用户名: 密码: 验证码:
喷雾液膜流动理论及电子器件喷雾冷却实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现有电子器件的热流密度越来越高,如何对芯片级、系统级的电子器件进行有效散热成为提高电子器件可靠性的一个重要因素。作为在电子器件换热领域最有希望取得突破的三项技术之一,喷雾冷却(Spray Cooling)技术正在受到越来越多的关注。当前的研究工作大多集中在实验研究方面,然而由于不同研究人员实验条件的不同使得各种研究结论有所差异甚至相互矛盾,有关喷雾冷却的理论研究相对更加缺乏,因此针对电子器件的喷雾冷却技术的理论和实验研究都尚有广阔的发展空间。
     基于电子器件喷雾冷却技术的研究现状和研究热点,本文对喷雾在热源表面形成的冲击液膜流动及厚度模型、基于CHF(Critical Heat Flux,临界热流密度)准则的倾斜喷射喷嘴轨迹、喷嘴距热源换热最优时的高度、倾斜喷射实验以及针对动态喷射的电磁驱动器件的吸合问题等方面进行了研究:
     针对圆锥形轴对称喷雾冷却系统,在对喷雾区域进行划分的基础上,引入滑流边界条件,在提出圆锥状喷雾假设的基础上,建立了喷雾区域雾滴密度连续介质等效模型。
     基于分离变量法求解液膜流动动力学微分方程组,寻找到合理的动量方程组相容关系,应用数学物理方法求得液膜内速度场的分离变量级数解。在假设液膜出口颈缩截断边界条件的基础上,通过联立其它边界条件,求得待定系数,同时得到了液膜流动场和液膜厚度的求解方程,实现了液膜边界未知的薄膜流动问题求解。仿真结果表明:①当喷雾速率均匀时,液膜为平膜。当速率非均匀时,液膜可以出现中心凸起和中心下凹两种情况,具体形状与液膜表面喷雾的速率分布有关;②靠近热源表面的薄层内的液膜流速较大,而其余大部分液膜流速较慢;使液膜减薄的方法有两种:增加喷雾速度和降低喷雾密度;③速度滑移对液膜厚度及流场的影响很小,可以忽略。
     通过分析确定了喷雾冷却中倾斜喷射合理的研究前提:CHF准则,即在保证冷却剂利用率最高的前提下,最大喷雾冲击区域对应最大的CHF值。分析了满足CHF准则时不同锥角的圆锥形和棱锥形喷嘴分别对圆形和方形热源倾斜喷射时喷嘴源点所处的轨迹曲线,以及倾斜喷射时喷雾冲击面积随喷射倾角的变化情况。在分析方形喷嘴倾斜喷射时,将喷嘴的倾斜旋转情况分为轴型旋转和对角线型旋转两类。结果表明,就倾斜喷射喷雾覆盖面积而言,对圆形热源进行喷射和/或倾斜喷射,最好选用圆锥形喷嘴;对方形热源进行喷射时,最好选用合适的方形喷嘴,并且当方形喷嘴倾斜喷射时选择轴型倾斜喷射(倾角不太大时)。
     结合Visaria等人的实验数据,在满足CHF准则的前提下,从理论上分析了圆锥形喷嘴对方形热源倾斜喷射时喷射倾角对CHF的影响。分析结果表明:喷射倾角对CHF影响不大,CHF随喷射倾角增大而稍有增大。
     购买并加工制作了实验所需设备或器件(喷嘴、热源、压力泵和各种测量仪器等),搭建了实验平台。应用相关理论,考虑拖曳力的影响,对所建立的实验系统进行了特性评估,包括雾滴的出口速率和直径、雾滴在运动过程中的速率、直径和温度的变化情况等,进而对喷射到热源表面的雾滴特性做出预测。
     应用所搭建的实验系统,对所选用的三个DANFOSS喷嘴入出口压差与泵压的关系进行了测定,结果表明两者基本呈线性关系;对各喷嘴的喷雾特性进行测定,得出喷嘴总流量与泵压的关系为:喷嘴的总流量约与喷嘴入出口两端压差的开平方成正比;对喷嘴的中心流量密度进行测定,寻找到各喷嘴喷雾相对最均匀的工作压力。
     应用不同DANFOSS喷嘴对水平热源进行垂直喷射,在变换喷嘴距热源表面高度的前提下,研究最优换热性能出现在何种情况(最优高度),得出H准则:当喷雾形成的液膜的圆形外推区域正好与热源边缘相切时,系统换热性能达到最佳。选择两个喷嘴对方形热源和圆形热源进行倾斜喷射实验,结果认为倾斜喷射的研究重点应该是解决由此引起的表面温度梯度增大问题(并且喷射倾角最好不要太大),而对系统换热性能的影响是次要问题。
     根据间歇喷射的概念及其研究意义,提出动态喷射的概念,确定了电磁驱动作为驱动喷嘴实现动态喷射的驱动方式。阐述了电磁驱动器件中吸合特性的概念、研究现状及其分析方法。主要针对两种不同结构形式的电磁驱动器件,在磁动势控制模型基础上,分析了它们的准静态、阶跃磁动势和调制阶跃磁动势驱动的吸合特性。
With the heat flux of electronic devices becoming higher and higher, it has been an important problem to discharge the heat produced, which could decrease the reliability of the devices. As one of the three promising solutions for cooling of high heat flux applications, spray cooling technology has received much attention and been widely studied in recent years. Much experimental work has been done on spray cooling. However, the experimental results do not always agree with each another, and theoretical understandings on spray cooling are still at their early stage due to the intrinsic complexity of the mechanisms involved.
     Based on the state of the art of spray cooling, the following topics have been studied:
     As to a cone-axisymmetric spray cooling systems, the spray area was divided, and the slip-flow boundary condition was introduced. Based on an assumption of the coniform spray, an equivalent continuum model of the average spray density was established. Based on the variable separation method (VSM), the governing equations for the film thickness problem have been solved. A reasonable consistent condition of the momentum equations has been found and solved. Based on the methods of
     mathematical physics, series expansion solution of the velocity filed in the film has been derived. A boundary condition at the boundary of the spray area was given and the velocity slip phenomenon has been considered. The undeterminde coefficients were derived, and the functions of the film thickness and the fluid field of the film within the range of the impact area have been established. Simulation results indicate that: 1. if the spray velocity uniformly distributes in the area, the film is even, while if the spray velocity distributes unevenly, the film can be either central-raised or central-cupped; 2. the structure of the liquid film could be approximated as a two-layer liquid layer. The velocity of the liquid in bottom layer is lager than that in the top layer, and there are two methods for a thinner liquid film: increase spray velocity and decrease spray density; 3. the slip-flow boundary condition has little effect on the film thickness and fluid, which could be ignored as a result.
     A reasonable CHF (critical heat flux) criterion was analyzed and ascertained, which states that the maximum CHF can be achieved when the spray is configured on the condition that the spray impact area inscribes the square test surface. The tracks of nozzles with different cone angles were studied with different inclination angles, based on the CHF criterion aforementioned. When the nozzle is a rectangular one, there are two kinds of inclination modes, namely, the axis-incline and the diagonal-incline modes. Simulation results indicate that, circular nozzles are better if the heated surface is a circular one because of its larger coverage area. Rectangular nozzles are better when the spray cooling surface is a rectangular one, and the axis-incline model is better than the diagonal-incline model when there is an inclination.
