用户名: 密码: 验证码:
地下供水管线破坏试验及抗震分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为生命线系统工程的重要组成部分,城市供水管网不但在城市生产生活中发挥重要的作用,也为震后救灾的顺利进行提供重要的功能保障。我国属于地震多发国家,存在随时发生地震灾害以及由此引起次生灾害的危险。同时,我国大部分城市的生命线系统抗灾能力较差。加强对地下管线的抗震研究,对提高我国城市的防灾减灾能力意义重大。
     本文在综合分析了现有国内外相关研究的基础上,对城市地下供水管网的两种主要管材——柔性接口塑料管和球墨铸铁供水管的抗震性能进行了较为全面、系统的研究。
     论文主要研究内容包括:
     (1)阐述了课题研究的目的、意义,介绍了国内外供水管网研究的发展历程,对地下供水管线抗震计算的国内外研究发展水平做出综述,对当前地下供水管线抗震研究的必要性和存在的问题进行了总结、归纳和分析;
     (2)对地震灾区供水管线的破坏形态进行了调查,总结了地下管线的地震破坏特点,论述了地下供水管线的地震反应分析方法;
     (3)对地下塑料及球墨铸铁供水管道进行了考虑有无覆土、有无水压情况下的静载拉拔试验。分别论述、分析了试验中结构破坏特点与特征;
     (4)在试验研究基础上,对两种管材的接口力学性能进行分析,给出了不同情况下力和位移的关系式,并进行了误差分析;
     (5)以200mm和315mm两种管径的塑料管道为例,计算了管道在7度、8度和9度地震力作用下的抗震可靠度,给出了可供工程实际应用的设计建议;
     (6)对地下球墨铸铁供水管线的抗震功能进行了分析。根据试验结果给出了球墨铸铁管地震后管内水压变化与接口位移关系曲线,建立了拟合模型。
As an important part of the lifeline systems engineering, the urban water supply network not only plays an important role in a city's productive lifestyles, but also provides a kind of functional support for post-earthquake relief. Earthquake disaster which always results in the secondary danger exists at any moment in China, as one of the earthquake-prone countries. At the same time, the lifeline systems have poor capacity to resist disasters in the most cities of China. Therefore, it is significant to enhance the seismic study of underground pipelines for improving the capacity of disaster prevention and mitigation of our cities.
     In this academic thesis, on the basis of a comprehensive analysis at home and abroad, there is a more comprehensive and systematic research for seismic performance of the flexible plastic pipes used of the interfaces and the ductile iron water pipes which are the two main pipes of the urban underground water supply network. All the research is according to urgent needs for basic study of urban earthquake disaster prevention and for the actual situation of China's urban underground water-supply systems.
     Major researches in the thesis are as the following:
     (1) Explained the purpose of the research, significance, introduced the historical development of water supply pipe network, and given a general idea about the level of research and development of the underground water supply pipeline seismic calculation both at home and abroad, but other than that, conducted a summary, synthesis and analysis of the current seismic study of underground water pipes;
     (2) Investigated the failure modes of water supply pipeline under earthquake, and expounded the seismic response analysis method of the underground water supply pipeline;
     (3) Studied the plastic water supply pipes and ductile iron pipes in the systematic static load axial tensile in the soil or not in the soil, analyzed the characteristics and features of structural damage in the water test and non-water test;
     (4) Based on the pilot study, made an analysis of mechanical properties of the interface between two kinds of pipe, and given a relationship between force and displacement type under different circumstances, at the same time, conducted error analysis;
     (5) Studied the reliability of underground pipeline interface displacement. Take two kinds of 200mm and 315mm diameter plastic pipe as an example, the calculation of seismic reliability of the pipeline in 7 degrees,8 degrees and 9 degrees under the action of seismic forces, even provided the practical recommendations of engineering design;
     (6) Analyzed the seismic features in underground ductile iron water pipes. Shown a curve of displacement of interface and pressure changes of the ductile iron pipe after the earthquake according to the test results, and then proposed a fitting model.
