用户名: 密码: 验证码:
输电线路雷电暂态综合建模及仿真算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
输电线路防雷保护的根本目的就是尽可能地减少由于雷击引起的线路跳闸事故发生的次数并降低雷击事故引起的损失。输电线路的过电压保护和绝缘配合在很大程度上取决于其承受的过电压的幅值和波形,输电线路的绝缘水平以及各种设备(如绝缘子串、变压器和断路器等)的绝缘配合必须能够承受线路上可能出现的过电压。因此,对输电线路的雷击暂态特性进行研究,分析输电线路上可能出现的雷电过电压有利于可靠地设计输电线路及电气设备的绝缘配合,并且有利于实现经济上的最优化。
     雷电过电压波在输电线路上传播时会发生衰减和变形,其原因主要是在雷电暂态情况下线路的电晕效应和线路参数的频变效应。本文分别针对这两个方面展开了研究和讨论。
     当输电线路上承受的雷电过电压幅值超过电晕起始电压时,电晕开始发生。为减小误差,本文将发生电晕时输电线路的空间电场分成两部分之和,一部分是没有空间电荷时产生的标称场(拉普拉斯场):另一部分是引入空间电荷所产生的空间电荷场。在求解方程时,用模拟电荷法求解标称场,而用有限元法求解空间电荷场。其中在运用有限元法求解空间电荷场的过程中,首先利用给定的电荷密度初始值计算空间电场,再利用计算得到的合成电场反向计算空间电荷密度,通过逐步迭代计算得到雷击点处发生电晕时的Q-V曲线以及每一时刻输电线路对地的动态电容。对于线路上其它点的电晕过程的考虑,本文采用查表的思路,当该点处的电压达到某一幅值时,即查寻雷击点处的Q-V曲线,得到对应的电晕电荷和动态电容值进行计算。
     在考虑参数频变时,输电线路径向参数的频率相关性可用一系列并联的电阻和电感的组合来描述。文中通过计算分析证明了该模型不仅能在很大的频率范围内较精确地表征输电线路的频率相关性,而且不必进行频域和时域的相互变换,节省了计算时间,更重要的是可以很方便地与电晕模型进行衔接。利用收敛速度更快的Newton-type迭代法计算了各RL模块的参数值。若在计算过程中同时考虑线路参数频变特性和电晕效应,则可将频变参数线路模型中描述线路的每一个π型单元的对地电容修改为电晕发生后的动态电容即可。
     为了使本文所建立的输电线路暂态特性的分析模型更完整,文中用倾斜导体模型取代了现有的计算杆塔波阻抗时普遍采用的竖直导体模型,能够更好地反映杆塔的实际结构特征,进而建立了较为精确的输电线路杆塔的多波阻抗分析模型。该模型结合绝缘子闪络模型可分析杆塔遭受雷击,由于其电位的升高,引起绝缘子闪络,进而使线路上产生雷电过电压波的整个过程。对于所建立的暂态电路,采用暂态等值计算电路的方法,将电阻、电感以及电容组成的复杂网络转化为仅包含电阻及电流源并联的形式,利用节点电压法求解输电线路上每一点的电压波形。
     根据所建立的模型和计算方法,文中计算了双指数雷电波、衰减振荡波和快速脉冲作用下的电晕效应,对其Q-V曲线各分支阶段的物理过程进行了阐述,并在此基础上分析了衰减振荡波作用下的次回环曲线的特性。文中设计了模拟实验,验证了本文所提出的计算方法的有效性。此外,本文分别对仅考虑冲击电晕效应、仅考虑线路参数频变效应以及同时考虑电晕和参数频变效应两方面影响的输电线路暂态特性进行了分析和比较。计算结果也显示电晕效应对于输电线路雷电过电压波形的衰减和畸变作用要大于参数频变效应,但是同时考虑这两方面影响更符合实际情况。文中还比较了不同因素对雷电过电压波的影响,如波头时间短的雷电波以及波尾时间短的雷电波在沿线路传播时其衰减和畸变作用更明显。文中运用matlab程序编写了输电线路过电压分析计算软件,文中的计算方法和结果可为实际线路的雷电防护和绝缘设计提供很好的参考依据。
The basic purpose of lightning protection of transmission line is to reduce lightning accident times and decrease the losses caused by lightning. The overvoltage protection and insulation coordination of transmission lines depend in great degree on the magnitude and waveform of the overvoltage. The insulation level of transmission line and the insulation coordination of different divices such as insulator, transformer and breaker, must endure the possible overvoltage. So doing research on lightning overvoltage of transmission line is propitious to the design of the insulaton coordination of transmission line and electrical devices and to the ecomic optimization of the system.
