用户名: 密码: 验证码:
基于ITO微孔电极的SH-SY5Y细胞行为电化学分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞是一个能通过与外界进行物质、能量、信息交换的独立生存和自我调节的开放体系,也是生命活动的基本结构和功能单位。生命的实质就是细胞属性的外在体现,它不仅反映了生命活动的多样性和一致性,更体现了生命活动的复杂性。长期以来细胞一直是生命科学研究的核心。由于生物组织的不均匀性,同种细胞在形状、大小、生物活性及其生理状态等方面均有差异。由细胞群体分析获得的统计结果,抹杀了单细胞个体之间的差异,往往无法提供生物学及医学等领域必需的准确信息,而单细胞研究在疾病的早期诊断,揭示不同细胞在化学组成、生理响应等方面的差异性、药物设计和疾病的合理治疗等方面具有不可替代的地位。
     细胞也是生命科学与化学的交汇点。现代生命体系的研究已从生物的整体、器官、组织进入到细胞、亚细胞层次,而化学对生命体系的研究也已从原子、分子、大分子聚集体,走向细胞。二十一世纪分析化学与生物学之间的渗透交叉,使对生命奥秘的探索更加深入,也促进了分析方法的快速发展。
     本论文以电化学方法为基础,以神经母细胞瘤细胞(SH-SY5Y cell)为研究对象,在研制了ITO(Indium Tin Oxide)微孔电极、ITO阵列微孔电极和改进了碳纤维微电极的基础上,对SH-SY5Y单细胞、多细胞在不同条件下的胞吐及SH-SY5Y细胞“失巢凋亡”进行了研究。
     第一章绪论
     首先介绍了细胞分析特别是单细胞分析的意义与发展概况,重点关注了细胞通讯中胞吐现象的研究。对常见的单细胞分析手段如图像分析、毛细管电泳分析、微电极电化学分析、微流控分析进行了简要综述。最后阐述了本论文主要的研究目的、对象、研究方法和研究手段。
     第二章ITO微孔电极、阵列微孔电极的制备与表征
     ITO微电极与传统微电极相比,其突出优势在于在具备良好的电化学特性的同时,还具备优良的光学特性。本研究采用ITO与紫外光刻技术构建了一种新型ITO微孔电极和ITO阵列微孔电极,将该电极用于神经递质的测定,取得较好的效果。与传统的方法相比,ITO微孔电极不仅可以用电化学的方法监测细胞胞吐,而且还可与荧光或者化学发光等方法联用,实现同时运用多种手段对细胞的生理现象进行研究的目的。
     第三章ITO微孔电极上不同形态SH-SY5Y细胞胞吐的研究
     在细胞信号转导的众多形式中,以释放特定生化或化学信息为手段的细胞胞吐等细胞通讯方式,在生命的进程中具有尤其重要的地位。本章利用ITO微孔电极,成功地对SH-SY5Y单细胞、多细胞的胞吐进行了直接和实时的监测,并对不同形态的SH-SY5Y单细胞胞吐的情形进行了比较,发现具有突出的SH-SY5Y细胞的胞吐活性明显高于球形SH-SY5Y细胞,并对此展开了初步讨论。
     第四章ITO微孔电极上不同刺激剂SH-SY5Y细胞胞吐响应时间和机理研究
     细胞胞吐是真核细胞所具有的一种极为复杂的机能活动。对细胞胞吐的机制进行深入研究,将为我们对生命的理解提供直接的依据。分别使用高钾,尼古丁、亚硝基降烟碱等溶液为刺激剂,对SH-SY5Y细胞进行刺激,实验结果表明,不同刺激剂下SH-SY5Y细胞的胞吐发生时间存在明显差异,表明不同刺激下的胞吐对应着不同的胞吐机制。
     研究神经递质和激素的分泌调控,阐明某些对胞吐活动具有干预作用的胞外因素,将为细胞胞吐机制的探索提供实践例证。
     第五章碳纤维微电极的制备及初步用于SECM和对细胞胞吐的实时监测
     自Wightman等将碳纤维微电极应用于单细胞的测试以来,多数单细胞实验的测定均以碳纤维微电极为实验工具,碳纤维微电极的稳定性以及灵敏度等直接影响着实验结果。碳纤维微电极的制备也一直在实验的过程中占有重要地位,碳纤维微电极的制备过程具有操作繁琐、效率低、需要显微操作、以及电极容易泄漏等不足。我们优化了制做流程,避免了在制备过程中的显微操作,使碳纤维微电极的制备更加简便、快捷。
     用此方法制备的碳纤维微电极经电化学表征和在SECM等实验中的应用,取得较好的实验效果。将碳纤维微电极与ITO微孔电极同时应用于细胞胞吐的监测中,通过比较实验数据发现,两种电极在应用中各有能够发挥自身优势的领域:ITO电极由于与细胞接触近,接触面较大,能够监测到较多的胞吐事件,而碳纤维微电极可以区分细胞表面不同的胞吐活性区域。
     第六章基于电化学阻抗法实时监测SH-SY5Y细胞生理活动
