,建抗字第377号
    110 Computer and Structures Inc (CSI). SAP 2000V11 User Manual. California: Computers and Structures Inc. (CSI), 2007
    111刘玉姝,李国强.带填充墙钢框架结构抗侧力性能试验及理论研究.建筑结构学报. 2005, 26(3): 78-84
    112朱荣华,沈聚敏.砖填充墙钢筋混凝土框架拟动力地震反应试验及理论分析.建筑结构学报. 1996, 17(4): 27-34
    113 A.A. Chaker, A.Cherifati. Influence of Masonry Infill Panels on the Vibration and Stiffness Characteristics of RC Frame Buildings. Earthquake Engineering and Structural Dynamics. 1999, 12(3): 1061-1065
    114曹万林,王光远,吴建有等.轻质填充墙异形柱框架结构层刚度及其衰减过程的研究.建筑结构学报. 1995, 16(5): 20-31
    115曹万林,庞国新.轻质填充墙异型柱边框架抗震性能研究.地震工程与工程振动. 1997, 15(2): 106-112
    116黄靓,施楚贤,熊辉.带砌体填充墙结构在地震作用下的安全性质疑.建筑结构. 2005, 35(3): 57-65
    117 S.V. Polyakov. On the Interactions between Masonry Filler Walls and Enclosing Frame When Loaded in the Plane of the Wall. Translations in Earthquake Engineering. EERI. San Francisco. 1960, 36-42
    118 M.Holmes. Steel Frames with Brickwork and Concrete Infilling. Proceedings of the Institution of Civil Engineers. 1961, 19(6501): 48-60, 473-478
    119 B.S. StaffoR_D. Behavior of Square Infilled Frames. Journal of the Structural Division. Proceedings of American Society of Civil Engineers, 1996, 92(ST1): 56-70
    120 A.W.Hendry. Structural Masonry. Second Edition. London: Mac Millan Education, 1969: 31-43
    121 A.Saneinejad, B.Hobbs. Inelastic Design of Iinfilled Frames. Journal of Structural Engineering. 1995, 121(4): 634-650
    122 R.D. Flanagan, R.M. Bennett. In-plane Behavior of Structural Vlay Tile Infilled Frames. Journal of structural Engineering. 1999, 125(6): 590-599
    123 W.W.El-Dakhakhni, E.Mohamed and A.Ahmad. Three-strut Model for Concrete Masonry-infilled Steel Frames. Journal of Structrual Engineering. 2003, 129(2): 177-185
    124 A.Madan, A.M.Reihorn. Modeling of Masonry Infill Panel for Structural Analysis. Journal of Structural Engineering. 1997,10(123): 1295-1302
    125 B.S. StaffoR_D, C. Carter. A Method of Analysis for Infilled Frames. Proceedings of the Institute of Civil Engineers. 1969,44(2): 31-48
    126 A.B.Mehrabi, P.B. Shing. Experimental Evaluation of Masonry-infilled RC Frames. Journal of Structural Engineering. 1996, 122(3): 228-237
    127 A.B. Mehrabi, P.B. Shing. Finite Element Modeling of Masonry-infilled RC Frames. Journal of Structural Engineering. 1997, 123(5): 604-613
    128《混凝土结构设计规范》(GB50010-2002).中国建筑工业出版社, 2009,北京
    129杨伟军,施楚贤.砌体受压本构关系研究成果的述评.四川建筑科学研究. 1999, 3: 52-55
    130王庆霖等.砌体结构.北京:中国建筑工业出版社, 1995
    131杨伟,侯爽,欧进萍.汶川地震填充墙对结构整体抗震能力的影响.大连理工大学学报. 2009, 49(5): 754-757
    132侯爽,杨伟.汶川地震都江堰城市填充墙震害分析.大连理工大学学报. 2009, 49(5): 754-757
    133 Klingner and VV. Bertero. Infilled Frames in Earthquake-resistant Construction. Report EERC176-32. Earthquake Engineering Research Center, University of California, Berkeley, CA, USA. 1976