     Based on the data obtained by Visaria et al in their work, a new CHF model was established and new expression of CHF value was derived based on the nozzle track model. The effects of the spray inclination angle on CHF were predicted. Simulation results indicate that CHF increases slightly as the inclination angle increases.
     An experimental system was constructed, which includes nozzles, a heater, a pump and thermocouples. The characteristics (the droplet speed and diameter) of the system were estimated by using correlative theory considering the effect of the drag force.
     The relationships of the pressure drop across the three DANFOSS nozzles and the pressure in the outlet of the pump were conducted, linear relations were derived. A separate study was conducted to find the relationships of the total volumetric flow rate Q and the pressure drop across the nozzles ?P. It shows that the experimental total volumetric flow rates are well approximated by a ?P0.5 power law. More studies were conducted to find the special volumetric flow rate at the spray cone centerline, and then get the best working conditions of the three nozzles.
     Different commercial pressurized full cone DANFOSS nozzles were used to spray onto a 30×30mm2 square copper heated horizontal surface without inclination angle, and the optimal distance between the nozzles and the heated surface were achieved. An optimal heat transfer criterion (called H criterion) was proposed, which means that the optimal heat transfer appears when the region outside the impellent thin spray film inscribes in the square heated surface.
     Based on the H criterion aforementioned, two DANFOSS nozzles of the three with inclined spraying angles were used to experimentally study the temperature distribution in the heated surface. Distilled water was used to spray on the square surface afore- mentioned and a heated circular copper surface with diameter of 30mm, respectively. The results indicate that the increasing grad of the surface temperature is more important than the decreasing heat transfer capability while there are inclination angles.
     A new concept called dynamic spray cooling was proposed based on the concept of intermittent spray cooling. Electromagnetic actuated devices were chosen for a dynamic spray cooling system. The pull-in phenomena and its state of the art of the electromagnetic actuated devices were discussed. Based on the classification of the electromagnetic actuated devices, the quasi-static, dynamic, and modulated dynamic pull-in characteristics for parallel-plate and torsional magnetostatic devices with step input magneto motive force were analyzed.
引文
[1] Moore G. E. Cramming More Components onto Integrated Circuits [J]. Electronics, 1965, 38(8): 114-117.
    [2]刘一兵,黄新民,刘安宁等.基于电子散热新技术的研究[J].低温与超导,2008, Vol. 36 (3):54-61.
    [3] Pautsch Greg. Thermal Challenges in the Next Generation of Supercomputers [EB]. Cray Inc CoolCon,2005.5.17.
    [4] Chu R.C. The Perpetual Challenges of Electronics Cooling Technology for Computer Product Applications–from Laptop to Supercomputer [EB]. 2003.11.12.
    [5]马晓雁.高效微射流阵列热沉内流体压降和传热特性的研究[D].北京北京工业大学.2006.
    [6]李庆友,王文,周根明.电子元器件散热方法研究[J].电子器件,2005,28(4): 937-941.
    [7]姚寿广,马哲树,罗林等.电子电器设备中高效热管散热技术的研究现状及发展[J].华东船舶工业学院学报,2003,8(4):9-12.
    [8] Moore Samuel K. Multicore is Bad News for Supercomputers [J] IEEE Spectrum, 2008, Vol.45 (15):15.
    [9]李腾,刘静.芯片冷却技术的最新研究进展及其评价[J].制冷学报,2004,(3): 22-32.
    [10] Li B.Q., Cader T., Schwarzkopf J., et al. Spray Angle Effect during Spray Cooling of Microelectronics: Experimental Measurements and Comparison with Inverse Calculations [J]. Applied Thermal Engineering, 2006, (26): 1788-1795.
    [11] http://www.zurich.ibm.com/news/06/cooling.html.
    [12] Visaria M., Mudawar I. Application of Two-phase Spray Cooling for Thermal Management of Electronic Devices [C]. ITHERM 2008, 275-283.
    [13] Hammad Jaffar Abdulla Isa. Characteristics of Heat Transfer and Wetting Front during Quenching High Temperature Surface by Jet Impingement [D]. Saga University, 2004, 9-10.
    [14] Tuckerman D.B. Pease R.F.W. High-performance Heat Sinking for VLSI [J]. IEEE Electron Device Lett., 1981, 2: 126-129.
    [15] Tuckerman D.B. Heat-transfer Microstructures for Integrated Circuits [D]. PhD thesis, Standford University, Stanford, California, 1984: 29,131.
    [16] Youssef Rageey M. Modeling the Effect of a Spray on a Liquid Film on a HeatedSurface [D]. Morgantown West Virginia, 2007, 1.
    [17] Mudawar I., Estes K.A. Optimization and Predicting CHF in Spray Cooling of a Square Surface [J]. Journal of Heat Transfer, 1996, (118): 672–680.
    [18] Matteo Fabbri. Shanjuan Jiang. Vijay K. Dhir. A Comparative Study of Cooling of High Power Density Electronics Using Sprays and Microjets [J]. Journal of Heat Transfer, 2005, Vol.127: 38-48.
    [19]何叶,李磊民,杨涛.基于MEMS技术的新型微冷却方式[J].仪表技术与传感器, 2004,(9): 43-45.
    [20] Hsieh C.C., Yao S.C. Evaporative Heat Transfer Characteristics of a Water Spray on Micro-Structured Silicon Surfaces [J]. International Journal of Heat and Mass Transfer, 2006 (49): 962–974.
    [21] Kim J. Spray Cooling Heat Transfer: The State of The Art [J]. International Journal of Heat and Fluid Flow, 2007, Vol. 28(4):753-767.
    [22] Bar C.,A., Arik M., Ohadi M. Direct Liquid Cooling of High Flux Micro and Nano Electronic Components [J] Proceedings of the IEEE, 2006, Vol.94(8): 1549-1570.
    [23] Pais M.R., Chow L.C., Mahefkey E.T. Surface Roughness and its Effects on the Heat Transfer Mechanism in Spray Cooling [J]. Journal of Heat Transfer, 1992, Vol. 114: 211–219.
    [24] Silk E.A., Kim J, Kiger K. Spray Cooling of Enhanced Surfaces: Impact of Structured Surface Geometry and Spray Axis Inclination [J]. International Journal of Heat and Mass Transfer, 2006, (49): 4910-4920.
    [25] Shedd T.A. Next Generation Spray Cooling: High Heat Flux Management in Compact Spaces [J]. Heat Transfer Engineering, 2007, 28(2): 87-92.
    [26] Kim Jungho. Spray Cooling Heat Transfer: The State of The Art [EB]. HP-SCU Electronic Cooling Symposium, 2006.9.1.
    [27]王迎昆.高密度组装微通道换热研究[D].西安电子科技大学硕士学位论文. 2008: 6.
    [28]曹建明.喷雾学研究的国际进展[J].长安大学学报,2005, (251): 82-87.