     Attenuation and distortion may occur on lighitning overvoltage when travling along the line and the main causations are corona effect and frequency dependent effect of transmission line in lighting transient situations. The two aspects are studied in this paper.
     When the voltage on line exceeds corona inception voltage, corona occurs. In order to reduce calculation errors, the electric field is devided into two parts, one is the nominal field with no charge and the other is the field by space charge. When solving the equation, simulation charge method is used to solve the nominal field and finite element method to the space charge field. When solving the space charge field, the given initial value of charge density is applied to calculate the space electric field, and the calculated total field is then used to calculate the space charge density reversely. The Q-V curve and the dynamic capacitance of the line at corona can be obtained by iterative calculation. For the corona effects of other points on the line, the thinking of lookup is used in this paper, that is, when the voltage on some point reaches a certain value, the corona charge and dynamic capacitance are obtained by lookuping the Q-V curve on the lightning stroke point.
     When considering the frequency dependent parameters of the line, its radial parameters are described by series and parallel of resistance and inductance. The calculation results verify that the model not only can describe the frequency dependent characteristics of the line in a large range of frequency, but also need not to do transformation between frequency domain and time domain which can save the calcualtiong time and the more important is that it can be connected to the corona model convinently. The paramenters of each RL module are evalued by Newton-type iteration method whose convergence rate is more rapid. If it is needed to consider the frequency dependent characteristics and the corona effects of the line synchronously, the capacitance in the frequency dependent model is changed to the dynamic capacitance.
     In order to make the models established in this paper more complete, the general vertical conductor model to express the tower is replaced by the inclined conductor tower model, and the more accurate multiwave impedance tower model is proposed to analyze the lightning transients of transmission tower. The tower model combined with the insulator flash model can be used to analyze the total process that when the tower is stroked by lightning, the voltages on it are rised, and then the insulator flashes and lightning overvoltages are produced on the line. For the transient circuit model, the method of transient equivalent calculation circuit is applied, which converts the complex network composed of resistances, inductances and capacitances into the circuit made up of only parallel resistances and current sources. Node voltage method is used to solve the voltage on each point of the line.
     According to models and calculation methods proposed in this paper, the corona effect under double exponential lightning waveform, damped oscillation waveform and fast surge are calculated, the physical process of each branch on the Q-V curve is described, and on the basis the characteristics of minor loop curve under damped oscillatory waves are also analyzed. A simulation experiment is made to verify the effectivemess of the model proposed in this paper. In addition, the situations of only considering impulse corona effect, only considering frequency dependent effect of line parameters and considering corona effects and frequency dependent characteristics synchronously are analyzed and compared with each other. The calculation results indicate that the attenuation and distortion of corona effects on transmission line are larger than those by frequency dependent effects, but it is more conforming to reality considering the two aspects synchronously. The influences of different aspects on lighting overvoltage are also compared in this paper, for example, it is more obvious for the attenuation and distortion functions of lighitning waveform with short wave fronts and wavetails on the travelling waves. Software for analyzing lightning overvoltages on transmission line is programmed by matlab, and the calculation method and results proposed in this paper can provide guidelines for the lightining protection and insulation design of practice lines.
引文
[1]谢广润.电力系统过电压.北京:水利水电出版社,1987.
    [2]何金良.电力系统过电压与绝缘配合.北京:清华大学出版社,1987.
    [3]中华人民共和国电力工业部.DL/T 620-1997,交流电气装置的过电压保护和绝缘配合.北京:中国电力出版社,1997.
    [4]Deri A, Tevan G, Semlyen A, et al. The complex ground return plane:a simplified model for homogeneous and multi-layer earth return. IEEE Transactions on Power Apparatus and Systems,1981, PAS-100:3686-3693.
    [5]C. Gary, A. Timotin and D. Cristescu. Prediction of surge propagation influenced by corona and skin effect. IEE Proceedings,1983,130-A (5):264-272.
    [6]Ashok K Agrawal, Harold J. Price and Shyam H Gurbaxani. Transient Response of Multiconductor Transmission Lines Excited by a Nonuniform Electromagnetic Field. IEEE Transactions on Electromagnetic Compatrbrlrty,1980,22(2):119-129.