引文
[1]Ariman, T.,and Muleski, G.E. A review of the response of buried pipelines under seismic excitations[J]. Int. J of Earthquake Engineering Structural Dynamics,VOL.9,1981.133-151.
    [2]L. R. L. Wang, Yaw-Huei Yeh. Damage behavior statistics of Lifeline systems around the world during earthquakes [J]. April,1983.
    [3]高田至郎.地震工学[M].共立出版社,1991.
    [4]Duke C.M.D. F.Moran. Eatthquake and city lifelines. San Fernando Earthquake of Feb.9.1971 and public policy[C]. Jiont committee on Seismic Safety of the California Legislature.1972.
    [5]城市公用设施抗震设计规范编制组.辽宁海城、营口地震城市公用设施震害调查报告[R].1975.
    [6]刘恢先.唐山大地震震害[M].北京:地震出版社,1986.
    [7]唐山市自来水公司.北京市政研究所,唐山市给水设施震害调查[M].1976.
    [8]徐鼎文.唐山市区地下给水管网震害,唐山地震震害[M]..北京:地震出版社,1986.
    [9]佟恩宠.唐山大地震天津市工程震害[M]..天津科技出版社,1984.
    [10]Ayala,A.G., M.J.O/Rourke. Effects of the 1985 Michoacan earthquake on water systems in Mexico[C].Nation Center for earthquake Engineering Researth, Buffalo, New York,1989.
    [11]EERI.Loma Prieta earthquake reconnaissance report[C].Earthquake spectra,1990.
    [12]Northridge Earthquake, January 17,1994 preliminary Reconnaissance Report [R]. EERI.1994,94-101.
    [13]Hisashi, Sumitomo etc. System analysis of earthquake damage on water supply networks in Kobe City, Proceedings of the 4th International Symposium on Water Pipe Systems[C].1997, 137-145.
    [14]孙绍平.阪神地震中给水管道震害极其分析[J]..特种结构,1997,14(2):51-55.
    [15]戚务柏,叶燎原,王亚勇,地下管线震害等级的模糊评定[J].工程抗震,1997,1(3):28-31.
    [16]台湾地区建筑师协会.集集大地震考察报告[R],1999
    [17]The Chi-Chi.Taiwan Earthquake of September 21,1999:Reconnaissance Report[C]. MCEER,2000.
    [18]韩阳.城市地下管网系统的地震可靠性研究[D].大连:大连理工大学,2002.
    [19]Ariman, T, and Muleski, G E, A review of the response of buried pipelines under seismic excitations[J]. Int.J.of Earthquake Engineering Structural Dynamic,1981,(9)133~151.
    [20]屈铁军,王前信.地下管线多点地震激励纵向振动的级数解[J]..地震工程与工程振动,1993,13(4):39-46.
    [21]A Zerva, A H S Ang, Y K Wen. Lifeline response to spatially variable ground motion[J]. Earthquake engineering & structural dynamics.1988,16(3):361-379.
    [22]N M Newmark. Problems in wave propagationin soil and rock. proc. of international symposium on propagation and dynamic properties of earth materials. Albuquerque, New Mesico,1967,7~26.
    [23]O'Rourke T D, Tawfik M S. Effects of Lateral Spreading on Buried Pipelines During the 1971 San Fernando Earthquake[J]. PVP-Vol.77, ASME,1983:124-132.
    [24]Liang J, Sun S. Site Effects on Seismic Behavior of Pipelines:A Review, Journal of Pressure Vessel Technology [J]. ASME,2000,122(4):469-475.
    [25]Ariman T, Muleski G E. A Review of Seismic Response of Buried Pipelines Under Seismic Excitations [J]. Earthquake Engineering and Structural Dynamics,1981,9:133-151.
    [21]Newmark N M, Hall W J. Pipeline Design to Resist Large Fault Displacement, Proceedings of U. S. Conference on Earthquake Engineering[C]. Ann Arbor,1975:416-425.
    [27]Shinozuka M, Koike T. Estimation of Structural Strains in Underground Lifeline Pipes[J]. PVP-Vol.34, ASME,1979:31-48.