    [29]曹建明.喷雾学[M].机械工业出版社,2005年5月.
    [30] Yang Jidong, Pais Martin R., Chow Louis C. High Heat-flux Spray Cooling [C]. SPIE, Vol.1739: 29-40.
    [31] Visaria M., Mudawar I. Theoretical and Experimental Study of the Effects of Spray Inclination on Two-Phase Spray Cooling and Critical Heat Flux [J]. International journal of heat and mass transfer, 2008, Vol. 51(8): 2398-2410.
    [32]田棨薰.水及R-134a喷雾雾滴粒径(d32)分布及流(热)场测量[D].台湾:国立中山大学,2005: 2,38.
    [33] Glaspell S.L. Effects of the Electric Kelvin Force on Spray Cooling [D]. Morgantown:West Virginia University,2006.
    [34] Xia Chunlin. Spray/jet Cooling for Heat Flux High to 1kw/cm2. IEEE SEMI-THERM Symposium, 2002: 159-163.
    [35]吕晓兰,何雄奎,宋坚利等.标准扇形雾喷头雾化过程测试分析[J].农业工程学报, 2007, Vol. 23(9): 95-100.
    [36] Krista Stalsberg-Zarling. Lilquid-gas Phase Coupling By Means of Lagrange Polynomials for CFD Simulation of High-velocity Dense Sprays [D].Michigan Technological University, 2007: 7.
    [37] Coursey Johnathan Stuart. Enhancement of Spray Cooling Heat Transfer using Extended Surfaces and Nanofluids [D]. Park: University of Maryland, 2007.
    [38] Estes K.A., Mudawar I. Correlation of Sauter Mean Diameter and Critical Heat Flux for Spray Cooling of Small Surfaces [J]. International Journal of Heat and Mass Transfer, 1995, Vol. 38: 2985-2996.
    [39]金超花.静电喷雾雾滴输运沉积特性的研究[D].江苏:江苏大学硕士学位论文,2007.4.
    [40] Wendelstorf J., Spitzer K.H., Wendelstorf R. Spray Water Cooling Heat Transfer at High Temperatures and Liquid Mass Fluxes [J]. International Journal of Heat and Mass Transfer, 2008, Vol 51: 4902-4910.
    [41] Selvam R.P., Sarkar M., Ponnappan R. Modeling of Spray Cooling: Effect of Droplet Velocity and Liquid to Vapor Density Ratio on Heat Transfer [J]. Thermal and Fluids Analysis Workshop (TFAWS), 2005.
    [42] Nasr G.G., Sharief R.A., Yule A.J. High Pressure Spray Cooling of a Moving Surface [J]. Journal of Heat Transfer, 2006, Vol. 128: 752-760.
    [43] Lin L.C., Ponnappan R. Critical Heat Flux of Multinozzle Spray Cooling in a Closed Loop [C].IECEC, 2002: 341-346.
    [44] Hunnel C.A., Kuhlman J.M., Gray D.D. Spray Cooling in Terrestrial and Simulated Reduced Gravity [J]. AIP Conference Proceedings, Space Technology and Applications International Forum STAIF 2006, 126-133.
    [45]杨世铭,陶文铨.传热学(第三版)[M].高等教育出版社,1999年9月:315.
    [46] Oliphant K., Webb B.W., McQuay M.Q. An Experimental Comparison of Liquid Jet Array and Spray Impingement Cooling in the Non-Boiling Regime [J].Experimental Thermal and Fluid Science, 1998, Vol. 18: 1-10.
    [47] Sleiti, A.K., Kapat, J.S. An Experimental Investigation of Liquid Jet Impingement and Single-Phase Spray Cooling Using Polyalphaolefin [J]. Experimental Heat Transfer, 2006, Vol.19:149-163.
    [48] Pereira R.H., Braga S.L., Parise J.A.R. Comparing Single Phase Heat Transfer to Arrays of Impinging Jets and Sprays [C]. IMECE2002, 2002, P351-358.
    [49] Fabbri M., Jiang S.J., Dhir V.K. Comparative Study of Spray and Multiple Micro Jets Cooling for High Power Density Electronic Applications [J]. 2003 ASME IMECE, 2003:1-9.
    [50] Silk E.A. Investigation of Enhanced Surface Spray Cooling [D]. Park: University of Maryland, 2006.
    [51] Silk E.A., Golliher E.L., Selvam R.P. Spray Cooling Heat Transfer: Technology Overview and Assessment of Future Challenges for Micro-Gravity Application [J]. Energy conversion and management, 2008, (49): 453-468.
    [52] Silk E.A., Kim J., Kiger K. Enhanced Surface Spray Cooling With Embedded and Compound Extended Surface Structures[C]. ITHERM 2006, 2006: 215-223.
    [53] Silk E.A., Kim J., Kiger K. Impact Of Cubic Pin Finned Surface Structure Geometry upon Spray Cooling Heat Transfer[C]. Asme International Electronic Packaging And Technical Conference, 2005:1-10.
    [54] Silk E.A. Investigation of Pore Size Effect on Spray Cooling Heat Transfer with Porous Tunnels[C].AIP Conference Proceedings,2008, Vol.969: 112 -122.
    [55] Silk E.A, Kim J, Kiger K. Spray Cooling Trajectory Angle Impact Upon Heat Flux Using A Straight Finned Enhanced Surface [C]. HT2005, 2005: 743-751.
    [56] Horacek B, Kiger K.T., Kim J. Single Nozzle Spray Cooling Heat Transfer Mechanisms [J]. Int J of Heat and Mass Transfer, 2005, Vol 48: 1425-1438.
    [57] Horacek Bohumil, Kim Jungho, Kiger Kenneth T. Effects of Noncondensable Gas and Subcooling on The Spray Cooling of an Isothermal Surface [C]. IMECE2003. 2003, Vol. 374(4): 69-77.
    [58] Horacek Bohumil, Kim Jungho, KigerKenneth T. Gas Effects on Spray Cooling of an Isothermal Surface: Visualization and Time and Space Resolved Heat Transfer Measurements [C]. 42nd AIAA, 2004: 11003-11014.
    [59] Sehmbey M.S., Chow L.C., Paris M.R., et al. High Heat Flux Spray Cooling: A Review[C]. ASME, IMECE, 1994, Vol.301: 39-46.
    [60] Chen R.H., Chow L.C., Navedo J.E. Optimal Spray Characteristics in Water SprayCooling [J]. International J of Heat and Mass Transfer, 2004, (47): 5095-5099.
    [61] Sehmbey M.S., Pais M.R., Chow L.C. Effect of Surface Material Properties and Surface Characteristics Inevaporative Spray Cooling [C]. AIAA-1990, 1990: 1-11.
    [62] Chen Ruey-Hung, Chow Louis C, Navedo Jose E. Effects of Spray Characteristics on Critical Heat Flux in Subcooled Water Spray Cooling [J]. International Journal of Heat and Mass Transfer, 2002, Vol. 45: 4033-4043.
    [63] Chen Xiang Qun., Chow Louis.C., Sehmbey Maninders.S. Thickness of Film Produced by a Pressure Atomizing Nozzle [C]. 30th AIAA Thermophysics and Heat Transfer Conference, 1995.