    [7]Vance, E. F. Coupling to shielded cables. New York:Wiley-Interscience Publication,1978.
    [8]Budner A. Introduction of frequency-dependent line parameters into an electromagnetic transients program. IEEE Trans. Power Apparatus and Systems,1970, PAS-89(1):88-97.
    [9]Snelson J K. Propagation of traveling waves on transmission lines-frequency dependent parameters. IEEE Transactions on Power Apparatus and Systems,1972, PAS-91(1):85-91.
    [10]Meyer W S and Dommel H W. Numerical modeling of frequency-dependent transmission-line parameters in an electromagnetic transients program. IEEE Transactions on Power Apparatus and Systems,1974, PAS-93(5):1401-1409.
    [11]J. R. Marti. Accurate modeling of frequency-dependent transmission lines in electromagnetic transient simulations. IEEE Transactions on Power Apparatus and Systems,1982, PAS-101(1):147-157.
    [12]A. Semlyen and A. Dabuleanu. Fast and accurate switching transient calculations on transmission lines with ground return using recursive convolutions. IEEE Trans, on Power Apparatus and Systems,1975, PAS-94:561-571.
    [13]Afghahi M and Harrington R J. Charge model for studying corona during surges on overhead transmission lines. IEE Proceedings C:Generation, Transmission and Distribution,1983, 130(1):16-21.
    [14]Al-Tai M A, Elayyan H S B, German D M, et al. The simulation of surge corona on transmission lines. IEEE Trans. On Power Delivery,1989,4(2):1360-1368.
    [15]Salam M A and Stanek E K. Mathematical-physical model of corona from surges on high-voltage lines. IEEE Transactions on Industry Application,1987, IA-23(3):481-489.
    [16]A. Semlyen and Huang Wei-Gang. Corona modeling for the calculation of transients on transmission lines, IEEE Transactions on Power Delivery,1986, PWRD-1 (3):228-239.
    [17]C. F. Wagner and B.L. Lloyd. Effects of corona on tranelling waves. AIEE Transactions on on Power Apparatus and Systems,1955,74(111):858-872.
    [18]K. C. Lee. Non-Linear Corona Models in an Electromagnetic Transients Program (EMTP). IEEE Transactions on Power Apparatus and Systems,1983, PAS-102:2936-2942.
    [19]H. M. Kudyan and C.H. Shih. A nonlinear circuit model for transmission lines in corona. IEEE Transactions on Power Apparatus and Systems,1981, PAS-100(3):1420-1430.
    [20]C. Christopoulos. Propagation of surges above the corona threshold on a line with lossy earth return, COMPEL,1985,4(2):91-102.
    [21]P. S. Maruvada, H. Menemenlis, and R. Makewski. Corona characteristic of conductor bundles under impulse voltages. Transactions on Power Apparatus and Systems,1977,96(1):102-115.
    [22]Fernando Castellanos. Full frequency-dependent phase-domain modeling of transmission lines and corona phenomena. Doctor thesis, The University of British Columbia,1997.
    [23]黄炜纲,输电线路暂态计算的电晕模型.高电压技术,1987,(1):15-21.
    [24]Li Xiaorong, Malik O P and Zhao Zhida. A Practical Mathematical Model of Corona for Calculation of Transients on Transmission Lines. IEEE Transactions on Power Delivery,1989, 4(2):1145-1151.
    [25]G. N. Alexandrov, G. V. Podporkyn and A. D. Sivayevr. A method for calculating the breakdown of long air gaps in power transmission lines. Proceedings of international Conference on Gas Discharge and Their Application,1988,411-414.
    [26]K. Arai, Y. Tsunoda. Electric field by the space charge with temporal variation of mobility around a wire under corona discharge. Proceedings of the Third ISH,1979,1-4.
    [27]R. J. Harrington and M. Afghani. Implementation of a Computer Model to Include the Effects of Corona in Transient Overvoltage Calculations. IEEE Transactions on Power Apparatus and Systems,1983, PAS-102:902-910.
    [28]Ramirez A, Naredo J L and Moreno P, et al. Electromagnetic transients in overhead lines considering frequency dependence and corona effect via the method of characteristics. International Journal of Electric Power & Energy System,2001,23(3):179-188.