    [28]Nelson I, Weidlinger P. Dynamic seismic analysis of long segmented lifeline[J]. J of Pressure Vessel Technology,1979,110(1):10-20.
    [29]Wang L R L. Yeh Y H. A Refined Seismic Analysis and Design of Buried Pipelines for Fault Movement[J]. Earthquake Engineering and Structural Dynamics,1985,13:75-96.
    [25]O'rourke T D, Lane P A. Liquefaction hazards and their effects on buried pipelines[R]. Conell University, Technical Report, NCEER-89-0007,1989.
    [31]Kitaura M, Miyajima M. Experimental Analysis on Dynamic Behavior of Underground Structure in the Liquefaction Process, Proceedings of JSCE,306:1-10,1981
    [32]Kitaura M, Miyajima M. Experimental Study on Strain Characteristics of Underground Pipe[C].Liquefaction, Proceedings of JSCE,1982,323:43-53.
    [33]Hamada M, Kubo K, Saito, K. Large Ground Displacement and Pipe Failure by Soil Liquefaction[C].1983 Nihonkai-Chubu Earthquake, PVP-Vol.98-4, ASME,1985:11-18.
    [34]Nishio N. Mechanism of Pipeline Failures Caused by Soil Liquefaction[C] the 1983 Nihonkai-Chubu Earthquake, Proceedings of JSCE,1997,556:53-63.
    [35]Nishio N, Tsukamoto K, Hamura, A. Model Experiment on the Seismic Behavior of Buried Pipeline in Partially Liquefied Ground[C]. Proceeding of JSCE,1987,380:449-458.
    [36]Matsushita, Makoto. Technical Council on Lifeline Earthquake Engineering Monograph,1999, 1(16):978-987.
    [37]Scawthorn, Charles; Johnson, Gayle S.; Porter, Keith. Seismic reliability assessment of critical lifeline equipment[C]. Technical Council on Lifeline Earthquake Engineering Monograph,1999,1(16):207-216.
    [38]Toprak, Selcuk; O'Rourke, Thomas D.; Tutuncu, Ilker. GIS characterization of spatially distributed lifeline damage[C].Technical Council on Lifeline Earthquake Engineering Monograph,1999,1(16):110-119.
    [39]Kameda, Hiroyuki. Urban lifelines under seismic environment-developments and lessons learned from Kobe[J]. Water Supply,2000,18(3):22-33.
    [40]Kameda, Hiroyuki. Engineering management of lifeline systems under earthquake risk[R].Bulletin of the New Zealand National Society for Earthquake Engineering,2000, 33(3):248-264.
    [41]Han, Yang; Sun, Shaoping. A disjoint algorithm for seismic reliability analysis of lifeline networks[J].Earthquake Engineering and Engineering Vibration,2002, 1(2):207-212.
    [42]Werner, Stuart D.; Taylor, Craig E. Component vulnerability modeling issues for analysis of seismic risks to transportation lifeline systems[C].Technical Council on Lifeline Earthquake Engineering Monograph,2002, 1(22):78-104.
    [43]Cagnan, Z.; Davidson, R. Post-Earthquake Lifeline Service Restoration Modeling[C]. Technical Council on Lifeline Earthquake Engineering Monograph,2003, 1(25):255-264.
    [44]Hosseini, Mahmood; Shemirani, Leila Niazi.The Role of Urban Planning and Design in Lifeline-Related Seismic Risk Mitigation[C].Technical Council on Lifeline Earthquake Engineering Monograph,2003, 1(25):779-788.
    [45]Hosseini, Mahmood.Developing the First National Code for Gas Lifeline System in Iran: Possibilities and Challenges[C].Technical Council on Lifeline Earthquake Engineering Monograph,2003, 1(25):349-358.
    [46]Honegger, Douglas G.; Laatsch, Edward M.; Sheckler, Timothy D. The American Lifelines Alliance Progress in the Development of National Consensus Guidelines for the Design of Lifeline Systems for Natural and Manmade Hazards[C]. Technical Council on Lifeline Earthquake Engineering Monograph,2003,1(25):318-326.