    [64] Marcos Anabel, Chow Louis.C., Du Jian Hua, Lei Shuye. Spray Cooling At Low System Pressure [C]. 18th IEEE SEMI-THERM Symposium, 2002: 169-175.
    [65] Navedo Jose E. Parametric Effects of Spray Characteristics on Spray Cooling Heat Transfer [D].Florida Orlando. University of Central Florida, 2000.
    [66] Rini D.P., Chen R.H., Chow L.C. Bubble Behavior and Nucleate Boiling Heat Transfer in Saturated FC-72 Spray Cooling [J]. Journal of Heat Transfer, 2002, Vol 124: 63-72.
    [67] Yang J., Chow L.C., Pais M.R, et al. Liquid Film Thickness and Topography Determination using Fresnel Difraction and Holography [J].Experimental Heat Transfer, 1992, 5(4): 239-252.
    [68] Yang J., Chow L.C., Pais M.R. An Analytical Method to Determine the Liquid Film Thickness Produced by Gas Atomized Sprays [J]. Journal of Heat Transfer, 1996, Vol.118: 255-258.
    [69] Pautsch A.G. Heat Transfer and Film Thickness Characteristics of Spray Cooling with Phase Change [D]. Madison: University of Wisconsin, 2004.
    [70] Pautsch A.G., Shedd T.A. Adiabatic and Diabatic Measurements of the Liquid Film Thickness during Spray Cooling with FC-72 [J]. International Journal of Heat and Mass Transfer, 2006, Vol. 49: 2610-2618.
    [71] Hsieh C.C. Two-phase Transport Phenomena in Microfluidic Devices [D]. Pittsburgh: Carnegie Mellon University, 2003.
    [72] Lin LanChao, Ponnappan Renqasamy. Critical Heat Flux of Multi-Nozzle Spray Cooling [J]. Journal of Heat Transfer, 2004, Vol.126: 481-485.
    [73] Lin LanChao, Ponnappan Renqasamy, Yerkes Kirk., B. Hager. Large Area Spray Cooling [C]. 42nd AIAA, 2004: 10838– 10843.
    [74] Lin LanChao, Ponnappan Renqasamy. Two-phase High Capacity Spray CoolingLoop-Nozzle Orientation Effects and Performance Results[C]. AIAA.2005, 3rd International Energy Conversion Engineering Conference:1824-1830.
    [75] Lin LanChao, Ponnappan Renqasamy. Yerkes Kirk. Actively Pumped Two-Phase Loop For Spray Cooling [J]. Journal of Thermophysics and Heat Transfer, 2006, Vol. 20: 107-110.
    [76] Horacek B., Kim J., Kiger K.T. Spray Cooling Using Multiple Nozzles: Visualization and Wall Heat Transfer Measurements [J]. IEEE Transactions on Device and Materials Reliability, 2004, Vol. 4(4): 614-625.
    [77] Some Thierry, Kim Jungho, Lehmann Eckhard et al. Pressure Based Prediction of Spray Cooling Heat Transfer Coefficients [C]. IMECE2007, 2007: 1131-1138.
    [78] Pautsch A.G.,Shedd T.A. Spray Impingement Cooling with Single and Multiple Nozzle Arrays, Part I: Heat Transfer Data Using FC-72 [J]. International Journal of Heat and Mass Transfer, 2005, Vol 48: 3167-3175.
    [79] Freund S., Pautsch A.G., Shedd T.A. et al. Local Heat Transfer Coefficients in Spray Cooling Systems Measured with Temperature Oscillation IR Thermography [J]. International Journal of Heat and Mass Transfer, 2007, Vol.50: 1953-1962.
    [80] Shedd T.A., Pautsch A.G.. Spray Impingement Cooling with Singleand Multiple Nozzle Arrays. Part II: Visualization and Empirical Models[J]. International Journal of Heat and Mass Transfer, 2005, Vol 48: 3176–3184.
    [81] Ashwood Andrea C, Shedd Timothy A. Spray Cooling with Mixtures of Dielectric Fluids [C]. 23rd IEEE SEMI-THERM Symposium, 2007: 144-148.
    [82] Lin Lanchao, Harris Richard, Lawson Jacob et al. Spray Cooling with Methanol and Water Mixtures [C]. 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference Proceedings, 2006: 1465-1470.
    [83] Visaria M., Mudawar I. Effects of High Subcooling on Two-Phase Spray Cooling and Critical Heat Flux [J]. International Journal of Heat and Mass Transfer, 2008, Vol.51: 2398–2410.
    [84] Um Jae Yong. Thermal Analysis of Spray Cooling and its Application in Metal Cutting [D]. Lexington University of Kentucky, 1997, 22.
    [85] Cabrera E., Gonzalez J.E. Heat Flux Correlation for Spray Cooling in the Nucleate Boiling Regime [J]. Experimental Heat Transfer. Vol.16, 2003, 19-44.
    [86] Ghodbane M., Holman J.P. Experimental study of spray cooling with Freon-113 [J]. International journal of heat and mass transfer, 1991, Vol.34(4/5):1163-1194.
    [87] Nitin Karwa, Sunil R. Kale, P.M.V. Subbarao. Experimental Study of Non-BoilingHeat Transfer from a Horizontal Surface by Water Sprays[J]. Experimental Thermal and Fluid Science, 2007, Vol.32: 571–579.
    [88] Michele Ciofalo.The Nukiyama curve in Water Spray Cooling: Its Derivation From Temperature–Time Histories and its Dependence on The Quantities that Characterize Drop Impact [J]. International Journal of Heat and Mass Transfer, 2007, Vol.50 (25-26):4948-4966.
    [89] Ortiz Lester, Gonzalez Jorge E. Experiments on Steady-State High Heat Fluxes using Spray Cooling [J].Experimental Heat Transfer, 1999, Vol.12: 215-233.
    [90] Tan ShihWei. Computer Simulation of a Spray Cooling System with FC-72 [D]. Florida, Orlando. University of Central Florida, 2001.
    [91] Selvam P.P., Lin L.C., Rengasamy Ponnappan. Computational Modeling of Spray Cooling: Current Status and Future Challenges [C]. STAIF, 2005, 55-63.
    [92] Selvam R. Panneer, Hamilton Matthew, Silk Eric A. Spray Cooling Modeling: Liquid Film Thickness Effect on Heat Transfer [C]. Space Technology and Applications International Forum-STAIF, 2007: 110-117.
    [93] Selvam R.P., Sarkar M., Sarkar S., Ponnappan R. Effect of Vapor Bubble Size on Heat Transfer in Spray Cooling[C].Space Technology and Applications International Forum-STAIF, 2006:145-152.
    [94] Selvam R.P., Lin Lanchao, Ponnappan Rengasamy. Direct Simulation of Spray Cooling: Effect of Vapor Bubble Growth and Liquid Droplet Impact on Heat Transfer [J]. International J of Heat and Mass Transfer, 2006, Vol.49:4265 -4278.
    [95] Johnston Joseph E, Selvam R.P., Silk Eric A. Spray Cooling Modeling: Droplet Sub-Cooling Effect on Heat Transfer [C]. STAIF, 2008:104-111.