    134 V.V. Bertero, S. Brokken. Infills in Seismic Resistant Building. Journal of Structural Engineering. 1983, 109(6): 1227-1361
    135 Schmidt T. Experiments on the Nonlinear Behavior of Masonry Infilled Reinforced Concrete Frames. Darmstadt Concrete, Annual Journal on Concrete and Concrete Structures. 1989, 4: 185-194
    136 A.B. Mehrabi, P.B. Shing, Schuller MP, et al. Experimental Evaluation of Masonry-infilled R/C Frames. Journal of Structural Engineering, 1996, 122(3): 228-237
    137 P.B. Shing and A.B. Mehrabi. Behavior and Analysis of Masonry-infilled Frames. Prog. Struct. Engng. Mater. 2002, 4: 320-331
    138《砌块结构设计规范》(GB50003-2001).北京:中国建筑工业出版社, 2009
    139朱志华.砌体结构裂缝处理的若干办法.科技信息. 2006, 7: 62-63
    140陈建兰,马晓华.砌体结构裂缝的分析与处理方法.安徽建筑. 2005, 3: 36-37
    141 Klingner and VV. Bertero. Infilled Frames in Earthquake-resistant Construction.Report EERC176-32. Earthquake Engineering Research Center, University of California, Berkeley, CA, USA. 1976
    142 V.V. Bertero and S.Brokken. Infills in Seismic Resistant Building. Journal of Structural Engineering. 1983, 109(6): 1227-1361
    143 T. Schmidt. Experiments on the Nonlinear Behavior of Masonry Infilled Reinforced Concrete Frames. Darmstadt Concrete, Annual Journal on Concrete and Concrete Structures. 1989, 4: 185-194
    144 A.B. Mehrabi, P.B. Shing, M.P. Schuller, et al. Experimental Evaluation of Masonry-infilled R/C Frames. Journal of Structural Engineering. 1996, 122(3): 228-237
    145张炎圣,马千里,陆新征,叶列平.填充墙震害数值模拟与对策讨论.汶川地震建筑震害调查与灾后重建分析报告. 2008
    146朱荣华,沈聚敏.砖填充墙钢筋混凝土框架拟动力地震反应试验及理论分析.建筑结构学报. 1996, 17(4): 27-34
    147段宇博,欧进萍.基于可靠度约束的高层建筑结构优化设计.自然灾害学报. 1995, 4(增刊): 57-63
    148叶燎原,潘文.结构静力弹塑性分析(push-over)的原理和计算实例.建筑结构学报. 2000, 21(1): 37-43
    149 D.Vamvatsikos, C.A.Comell. Incremental Dynamic Analysis. Earthquake Engineering and Structural Dynamics, 2002, 31(3): 491-514
    150周云,周福霖,邓雪松.铅阻尼器的研究与应用.世界地震工程. 1999, 15(1): 53-61
    151彭凌云,闫维明,何浩祥.板式剪切型阻尼器的试验研究及有限元模拟.振动与冲击. 2010, 29(1): 184-187
    152李冀龙,欧进萍.铅剪切阻尼器的阻尼力模型与设计.工程力学. 2006, 23 (4): 67-73
    153周云,吴从晓,邓雪松.铅粘弹性阻尼器的开发、研究与应用.工程力学. 2009, 26(增刊II): 80-90
    154刘猛.新型铅阻尼器与预应力装配式框架节点抗震性能研究.北京:北京工业大学, 2008
    155北京金土木软件技术有限公司,中国建筑标准设计院. SAP2000中文版使用指南.北京:人民交通出版社, 2006
    156 S.V. Polyakov. On the Interactions Between Masonry Filler Walls and Enclosing Frame When Loaded in the Plane of the Wall. Moscow: Translations in Earthquake Engineering Research Institute.1956:125
    157 A.Madan, A.M. Reinhorn and R.E. Valles. Modeling of Masonry Infill Panels for Structural Analysis. Journal of Structural Engineering. 1997, 123:1295-130

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700