     大多数哺乳动物细胞在体内和体外生长时需要附着于一定的底物,细胞与底物粘附后将逐渐伸展而形成一定的形态。细胞能否生长的关键取决于尽早地使细胞粘附贴壁,如细胞不能及时粘附贴壁、或者贴壁被破坏,细胞将不能维持正常的生理进程以至于凋亡。研究细胞粘附现象,对研究多个生理学和病理学进程的重要组成部分,例如伤口愈合、炎症、血管天生和癌症有重要的意义。三氧化二砷传统上是一种毒性试剂,研究发现其对肝癌、白血病、神经母细胞瘤的治疗有疗效。如能在肿瘤细胞贴壁潜伏期通过控制外界条件,如调整培养基成分、加入抗肿瘤药物等影响细胞的粘附及生长,将对癌症的治疗等有着重要的意义。
     以往的细胞测试方法都是基于终点测验,不能实时监测细胞状态的变化。我们将ITO阵列微孔电极用于细胞生理功能的无标记、实时的监测,对三氧化二砷作用于SH-SY5Y细胞的粘附贴壁效果进行研究。实验结果表明,一定浓度的三氧化二砷对细胞的粘附和贴壁有着明显的影响,对SH-SY5Y细胞的增殖有着明显的抑制作用。本实验中使用ITO阵列微孔电极,避免了传统EIS法中电极中贵金属的使用,而且由于ITO又具有优越的透光性,可使电化学阻抗测量与其他光学表征手段联合使用,为将来复合功能细胞传感器的研制提供思路。
Each cell is an independent self-adjusting system, and it interacts and exchanges substance, energy, and message with the surrounding environment. Cell is both the basic constitution and functional unit of biological activities. Life is the external realization of cell's property. Cell embodies such characteristics as diversity, homogeneity and complexity of biological activities. For this reason, cell has long been the core of biosciences. Due to the variation of biological tissues, the same type of cells may differ in shape, size, biological activity, and physiological state. Statistical results obtained from experiments on cell colony often failed to provide the desired accurate message for biology and medicine because differences among individual cells are not under consideration. In contrast, studies on single cells could reveal the differences of cells in chemical components and physiological reaction, and are indispensable for early diagnosis of disease, prescription of drugs, and proper treatment.
     Cell is also the crosspoint between bioscience and chemistry study. Biological researches have progressed from biological body as a whole, over organs, tissues, into cells and subcellular fractions, while chemical researches into biological system have been pushed forward from atom, over molecule, macromolecule, molecular aggregate, to cell. Nowadays the interaction and overlapping between chemistry and biology propelled exploration into the mystery of biological activities, and promoted the fast development of analytical methods.