    [29]Freitas M A, Kurokawa S, Pissplatp J. Corona effect in frequency dependent transmission line models. Proceedings of the 2008 IEEE/PES Transmission and Distribution Conference and Exposition,2008,1-7.
    [30]束洪春,宣映霞,李义等.一种考虑冲击电晕及线路参数频变的电磁暂态仿真方法.继电器,2006,34(9):26-29,33.
    [31]谷定燮.我国500kV输变电工程过电压设计方面存在的问题与改进措施.电力建设,2002,23(7):26-30.
    [32]舒印彪,赵丞华.研究实施中的500kV同塔双回紧凑型输电线路.电网技术,2002,26(4):49-52.
    [33]CIGRE Working Group 33.01. Guide to procedures for estimating the lightning performance of transmission lines. CIGRE Technical, Brochure 63,1991.
    [34]E.C.Jordan, K.G.Balmain. Electromagnetic waves and radiation systems, N.J.:Prentice-Hall Inc. Englewood Cliffs, Second Edition,1968.
    [35]Wagner C F, Hileman A R. A new approach to the calculation of lightning performance of transmission lines Ⅲ-a simplified method stroke to tower. AIEE Transaction on Power Apparatus and Systems,1960,79:589-603.
    [36]Michael A. Sargent and Mat Darveniza. Tower surge impedance. IEEE Transaction on Power Apparatus and System,1969, PAS.88(5):680-687.
    [37]Menemenlis C, Chun Z T. Wave Propagation on Nonuniform Lines. IEEE Transaction on Power Apparatus and Systems,1982, PAS-101(4):833-839.
    [38]Ametani A, Kasai Y, Sawada J, et al. Frequency-dependent Impedance of Vertical Conductors and a Multiconductor Tower Model. IEE Proceedings of Generation Transaction Distribution, 1994,141(4):339-345.
    [39]Gutierrez R J A, Mareno P, Naredo J L, et al. Nonuniform Transmission Tower Model for Lightning Transient Studies. IEEE Transactions on Power Delivery,2004,19(2):490-496.
    [40]张永记,司马文霞,张志劲.防雷分析中杆塔模型的研究现状.32(7):93-97,2006
    [41]Ishii M, Kawamura T, Kouno T, et al. Multistory Transmission Tower Model for Lightning Surge Analysis. IEEE Transaction on Power Delivery,1991,6(3):1327-1335.
    [42]王东举,周浩,陈稼苗,等.特高杆塔的多波阻抗模型及雷击暂态特性分析.电网技术,2007,31(23):11-16.
    [43]Hara T, Yamamoto O. Modelling of a transmission tower for lightning surge analysis. IEE Proc of Trans Distrib,1996,143(3):283-289.
    [44]Rizk F. A. M. Modeling of transmission line exposure to direct lightning strokes. IEEE Transactions on Power Delivery,1990,5(4):1983-1997.
    [45]IEEE Working Group on Estimating Lightning Performance of Transmission line. A simplified method on estimating lightning performance of transmission line. IEEE Transactions on Power Apparatus and System,1985,104(4):919-931.
    [46]R. O. Caldwell, M. Darveniza. Experimental and analytical studies of the effects of non-standard waveshapes on the impulse strength of external insulation. IEEE Transactions on Power Apparatus and System,1973, PAS-92:1420-1428.
    [47]P. Chowdhuri, A. C. Baker, G.Carrara, et al. Review of research on nonstandard lightning voltage waves. IEEE Transactions on Power Delivery,1994,9(4):1972-1981.
    [48]黄纬纲,周东平.对线路防雷计算中绝缘闪络判据的研讨.中国电力,1999,(11):59-63.
    [49]扬津基,气体放电.北京:科学出版社,1983
    [50]E. W. Boehne. Discussion to paper "Attenuation and successive reflections of traveling waves". AIEE,1931,50:558-559.
    [51]R. Davis and R. W. E. Cook. The surge corona discharge. IEE Proc, Pt.C,1961,108:230-239.
    [52]R. T. Waters, T.E.S. Rickard, W.B. Stark, Direct measurementof electric field at line conductors during ac corona, IEE Proc.1972,119 (6):717-723.
    [53]N. Santiago, F. Castellanos. Physical aspects of corona effect during transient overvoltages and their simulation with circuit models. Proceedings of IASTED on Power Systems and Engineeing,1992,9-14.