    [47]Jones, S.L.; O'Rourke, T.D.; Stewart, H.E.; Billington, S.L. Large-Displacement Soil-Structure Interaction Facility for Lifeline Systems[C]. Technical Council on Lifeline Earthquake Engineering Monograph,2003,4(25):936-945.
    [48]Nojima, Nobuoto; Sugito, Masata. Development of a Probabilistic Assessment Model for Post-Earthquake Residual Capacity of Utility Lifeline Systems[C]. Technical Council on Lifeline Earthquake Engineering Monograph,2003, 1(25):707-716.
    [49]Campbell, Kenneth W.; Seligson, Hope A. Quantitative Method for Developing Hazard-Consistent Earthquake Scenarios[C]. Technical Council on Lifeline Earthquake Engineering Monograph,2003,2(25):829-838.
    [50]Brunsdon, David; Evans, Noel. Integrating Lifelines Engineering with Emergency Management:The New Zealand Approach[C].Technical Council on Lifeline Earthquake Engineering Monograph.2003, 1(25):29-38.
    [51]Bird,Juliet F. Bommer, Julian J. Earthquake losses due to ground failure[J]. Engineering Geology,2004,75(2):147-179.
    [52]Tang, Ai-Ping; Ou, Jin-Ping; Lu, Qin-Nian; Zhang, Ke-Xu. Lifeline system network reliability calculation based on GIS and FTA[J] Journal of Harbin Institute of Technology (New Series),2006,13(4):398-403.
    [53]Park, Jaewook; Nojima, Nobuoto; Reed, Dorothy a.nisqually earthquake electric utility analysis[J]. Earthquake Spectra,2006,22(2):491-509.
    [54]Lu, Suikai; Heuer, Rudolf.Seismic assessment of lifeline masonry structures using an advanced material model [J]. Structural Control and Health Monitoring,2007,14(2):321-332.
    [55]李杰.生命线工程抗震——基础理论与应用[M].北京:科学出版社,2005.
    [56]叶耀先,魏连,陈聃.浅埋地下管道的振动性状[C].地震工程论文集,北京:[科学出版社],1982:193-213.
    [57]熊占路,用离散模型分析地下管道的地震应力[C].第二届全国地震工程会议论文集,1987.
    [58]王海波,林皋.半无限弹性介质中管道地震反应分析[J].土木工程学报,1988,20(3):80-91.
    [59]甘文水,侯忠良.地震行波作用下埋设管道的反应计算[J].地震工程与工程振动,1988,8(2):79-86.
    [60]屈铁军,王前信.地下管道多点地震激励纵向振动的级数解[J].地震工程与工程振动,1993,13(4):39-46.
    [61]艾晓秋,李杰.考虑土体固液二相性质的地下管线地震反应研究[J]地震工程与工程振动,2005,25(2):136-140
    [62]艾晓秋,李杰.地下管线的有效应力地震反应分析[J].防灾减灾工程学报,2005,25(1):1-7
    [63]Nishio N. Damage Ratio Prediction for Buried Pipelines Based on the Deformability of Pipelines and the Nonuniformity of Ground [J]. Journal of Pressure Vessel Technology. ASME, 1994,116:459-466.
    [64]Kubo K. Behavior of Underground Waterpipes During an Earthquake[C] Proceedings of 5th World Conference on Earthquake Engineering, Rome,1974,1:569-578.
    [65]Toki K, Takada S. Seismic Response of Linear Structures Buried in Ground with Discontinuous Properties [C]. Proceedings of 13th JSCE Symposium on Earthquake Engineering, 1974:53-56.
    [66]Wang L R L, Cheng K M. Seismic Response Behavior of Buried Pipelines[J]. Journal of Pressure Vessel Technology, ASME,1979,Vol.101:21-30.
    [67]Hindy A, Novak M. Earthquake Response of Underground Pipelines[J], Earthquake Engineering and Structural Dynamics,1979,7:451-476.