     In this dissertation, SH-SY5Y cells were chosen as the object of study, and electrochemical method was the fundamental approach. Indium Tin Oxide (ITO) micro-pore electrode and ITO array micro-pore electrode were fabricated, and improvements were made on traditional carbon fiber microelectrode. Then using the electrodes, the author made studies about SH-SY5Y single cell and multi-cell exocytoses under different conditions, and about the anoikis of SH-SY5Y cells
     Chapter1Introduction
     The significance and overall development of cell analysis, in particular, single cell analysis, were first introduced. In the matter of cellular communication, emphasis was put on studies related to cell exocytosis.
     Next, the author briefly reviewed the conventional means of single cell analysis, namely, image analysis, capillary electrophoresis, microelectrode electrochemical analysis, microfluidics. Finally, the author presented the purpose of study, object of study, research methods and devices.
     Chapter2The Fabrication and characterizing of the ITO micro-pore electrode and array micro-pore electrode
     Compared with traditional electrodes, ITO micropore electrode was characterized by its good electrochemical property and fine photological property. The author manufactured a new type of ITO micro-pore electrochemical sensor and ITO array micro-pore electrode, using ITO and UV-light photolithography technology. When the electrode was applied to the assay of neurotransmitter, the desired result was achieved. Different from the conventional method, ITO micro-pore electrode can be used in monitoring cell exocytosis with electrochemical method. It can also collaborate with other methods like fluorescence and chemiluminescence and be used for studying cell's physiological activity.
     Chapter3Exocytosis of SH-SY5Y single cell with different shapes cultured on the ITO Micro-pore electrode
     Among the different forms of cell signal transmission, cells or neuronal communication, particularly through the release of specific biochemical or chemical messengers via exocytosis plays crucial roles in biological process. Using ITO micro-pore electrode, the author successfully conducted immediate and real-time monitoring of both single cell and multi-cell exocytosis. Then a comparison was made between different shapes of SH-SY5Y single cell exocytosis. The finding was that cells having clear process are more active than those having spherical shape. With regard to this phenomenon, discussion followed afterwards.
     Chapter4The study on response time and mechanism of SH-SY5Y cell exocytosis with various stimulant
     One of the prerequisites for cell existence is reacting properly to external stimulation. The biological state of cells depends, to a large extent, on their procedural reaction to a series of ultra-cell signals. Exocytosis is the complicated physiological activity possessed by eukaryon. Researches into mechanism of exocytosis provide people with rationale for understanding life. When SH-SY5Y cells were experimented on, high potassium, nicotine and nitroso nornicotine were used respectively as stimulants. Experimental results showed that the timing for exocytosis caused by various stimulants differed greatly. In other words, exocytoses caused by different stimulants have to do with different mechanisms of exocytosis.
     Chapter5Fabrication of carbon fiber microelectrode and application to SECM and to the real-time monitoring of cell exocytosis
     Carbon fiber microelectrode, first employed by Wightman on testing single cell, has been widely used in experiments of single cell testing. The stability and sensitivity of carbon fiber microelectrode exerted immediate influence on experimental results, and its fabrication also played important roles in the experimental process. Traditional fabrication process of carbon fiber microelectrode had drawbacks like complex operation, low efficiency, operation under microscope, and possible leakage of electrode. In our experiments, new fabrication procedure has been employed, and the technology has been improved. In the process of fabrication, microscopy operation was no longer needed. Thus, the fabrication of carbon fiber electrode has turned out to be more convenient, economical and easier to handle.
     Characteristics of the carbon fiber microelectrode were confirmed electrochemically and when it was applied to SECM, desired results were obtained. When carbon fire microelectrode and ITO micro-pore electrode were used separately to monitor exocytosis, experimental data revealed that they had different advantages. ITO micro-pore electrode could closely approach the cell, so the larger interface enabled detection of more exocytotic events. Meanwhile, carbon fiber microelectrode could detect active exocytotic regions over the cell surface.