    [96] Rowden Brian L, Selvam R.Panneer, Silk Eric.A.Spray Cooling Development Effort for Microgravity Environments [C]. Space Technology and Applications International Forum-STAIF, 2006:134-144.
    [97] Selvam R.Panneer, Sarkar Suranjan, Ponnappan Rengasamy. Modeling of Spray Cooling: Convective Flow Effect on Vapor Bubble Dynamics and Heat Transfer [C]. 9th AIAA, 2006, 1471-1481.
    [98] Moreira António L.N., Carvalho Jo?o, Pan?o Miguel R.O. An Experimental Methodology to Quantify the Spray Cooling Event at Intermittent Spray Impact [J]. International Journal of Heat and Fluid Flow, 2007, Vol.28: 191–202.
    [99] Pan?o M.R.O., Moreira A.L.N. Intermittent Spray Cooling: A New Technology for Controlling Surface Temperature [J]. International Journal of Heat and fluid flow,2009, Vol.52 (30): 117-130.
    [100] Yao W., Zhang H.X., Miao J.Y. et al. Analysis and Design of a Spray Cooling Thermal Control System for Spacecraft High Power Density Components [J]. AIAA, 57th International Astronautical Congress, IAC-06-C2, 2006:5711-5714.
    [101]姚伟,范含林.未来航天器高功率密度载荷的热控制技术[J].航天器工程,2005, Vol.14(3):21-25.
    [102]安珍彩,雷树业,何玮菁等.雾化喷射下的波动液膜的电测量[J].工程热物理学报,2004, Vol.25: 121-123.
    [103]芦秋敏,雷树业.雾化喷射冷却的机理及模型研究[J].工程热物理学报. 2005, 26(5): 817-819.
    [104]郑可可,雷树业,陈建平等.无沸腾喷雾冷却中流量和喷头高度对换热性能的影响[J].工业加热,2002,(5): 8-11.
    [105]陈文奎,罗行,张春明等.小温差喷雾碰壁蒸发的实验研究[J].工程热物理学报, 2007, Vol.28(27): 276-279.
    [106]郭加宏.微器件细小喷淋冲击冷却流场及形成的薄液膜特性研究[D].上海:上海大学,2007.
    [107]王亚青,刘明侯,刘东等.喷雾倾斜角对无沸腾区换热性能的影响[C]. 2008年中国工程热物理学会传热传质学术会议,083226.
    [108]刘期聂,程文龙,赵锐等.喷雾冷却喷嘴雾化特性研究[C]. 2008年中国工程热物理学会传热传质学术会议,083453.
    [109]程文龙,刘期聂,赵锐等.喷雾冷却参数优化实验研究[C]. 2008年中国工程热物理学会传热传质学术会议,083454.
    [110]赵锐,程文龙,刘期聂等.喷雾冷却的数值模拟研究[C]. 2008年中国工程热物理学会传热传质学术会议,083455.
    [111]陈东芳,谢宁宁,胡学功,唐大伟.毛细微槽结构表面的喷雾冷却可视化研究[J].工程热物理学报,2008, Vol.29(9):1548-1550.
    [112]高珊,曲伟,姚伟.喷雾冷却中雾滴冲击壁面的流动和换热[J].工程热物理学报, 2007, Vol.28: 221-224.
    [113]谢宁宁,陈东芳,胡学功等.压力与流量对喷雾冷却换热特性的影响[C] 2008年中国工程热物理学会传热传质学术会议,083509.
    [114]田沣.射流冷却技术研究[J].航空计算技术, 2006,Vol.36(3):4-7.
    [115]周致富,辛慧,陈斌等.激光手术喷雾冷却中单个雾滴蒸发特性[J].中国激光, 2008, Vol.35(6): 952-956.
    [116] Zhou Zhifu, Xin Hui, Chen Bin et al. Single Droplet Evaporation Model in LaserTreatment of PWS in Conjunction with Cryogen Spray Cooling [C]. International Conference on BioMedical Engineering and Informatics, 2008: 551-556.
    [117]周致富,辛慧,陈斌等.激光治疗葡萄酒色斑的制冷剂喷雾冷却中单雾滴蒸发理论模型的比较[C].2008年中国工程热物理学会传热传质学术会议, 083251.
    [118]李东,何雅玲,王国祥等.葡萄酒色斑激光治疗热过程分析[C]. 2008年中国工程热物理学会传热传质学术会议,083343.
    [119]李东,何雅玲,王国祥等.激光治疗PWS制冷剂喷射冷却过程的数值模拟[J].工程热物理学报, 2008, Vol.29 (12):1990-1992.
    [120]梅国晖,孟红记,谢植.喷射方向对喷雾冷却换热的影响[J].东北大学学报(自然科学版), 2004, Vol.25(4): 374-377.
    [121]方崇成.喷雾冷却现象之研究[D].台湾:国立中山大学硕士论文, 2003年.
    [122]蔡黄修.喷流及雾化冷却之实验研究[D].台湾:国立中山大学博士论文,2006年(英文).
    [123]罗朝霞,李会雄,陈听宽等.雾滴冲击无限大液面过程的边界元模拟[J].工程热物理学报, 2002, Vol.23(6): 749-752.
    [124]施明恒.单个雾滴碰击表面时的流体动力学特性[J].力学学报, 1985, Vol.17(5): 419-424.
    [125]魏明锐,文华,刘永长等.喷雾过程雾滴碰撞模型研究[J].内燃机学报, 2005, Vol23(6): 518-523.
    [126]张淑君,吴锤结,王惠民.单个三维气泡运动的直接数值模拟[J].河海大学学报(自然科学版), 2005, Vol.33(5): 534-537.
    [127] Landero J.C., Watkins A.Paul. Modeling of Steady-State Heat Transfer in a Water Spray Impingement onto a Heated Wall [J]. Atomization and Sprays, 2008, Vol.18: 1-47.
    [128] Estes K., A, Mudawar I. Comparison of Two-Phase Electronic Cooling Using Free Jets and Sprays [J]. J of Electronic Packaging, 1995, Vol.117: 323-331.
    [129] Yoshida K., Yoshiyuki A., Toshiharu O., Yasuhiko M., Akira N. Spray Cooling under Reduced Gravity Condition [J]. ASME Journal of Heat Transfer, 2001, Vol.123: 309–318.
    [130] Tatiana Gambaryan-Roisman, Olympia Kyriopoulos, Ilia Roisman et al. Gravity Effect on Spray Impact and Spray Cooling [J]. Microgravity Science and Technology, 2007, Vol.19, ( 3-4): 151-154.
    [131] Rini D.P. Pool Boiling and Spray Cooling with FC-72 [D].Orlando: University of Central Florida, 2000.
    [1]杨世铭,陶文铨.传热学(第三版).高等教育出版社,1999年9月:380.
    [2]马晓雁.高效微射流阵列热沉内流体压降和传热特性的研究[D].北京北京工业大学,2006:4.
    [3]曹建明.喷雾学[M].机械工业出版社,2005年5月.