    [68]Nelson I, Weidlinger P. Effects of Local Inhomogenity on the Dynamic Response of Pipelines[J], ASME,1979,PVP-Vol.34:63-82.
    [69]Xie X, He Y A. Calculation of Earthquake Response to Embedded Pipeline Laid Through Different Media[C] Proceedings of 9th World Conference on Earthquake Engineering, Tokyo-Kyoto,1988,7:49-53.
    [70]梁建文,何玉敖.通过不均匀土介质管道的地震反应[J].天津大学学报,1994,,27(2):200-204.
    [71]He Y A, Liang J.3-D Seismic Response of Underground Pipeline Systems in Non-homogeneous Soil Media[C]. Proceedings of U.S. National Conference on Earthquake Engineering, EERI,1994,4:451-458.
    [72]梁建文.穿越三种土介质管道的动力分析[J].天津大学学报,1998,31(2):163-168,
    [73]Liang J.3-D Seismic Response of Pipelines Through Multiple Soil Media[J] ASME,1995,PVP-Vol.312:101-107.
    [74]Liang J.3-D Seismic Response of Pipelines laid Through Faults[C].Proceedings of 4th U.S. Conference on Lifeline Earthquake Engineering, ASCE, San Francisco,1995:200-207,
    [75]Liang J, Jia S, Hou Z. Seismic Response of Pipelines Laid Through Alluvial Valleys[C]. Proceedings of 4th U.S. Conference on Lifeline Earthquake Engineering, ASCE, San Francisco, 1995:328-335.
    [76]Liang J. Dynamic Response of Pipelines Laid Through Riverbeds, ASME,1995,PVP-Vol.312:147-152,
    [77]梁建文.地下管道地震反应与稳定性研究述评[J].天津大学学报,1996.,29(4):427-434.
    [78]仲伟涛,孙绍平.管段与填土间轴向摩阻力的研究[C].第四届全国地震工程会议论文集,1994.
    [79]孙丹辰等.北京市市政工程研究所,地下管道强震观测记录资料[M].1989年.
    [80]徐挺.相似方法及其应用[M].北京:机械工业出版社,1995.
    [81]李小军,彭青.不同类别场地地震动参数的计算分析[J].地震工程与工程振动,2001,21(1):29-36.
    [82]石小亮.塑料管的特点及其在建筑给排水工程中的应用[J].工业安全与环保,2006,32(1):45-46.
    [83]李生毅,陈佳凤,陈键.新型塑料管材的性能及在给排水工程中的应用[J].辽宁化工,2003,32(5):216-218.
    [84]程炯.T型接口球墨铸铁管道施工技术要点[J].山西建筑,2007,2(4):164-165.
    [85]周静海,赵爽,刘爱霞,张莉.地下UPVC供水管线柔性接口抗拉强度实验[J].沈阳建筑大学学报(自然科学版),2007,23(3):407-409.
    [86]周静海,李宏男,宋阳.埋地球墨铸铁供水管道轴向拉拔试验[J].沈阳建筑大学学报自然科学版2009,25(3):474-477.
    [87]周静海,刘飞,杨永生,宋阳.地下UPVC供水管线柔性接口抗震试验[J].沈阳建筑大学学报(自然科学版),2008,24(6):970-973.
    [88]周静海,汤伟,杨永生.埋地UPVC供水管线接口受力全曲线关系[J].沈阳建筑大学学报(自然科学版),2008,24(1):31-34
    [89]周静海,赵海燕,葛鹏,刘爱霞.地下供水管线震害分析与铸铁管接口抗拉实验研究[J].沈阳建筑大学学报(自然科学版),2007,23(5):751-755.
    [90]B.L.阿姆斯塔特,可靠性数学[M].北京:科学出版社,1978.
    [91]F S希勒,G利伯曼.运筹学导论[M].北京:世界图书出版公司,1995.
    [92]董聪,杨庆雄.现代结构系统可靠性分析理论发展概况及若干应用[J].力学进展,1993,23(2):206-213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700