     Chapter6The real-time monitoring of the physiological activity of SH-SY5Y cells based on electrochemical impedance spectrum
     Most of the mammalian cells needed bind to certain substrate when growing in vitro and in vivo. This agglutination between cell and substrate will make cells extend gradually and grow into certain shapes. The growth of cells depended largely on their possible and early binding to the substrate. If they failed to immediately agglutinate the substrate or if their binding was interfered with, cells were unable to maintain normal physiological process and would die. Therefore, studies on cell binding were of significance for researches into physiological and pathological processes, such as wound healing, inflammation, cancerization. Arsenic trioxide, a type of toxic reagent, has been found having curative effects on the treatment of liver cancer, leukemia, and neuroblastoma. If external conditions like ingredients of culture medium, addition of antitumor medicine during incubation period can be changed, the conglutination and growth of tumor cells will be impeded, which will be of great significance to cancer treatment.
     Previous cell testing methods were all terminal test, unable to monitor the real-time alteration of cells'condition. A new type of ITO array micro-pore electrochemical sensor has been fabricated based on ITO and UV light photolithography technology and has been used in the label-free and real-time monitoring of cell's physiological function. Studies have also been made on the degree to which arsenic trioxide affected agglutination of SH-SY5Y cells. The experimental results showed that arsenic trioxide of a certain concentration had distinct influence on the conglutination of the SH-SY5Y cells and greatly inhibited the proliferation of the SH-SY5Y cells.
     ITO array micro-pore electrode used in our experiments did not contain any noble metal which was the component of traditional EIS method. Since ITO was characterized by good transmission of light, it was likely to combine electrochemical impedance measurement with other photological characterization measures, which throwed light on the development of cell sensor with compound functions.
引文
1.亨利·哈利斯.细胞的起源[M].北京:三联书店,2001.
    2. Dario Ansehnetti. Single Cell Analysis [M].KGaA, Weinheim:WILEY-VCH Verlag GmbH & Co.,2009.
    3. N Rosenfeld, JW Young, U Alon, PS Swain, MB Elowitz. Gene regulation at the single-cell level. Science,2005,307 (5717):1962-1965.
    4.翟中和,王喜忠,丁明孝.细胞生物学[M].北京:高等教育出版社,2007.
    5.潘大仁.细胞生物学[M].北京:科学出版社,2007.
    6.刘艳平.细胞生物学[M].长沙:湖南科学技术出版社,2007.
    7.林志娟,宋德懋.细胞周期的调控[J].生理科学进展,2009,40(3):
    8.林瑞庆,陈红玲,朱全兴,宋慧群.生命科学研究的重大发现——2002年诺贝尔生理学/医学奖与秀丽新杆线虫介绍[J].热带医学杂志,2003,3(2):125-127.
    9. Buck L, Axel R. A novel multigene family may en code odorant receptors: a molecular basis f or odor recognition[J]. Cell,1991,65:175-187.
    10. Ranganathan R and Buck LB. Olfactory axon path finding: who is the pied pipe. Neuron,2002, 35:599-60.
    11.宋德懋.RNA干扰的生物学机制及其应用[J].生理科学进展,2007,38(1):89-95.
    12.路瑶,熊彦,罗金才.小鼠中的基因修饰——007年度诺贝尔生理或医学奖介绍[J].生物物理学报,2007,23(6):409-419.
    13.钟天映,陈媛媛,毕利军.端粒与端粒酶的研究[J].生物化学与生物物理进展,2009,36(10):1233-1238.
    14.赵桂珍,宋伟,冯涓,王宪.免疫系统的激活[J].生理科学进展,2011,42(6):473-480.
    15.杨胜喜,周原,李根容,李声时.2002年诺贝尔化学奖“对生物大分析仪器分析方法的重大贡献”简介[J].生命的化学,2003,23(3):126-128.
    16.王鸿杰,张志文.细胞膜离子和水通道[J].生物学通报,2004,39(1):58-69.
    17. Peter Agre. Aquaporin water channels. Biosci Rep,2004,24:3.
    18.王文恭.RNA聚合酶与转录及转录调控研究的回顾[J].生物学通报,2007,42(1):59.