    [4] Ciofalo M.The Nukiyama curve in Water Spray Cooling: Its Derivation From Temperature–Time Histories and its Dependence on The Quantities that Characterize Drop Impact [J]. International Journal of Heat and Mass Transfer, 2007, Vol.50(25-26):4948-4966.
    [5]王献孚,熊鳌魁.高等流体力学.华中科技大学出版社,2003年2月: 87,91.
    [6] Frank M., W. Fluid Mechanics[M]. Mc Graw Hill, 2003: 215-234.
    [7]曹炳阳.速度滑移及其对微纳米尺度流动影响的分子动力学研究[D].清华大学博士论文,2005:4.
    [8] Kim J. Spray Cooling Heat Transfer: The State of The Art [J]. International Journal of Heat and Fluid Flow, 2007, 28(4):753-767
    [9]曹炳阳,陈民,过增元.纳米通道内液体流动的滑移现象[J].物理学报,Vol.55 (10):5305-5310.
    [10]王卫东.面向MEMS设计的微流体流动特性研究[D].西安电子科技大学博士论文,2007:31.
    [11]姚端正,梁家宝.数学物理方法(第二版)[M].武汉大学出版社,1997年2月:386.
    [12]奚定平.贝塞尔函数[M].高等教育出版社施普林格出版社,1998年5月:39.
    [1] Yang J., Chow L.C., Pais M.R, et al. Liquid Film Thickness and Topography Determination using Fresnel Difraction and Holography [J].Experimental Heat Transfer, 1992, Vol. 5(4): 239-252.
    [2] Tilton D. E. Spray cooling [D].Lexington:University of Kentucky,1989.
    [3] Pautsch A.G. Heat Transfer and Film Thickness Characteristics of Spray Cooling with Phase Change [D]. Madison: University of Wisconsin, 2004.
    [4]王竹溪,郭敦仁.特殊函数概论[M].北京:北京大学出版社, 2000年5月: 46, 90, 54, 288, 290, 292, 296, 308, 310.
    [5]同济大学数学教研室.高等数学下册(第四版)[M].高等教育出版社,2001年6月: 376,385.
    [6]奚定平.贝塞尔函数[M].高等教育出版社施普林格出版社,1998年5月:39.
    [7]林建忠,阮晓东,陈邦国等.流体力学[M].北京:清华大学出版社,2005,6,87,144.
    [8] Shedd T.A. Next Generation Spray Cooling: High Heat Flux Management in Compact Spaces [J]. Heat Transfer Engineering, 2007, 28(2): 87-92.
    [1] Pautsch A.G., Shedd T.A. Spray Impingement Cooling with Single and Multiple Nozzle Arrays, Part I: Heat Transfer Data Using FC-72 [J]. International Journal of Heat and Mass Transfer, 2005, Vol 48: 3167-3175.
    [2] Visaria M., Mudawar I. Theoretical and Experimental Study of the Effects of Spray Inclination on Two-Phase Spray Cooling and Critical Heat Flux [J]. International journal of heat and mass transfer, 2008. Vol. 51(8): 2398-2410.
    [3] Chow L.C., Bass M., Du J., et al. Cryo Power and Heat Transfer [D] Orlando: University of Central Florida, 2004.
    [4] Kim J. Spray Cooling Heat Transfer: The State of The Art [J]. International Journal of Heat and Fluid Flow, 2007, 28(4):753-767.
    [5] Silk, E.A., Kim, J., Kiger, K. Effect of Spray Cooling Trajectory on Heat Flux for A Straight Finned Enhanced Surface [C]. HT2005, 743-751.
    [6] Silk E.A., Kim J., Kiger K. Spray Cooling of Enhanced Surfaces: Impact of Structured Surface Geometry and Spray Axis Inclination [J]. International Journal of Heat and Mass Transfer, 2006, (49): 4910-4920.
    [7] Hsieh C.C. Two-phase Transport Phenomena in Microfluidic Devices [D]. Pittsburgh: Carnegie Mellon University, 2003.
    [8] Li B.Q., Cader T., Schwarzkopf J., et al. Spray Angle Effect during Spray Cooling of Microelectronics: Experimental Measurements and Comparison with Inverse Calculations [J]. Applied Thermal Engineering, 2006, (26): 1788-1795.
    [9] Mudawar I., Estes K.A. Optimization and Predicting CHF in Spray Cooling of a Square Surface [J]. Journal of Heat Transfer, 1996, (118): 672–680.
    [10] Visaria M., Mudawar I. Effects of High Subcooling on Two-Phase Spray Cooling and Critical Heat Flux [J]. of heat and mass transfer, 2008, Vol.51: 2398–2410.
    [11] Visaria M., Mudawar I. A Systematic Approach to Predicting Critical Heat Flux for Inclined Sprays [J]. Journal of Electronic Packaging, 2007, Vol. 129:452-459.
    [12] Visaria M., Mudawar I. Application of Two-phase Spray Cooling for Thermal Management of Electronic Devices [C]. ITHERM 2008, 275-283.
    [13]孙根正,王永平.工程制图基础[M].西北工业大学出版社,2006,147.
    [14] Jia J.Y., Guo Y.X., Wang W.D., Zhou S.R. Modeling and Experimental Research on Spray Cooling [J]. 24th IEEE SEMI-THERM, 2008, 118-123.
    [15]工业喷雾产品目录[Z]. Spraying Systems Co.A11, B12.
    [1]曹建明.喷雾学[M].机械工业出版社,2005年5月.
    [2] Kim J. Spray Cooling Heat Transfer: The State of The Art [J]. International Journal of Heat and Fluid Flow, 2007, 28(4):753-767.
    [3] Sehmbey M.S., Chow L.C., Paris M.R., et al. High Heat Flux Spray Cooling: A Review[C]. ASME, IMECE, 1994, Vol.301: 39-46.
    [4] Visaria M., Mudawar I. Application of Two-phase Spray Cooling for Thermal Management of Electronic Devices [C]. ITHERM 2008. 11th Intersociety Conference on. 275-283.
    [5] Mudawar I. Assessment of High-Heat Flux Thermal Management Schemes [J]. IEEE Transactions on Components and Packaging Technologies.2001,Vol.24:1-20.
    [6]安珍彩,雷树业,何玮菁等,雾化喷射下的波动液膜的电测量[J].工程热物理学报,2004, Vol.25: 121-123.
    [7]田棨薰.水及R-134a喷雾雾滴粒径(d32)分布及流(热)场测量[D].台湾:国立中山大学,2005: 2,38.
    [8] Lin L.C., Ponnappan R. Critical Heat Flux of Multinozzle Spray Cooling in a Closed Loop [C].IECEC, 2002: 341-346.
    [9] Shedd T.A. Next Generation Spray Cooling: High Heat Flux Management in Compact Spaces [J]. Heat Transfer Engineering, 2007, 28(2): 87-92.
    [10] Pautsch A. G. Heat Transfer and Film Thickness Characteristics of Spray Cooling with Phase Change [D]. Madison: University of Wisconsin.2004.
    [11] Mudawar I., Estes K.A. Optimization and Predicting CHF in Spray Cooling of a Square Surface [J]. Journal of Heat Transfer, 1996, (118): 672–680.