    [54]C. de Jesus, M. T. Correia de Barros. Modelling of corona dynamics for surge propagation studies. IEEE Transactions on Power Delivery,1994, PWRD-9(3):1564-1569.
    [55]L. Ganesan, M. Joy Thomas. Studies on the influence of corona on overvoltage surges. Electric Power Systems Research,2000,53:97-103.
    [56]Mehmet S. M. State-Space Transient Analysis of Single-Phase Transmission Lines with Corona. Proceedings of international conference on Power Systems Transients,2003,1-5.
    [57]张纬钹,何金良,高玉明.过电压防护及绝缘配合.北京:清华大学出版社,2002.
    [58]王小平.雷电波的电晕放电特性及其在传播中的衰减变形博士学位论文.北京:清华大学,1993.
    [59]冯慈璋.电磁场.北京:高等教育出版社,2006.
    [60]杨扬.基于上流有限元法的同走廊两回直流输电线路地面合成电场研究[硕士学位论文].北京:中国电力科学研究院,2011.
    [61]Tadasu Takuma, Tsutomu Ikeda and Tadashi Kawamoto. Calculation of ion flow fields of HVDC transmission lines by the finite element method. IEEE Transactions on Power
    Apparatus and Systems,1981, PAS-100(12):4802-4810.
    [62]谈克雄,薛家麟.高压静电场数值计算.北京:水利电力出版社,1990.
    [63]周长勇.高压线路电场仿真及参量分析[硕士学位论文].北京:北京交通大学,2004.
    [64]陈雄文.高压交直流输电线路电晕损失计算研究[硕士学位论文].保定:华北电力大学,2011.
    [65]N Harid, R.T. Waters. Statictical study of impulse corona inception parameters on line conductors, IEE Proceedings-A,1991,138(3):161-168.
    [66]冯晗.高压直流输电线路离子流场计算及其工程应用.华北电力大学硕士论文,2006.
    [67]张小青.非标准雷电波下电晕特性的研究.清华大学博士论文,1991.
    [68]崔涛.输电线路防雷计算中绝缘子串闪络判据研究.华中科技大学硕士论文,2009.
    [69]Dieter Kind. An Introduction to High-Voltage Experimental Technique:Textbook for Electrical Engineers. Vieweg:Braunschweig,1978.
    [70]Dommel H W著,李永庄,林集明,曾昭华译.电力系统电磁暂态计算理论.北京:水利电力出版社,1991.
    [71]Dommel H W. Digital Computer Solution of Electromagnetic Transients in Single-and Multi-Phase Networks. IEEE transactions on power apparatus and systems,1969,88(4):388-399.
    [72]邱关源.电路(第五版).北京:高等教育出版社,2006.
    [73]梁曦东,陈昌渔,周远翔.高电压工程.北京:清华大学出版社,2003.
    [74]M.B.科斯坚科,K.Ⅱ.卡多姆斯卡娅,M.(?).列夫尼什京等著;马家炯,王秉钧合译.高压架空线及电缆网络的过电压及其防护.北京:中国电力出版社,1995
    [75]Clayton R P. Analysis of multiconductor transmission lines (1st edition). New York:John Wiley & Sons,1994.
    [76]M. A. Freitas, S. Kurokawa and J. Pissolato. Corona effect in frequency dependent transmission line models.
    [77]M. C. Tavares, J. Pissolato and C. M. Portela. Mode domain multiphase line model-use in transients studies. IEEE Transactions on Power Delivery,1999,14(4):1533-1544.
    [78]M. S. Sarto, A. Scarlatti and C. L. Holloway. On the use of fitting models for the time-domain analysis on problems with frequency-dependent parameters, in Proc. IEEE Int. Symp. On Electromagnetic Compatibility,2002,1:588-593.
    [79]M. T. Darvishi, A. Barati. A third-order Newton-type method to solve systems of nonlinear equations, Applied Mathematics and Computation,2007,187,630-635
    [80]A. Martinez, B. Gustavsen and D. Durbak. Parameters determination for modeling system transients-Part I:Overhead lines. IEEE Trans. Power Delivery,20(3):2038-2044,2005.
    [81]莫付江,陈允平,阮江军.输电线路杆塔模型与防雷性能计算研究.电网技术,2004,28(21):80-84.
    [82]王芳.输电线路杆塔的雷电暂态模拟[硕士学位论文].北京:北京交通大学,2007.
    [83]张小青.建筑物内电子设备的防雷保护.北京:电子工业出版社,2000.