    [12]余建祖.电子设备热设计及分析技术[M].高等教育出版社,2002年,182.
    [13] Yang J L,Chow C,Paris M R. Nucleate Boiling Heat Transfer in Spray Cooling [J]. Journal of Heat Transfer, 1996, Vol. 118: 668-671.
    [14] Hsieh C.C. Two-phase Transport Phenomena in Microfluidic Devices [D]. Pittsburgh: Carnegie Mellon University, 2003.
    [15] Estes K.A., Mudawar I. Correlation of Sauter Mean Diameter and Critical Heat Flux for Spray Cooling of Small Surfaces [J]. International Journal of Heat and Mass Transfer, 1995, Vol 38: 2985-2996.
    [16] Silk E. A. Investigation of Enhanced Surface Spray Cooling [D]. Park: University of Maryland. 2006.
    [17] Visaria M., Mudawar I. Theoretical and Experimental Study of the Effects of Spray Inclination on Two-Phase Spray Cooling and Critical Heat Flux [J]. International journal of heat and mass transfer, 2008, Vol. 51(8): 2398-2410.
    [18] Pautsch A.G.,Shedd T.A. Spray Impingement Cooling with Single and Multiple Nozzle Arrays, Part I: Heat Transfer Data Using FC-72 [J]. International Journal of Heat and Mass Transfer, 2005, Vol. 48: 3167-3175.
    [19] Pautsch A. G., Shedd T. A., Nellis G. F. Thickness Measurements of the Thin Film in Spray Evaporative Cooling [J]. 2004 Inter Society Conference on Thermal Phenomena, 2004, 70-76.
    [20] Kim J. H., Rainey K. N., You S. M. et al. Mechanism of Nucleate Boiling Heat Transfer Enhancement From Microporous Surfaces in Saturated FC-72 [J].Journal of Heat Transfer, 2002, Vol. 124(3): 500-506.
    [21] Ashwood Andrea C, Shedd Timothy A. Spray Cooling with Mixtures of DielectricFluids [C]. 23rd IEEE SEMI-THERM Symposium, 2007: 144-148.
    [22] Wexler E., Tuchinsky L., Loutfy R. et al. Enhanced Liquid Cooling with Phase Change in Multi-Channel Heat Sinks [EB].2003, 5.13.
    [23] Estes K.A., Mudawar I. Correlation of Sauter Mean Diameter and Critical Heat Flux for Spray Cooling of Small Surfaces [J]. International Journal of Heat and Mass Transfer, 1995, Vol. 38: 2985-2996.
    [24] Li B.Q., Cader T., Schwarzkopf J., et al. Spray Angle Effect during Spray Cooling of Microelectronics: Experimental Measurements and Comparison with Inverse Calculations [J]. Applied Thermal Engineering, 2006, (26): 1788-1795.
    [25] Silk E. A., Kim J., Kiger K. Effect of Spray Cooling Trajectory Angle on Heat Flux upon A Straight Finned Enhanced Surface. ASME International Heat Transfer Summer Conference, 2005, New York, HT2005-72634.
    [26] Coursey Johnathan Stuart. Enhancement of Spray Cooling Heat Transfer using Extended Surfaces and Nanofluids [D]. Park: University of Maryland, 2007.
    [27] Avram Bar-Cohen, Mehmet Arik, Michael Ohadi. Direct Liquid Cooling of High Flux Micro and NanoElectronic Components [J]. Proceedings of the IEEE, 2006, Vol. 94(8):1549-1570.
    [28] Arik M. Enhancement of Pool Boiling Critical Heat Flux in Dielectric Liquids [D]. Minneapolis: Univ. Minnesota, 2001, 66, 91.
    [29] Mudawar I., Bharathan D., Kelly K. et al. Two-phase Spray Cooling of Hybrid Vehicle Electronics [J]. I-THERM, 2008, 1210-1221.
    [30] Xia Chunlin. Spray/jet Cooling for Heat Flux High to 1kw/cm2. IEEE SEMI- THERM Symposium, 2002: 159-163.
    [31] Chen Ruey-Hung, Chow Louis C, Navedo Jose E. Effects of Spray Characteristics on Critical Heat Flux in Subcooled Water Spray Cooling [J]. International Journal of Heat and Mass Transfer, 2002, Vol. 45: 4033-4043.
    [32] Oliphant K., Webb B.W., McQuay M.Q. An Experimental Comparison of Liquid Jet Array and Spray Impingement Cooling in the Non-Boiling Regime [J]. Experimental Thermal and Fluid Science, 1998, Vol. 18: 1-10.
    [33] Ghodbane M., Holman J.P. Experimental study of spray cooling with Freon-113 [J]. International journal of heat and mass transfer, 1991, Vol.34(4/5):1163-1194.
    [34] Estes Kurt A, Mudawar I. Comparison of Two-Phase Electronic Cooling Using Free Jets and Sprays [J]. Journal of Electronic Packaging, 1995, Vol.117: 323-331.
    [35] Qiao. Y. M., Chandra. S. Spray Cooling Enhancement by Addition of A Surfactant[J]. Journal of Heat transfer, 1998, Vol.120:92-98.
    [36] Nitin Karwa, Sunil R. Kale, P.M.V. Subbarao. Experimental Study of Non-Boiling Heat Transfer from a Horizontal Surface by Water Sprays[J]. Experimental Thermal and Fluid Science, 2007, Vol.32: 571–579.
    [37] Horacek B., Kiger K.T., Kim J. Single Nozzle Spray Cooling Heat Transfer Mechanisms [J]. International Journal of Heat and Mass Transfer, 2005, Vol 48: 1425-1438.
    [38] Ciofalo M. The Nukiyama curve in Water Spray Cooling: Its Derivation From Temperature–Time Histories and its Dependence on The Quantities that Characterize Drop Impact [J]. International Journal of Heat and Mass Transfer, 2007, Vol. 50(25-26): 4948-4966.
    [39] Some Thierry, Kim Jungho, Lehmann Eckhard et al. Pressure Based Prediction of Spray Cooling Heat Transfer Coefficients [C]. IMECE2007, 2007: 1131-1138.
    [40] Lin L.C., Ponnappan R. Critical Heat Flux of Multinozzle Spray Cooling in a Closed Loop [C].IECEC, 2002: 341-346.
    [41] Morsi M. S. Optimization of Direct-Contact-Spray-Coolers [D].Madison: University of Wisconsin-Madison,2002,140.
    [42] Lefebvre. Arthur. Henry. Atomization and Sprays [M] New York: Hemisphere Pub. Corp., 1989.
    [43] Streeter Victor L., Wylie E Benjamin. Fluid Mechanics [M].New York : Mraw-Hill, 1985:258.
    [44] Aguilar G.., Majaron B., W. Verkruysse, et al. Theoretical and Experimental Analysis of Droplet Diameter, Temperature, and Evaporation Rate Evolution in Cryogenic Sprays [J]. International Journal of Heat and Mass Transfer, 2001, Vol.44: 3201-3211.
    [45]周致富,辛慧,陈斌等.激光手术喷雾冷却中单个雾滴蒸发特性[J].中国激光, 2008, Vol.35(6): 952-956.
    [46] Issa Roy J. Numerical Modeling of the Dynamics and Heat Transfer of Impacting Sprays for A Wide Rang of Pressures [D]. University of Pittsburgh, 2003, 50-51.
    [47] Morsi S. A., Alexander A. J. An Investigation of Particle Trajectories in Two-phase Flow Systems [J]. J. Fluid Mech., 1972, Vol.55: 193-208.
    [48] Michaelides E. E. Particles, Bubbles & Drops: Their Motion, Heat and Mass Transfer [M]. World Scientific, 2006:118-128.
    [49]杨世铭,陶文铨.传热学(第三版)[M].高等教育出版社.1999年9月.424-425.
    [50]蔡黄修.喷流及雾化冷却之实验研究[D].台湾:国立中山大学博士论文,2006年(英文), 68.
    [51] http://www.cnspray.com/Technic/pz/Index.html.
    [52] Sleiti, A.K., Kapat, J.S. An Experimental Investigation of Liquid Jet Impingement and Single-Phase Spray Cooling Using Polyalphaolefin [J]. Experimental Heat Transfer, 2006 vol 19:149-163.
    [53] Ashwood A. C. Fluid Property Effects on Spray Cooling: An Experimental and Numerical Study [D]. University of Wisconsin-Madison, 2006.
    [1] Moreira António L.N., Carvalho Jo?o, Pan?o Miguel R.O. An Experimental Methodology to Quantify the Spray Cooling Event at Intermittent Spray Impact [J]. International Journal of Heat and Fluid Flow, 2007, Vol.28: 191–202.
    [2] G?ppert S., Gürtler T., MocikaH.t, Herwig H. Heat Transfer under a Precessing Jet: Effects of Unsteady Jet Impingement[J]. International Journal of Heat and Mass Transfer, 2004, Vol. 47: 2795-2806.
    [3] Herwig H., Middelberg G.. The Physics of Unsteady Jet Impingement and its Heat Transfer Performance [J]. Acta Mechanica.2008. In press.
    [4]周静伟,耿丽萍,王玉刚等.周期性非定常冲击射流强化传热研究[J]. 2008年中国工程热物理学会传热传质学术会议,083194.
    [5] Silk E.A., Golliher E.L., Selvam R.P. Spray Cooling Heat Transfer: Technology Overview and Assessment of Future Challenges for Micro-Gravity Application [J]. Energy conversion and management, 2008, (49): 453-468.
    [6] Anantharamaiah N, Tafreshi Vahedi H, Pourdeyhimi B. A Simple Expression for Predicting the Inlet Roundness of Micro-nozzles [J]. Journal of Micromechanics and Microengineering, 2007, Vol. 17:N31-N39.
    [7] Liu Chang著,黄庆安(译).微机电系统基础[M].机械工业出版社,2007年10月.
    [8]张永华,丁桂甫,蔡炳初,等.基于UV-LIGA技术的新型RF MEMS开关[J].微细加工技术, 2007,(1):60-64.
    [9] Niarchos D. Magnetic MEMS: Key Issues and Some Applications [J]. Sensors and Actuators A, 2003, Vol. 109: 166-173.
    [10]张立宪.射频(RF) MEMS开关的模拟、制备和力学分析[D].北京:中国科学院研究生院,2003.
    [11]黄庆安,廖小平译.RF MEMS理论·设计·技术[M].南京:东南大学出版社,2005.
    [12] Yael Nemirovsky, Ofir Bochobza-Degani. A Methodology and Model for the Pull-In Parameters of Electrostatic Actuators [J]. J Microelectromechanical systems, 2001, Vol. 10(6): 601-615.
    [13] Chowdhury S., Ahmadi M., Miller W.C. A Comparison of Pull-in VoltageCalculation Methods for MEMS-Based Electrostatic Actuator Design [E]. 1st International Conference on Sensing Technology, 2005, New Zealand, 112-117.
    [14] Marquès A.F., CastellóR.C., Shkel A.M. Modelling the electrostatic actuation of MEMS: state of the art 2005 [E]. IOC-DT-P-2005-18, 2005.
    [15] van Spengen W. M., Puers R., Mertens R., et al. A Comprehensive Model to Predict the Charging and Reliability of Capacitive RF MEMS Switches [J]. J Micromechanics and Microengineering, 2004, Vol. 14(4):514-521.
    [16] Gregory N. N, George B. Dynamic Pull-In of Parallel-Plate and Torsional Electrostatic MEMS Actuators[J]. J Microelectromechanical Systems, 2006, Vol. 15(4): 811-821.
    [17]孙东明.扭臂结构的MEMS静电微驱动器的特性研究[D].长春:吉林大学博士论文,2006年.
    [18] Nemirovsky Y., Zelniker I., Degani O., et al. A Methodology and Model for the Pull-In Parameters of Magnetostatic Actuators [J]. J Microelectromechanical systems, 2005, 14(6):1253-1264.
    [19]方玉明,黄庆安,李伟华.一种磁微执行器Pull-In模型[J].半导体学报, 2007, Vol. 28(10): 1647-1651.
    [20] Schonhardt S., Korvink J.G., Wallrabe U. Low Power Electromagnetic Actuators with Large Traveling Range [E]. In 10th International Conference on New Actuators, 2006: 124-127.
    [21] Schonhardt S., Korvink J.G., Mohr J., Wallrabe U. Magnetic Comb Drive Actuator [E]. In MEMS 2008, 2008: 479-482.
    [22] De S.K., Alurn N.R. A Hybrid Full-Lagrangian Technique for the Static and Dynamic Analysis of Magnetostatic MEMS [J]. Journal of Micromechanics and Microengineering, 2006, Vol. 16: 2646–2658.
    [23] Ramezani A., Alasty A., Akbari J. Influence of Van Der Waals Force on the Pull-In Parameters of Cantilever Type Nanoscale Electrostatic Actuators [J]. Microsystem Technology, 2006, Vol. 12:1153-1161.
    [24] Guo Jian Gang, Zhao Ya Pu. Influence of Van Der Waals and Casimir Forces on Electrostatic Torsional Actuators [J]. Journal of Microelectromechanical Systems, 2004, Vol. 13(6):1027-1035.
    [25] Lin W. H., Zhao Y. P. Nonlinear Behavior for Nanoscale Electrostatic Actuators with Casimir Force [J]. Chaos, Solitons and Fractals, 2005, Vol. 23:1777-1785.
    [26]林其壬,赵佑民.磁路设计原理[M].北京:机械工业出版社,1987: 87-92.
    [27] Son C., Ziaie B. Pull-in Instability of Parallel-plate Electrostatic Microactuators under A Combined Variable Charge and Voltage Configuration [J]. Applied Physics Letters, 2008, Vol.92:013509.
    [28]尤政,李慧娟,张高飞.MEMS微继电器及其关键问题研究现状[J].压电与声光, 2006,Vol.28(3):278-281.
    [29]吴茂松,杨春生,茅昕辉等.微执行器中连续电磁驱动的数学模型[J].压电与声光,2004,Vol.26 (4):337-340.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700