    [84]#12
    [85] Zhou Q B. Lightning-induced impulse magnetic fields in high-rise buildings [Dissertation].Hong Kong:Hong Kong Polytechnic University,2007.
    [86]陈水明.雷击建筑物时室内电子系统过电压防护研究[博士学位论文].北京:清华大学,1997.
    [87]汲亚飞,杨宇,邹军.建筑物防雷系统R-L-C参数闭式解析算法.高电压技术,2009,35(6):1382-1387.
    [88]Cortina R, Porrino A. Calculation of impulse current distributions and magnetic fields in lightning protection structures:a computer program and its laboratory validation. IEEE Transactions on Magnetics,1992,28(2):1134-1137.
    [89]Grover F W. Inductance Calculations. New York:Dover,1998.
    [90]吴维韩,张芳榴.电力系统过电压数值计算.北京:科学出版社,1989.
    [91]Hara T., Hatsukawa S., Yamamoto O. et al. Tower model considering bracings and crossarms, Discharge and high voltage joint conference of IEEJ,1991, Paper ED-91-143, HV-91-60. (in Japanese)
    [92]任晋旗.输电线路绝缘子雷电闪络特性研究[硕士学位论文].北京:中国科学院电工研究所,2005.
    [93]司马文霞,谭威,袁涛等.高海拔超高压绝缘子串雷电冲击伏秒特性.高电压技术,2012,38(1):29-34.
    [94]M. Darveniza, F. Popolansky, E. R. Whitehead. Lightning protection of UHV transmission lines. Electra,1975,41:39-69.
    [95]李福寿.电力系统过电压计算.北京:水利电力出版社,1988.
    [96]Heppe J. Computation of potential at surface above an energized grid or other electrode, allowing for nonuniform current distribution. IEEE Transactions on Power Apparatus and System,1979,98(6):1978-1989.
    [97]王晓辉.风力发电机组雷电暂态效应的研究[博士学位论文].北京:北京交通大学,2009.
    [98]Golde R H著,周诗健,孙景群译.雷电.北京:电力工业出版社,1982.
    [99]Uman M A, Mclain D K. Magnetic field of lightning return stroke. Journal of Geophysical Research,1969,74:6899-6910.
    [100]Amilton Soares Jr., Marco Aurelio O. Schroeder and Silverio Visacro. Transient voltages in transmission lines caused by direct lightning strikes. IEEE Transactions on Power Delivery, 2005,20(2):1-6.
    [101]刘浩菊.雷击杆塔过电压的理论与试验研究[硕士学位论文].武汉:华中科技大学,2004.
    [102]Chen Yazhou, Liu Shanghe, Wu Xiaorong, et al. A new kind of lightning channel-base current function. Proceedings of 3rd International Symposium on Electromagnetic Compatibility,2002, 304-307.
    [103]Heidler F, Cvetic J M, Stanic B V. Calculation of lightning current parameters. IEEE Transactions on Power Delivery,1999,14(2):399-404.
    [104]张仁豫,陈昌渔,王昌长.高电压实验技术.北京:清华大学出版社,2003
    [105]IEC 61312-1, Protection against Lightning Electromagnetic Impulse, Part 1:General principles. 1995
    [106]中华人民共和国机械部主编.中华人民共和国国家标准GB50057-94建筑物防雷设计规范(2000年版).北京:中国计划出版社,2000.
    [107]H.C.Miller. Surface flashover of insulators. IEEE Transactions on Dielectrics and Electrical Insulation,1989,24(5):765-786.
    [108]徐志鸿.雷击下杆塔电位分布及变电站雷电侵入波的研究[硕士学位论文].北京:华北电力大学,2006.
    [109]张小青.建筑物内电子设备的防雷保护.北京:电子工业出版社,2000.
    [110]J.M.Ortega, W.C. Rheinboldt, Iterative solution of nonlinear equations in several variables. Australian:Academic Press,1970
    [111]洪先龙等,计算机辅助电路分析—算法和软件技术.北京:清华大学出版社,1982.
    [112]Yousef A. Safar and Mohamed M. Saied, A model for simulating corona in the electromagnetic transients on transmission lines. Computers and Electrical Engineering,2003,29:653-665.
    [113]C. F. Wagner, I. W. Gross and B. L. Lloyd, High voltage impulse tests on transmission lines, AIEE Transactions on Power Apparatus and System,1954,196-210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700