    19.李炎武,谭卫兵,李瓒,邝雪英.绿色荧光蛋白——2008年诺贝尔化学奖简介[J].化学世界,2009,3:145.
    20.胡永林.核糖体的结构与功能研究——2009年诺贝尔化学奖简介[J].生物化学与生物物理进展,2009,36(10):1239-1243.
    21. Chun J, Kim YJ, Yoon E. Highly-efficient single-cell capture in microfluidic array chips using differential hydrodynamic guiding structures. Appl Phys Lett 2011,98:123701-123703.
    22. Jonathan V. Sweedler, Edgar A. Arriaga. Single cell analysis[J]. Anal Bioanal Chem,2007,387 (1):1-2.
    23. Ainla A, Jansson E. T, Stepanyants N, Orwar O, Jesorka A. A microfluidic pipette for single-cell pharmacology [J]. Anal Chem,2010,82(11):4529-4536.
    24. Eriksson E, Sort K, Lundqvist F, Sveningsson M, Scrimgeour J, Hanstorp D, et al. A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning [J]. Lab Chip,2009,10(5):617-625.
    25. Wang DJ, Bodovitz S. Single cell analysis:The new frontier in'omics'.Trends Biotechnol, 2010,28 (6):281-290.
    26. Ferrell, J. E., Machleder, E. M. The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes [J]. Science,1998,280(5365):895-898.
    27. Pleasance ED, Cheetham RK, Stephens PJ, et al. A comprehensive catalogue of somatic mutations from a human cancer genome.Nature,2010,463 (7278):191-196.
    28. Xue Q, Yeung E S. Variability of Intracellular Lactate Dehydrogenase Isoenzymes in Single Human Erythrocytes [J]. Anal. Chem.1994,66(7):1175-1178.
    29. Xue Q, Yeung E S. Determination of lactate dehydrogenase isoenzymes in single lymphocytes from normal and leukemia cell lines. Journal of Chromatography B,1996,677(2):233-240.
    30. Emrich C. A., Tian H. Micro fabricated 384-Lane Capillary Array Electrophoresis Bioanalyzer for Ultrahigh-Throughput Genetic Analysis[J]. Anal. Chem,2002,74(19):5076-5083.
    31.鞠烷先,邱宗荫,丁世家.生物分析化学[M].北京:科学出版社,2007年.
    32.汪尔康,陈义.生命分析化学[M].北京:科学出版社,2006年.
    33.李亚,吴馥梅.神经递质释放的胞吐过程膜融合机制的新观点[J].细胞生物学杂志,2000,22(4):181-184.
    34. Nina Vardjan, Robert Zorecb. Mechanisms of Exocytosis[C]:Ann. N.Y. Acad. Sci.2009,1152: ⅸ-ⅹⅲ.
    35. Sllner T., Whiteheart S.W, Brunner M, et al. SNAP receptors implicated in vesicle targeting and fusion [J]. Nature,1993,362:318-324.
    36. Calakos N, Scheller R. H. Synaptic vesicle biogenesis, docking, and fusion:A molecular description[J]. Physiological Rev,1996,76:1-19.
    37. Henkel AW, O Connor V, Augustine GJ, et al. Synaptic vesicle exocytosis molecular mechanism and models. Cell,1994,76:785-787.
    38. Hunt J.M, Bommert K, Charlton M.P, et al. A post-docking role for synapt obrevin in synaptic vesicle fusion [J]. Neuron,1994,12:1269-1279.
    39. Sweeney S T, Broadie K, Keane J, et al. Targeted expression of tetanus toxin light chain in Drosophil a specifically eliminaes synaptic transmission and causes behavioral defects[J].Neuron,1995,14:341-351.
    40. Banerjee A, Kowalchyk JA, DasGupta BR, et al. SNAP-25 is required for a late post docking step in Ca2+-dependent exocytosis [J].J. Biol. Chem,1996,271:20227-20230.
    41. Otto H, Hans on PI, Jahn R. Assembly and disassembly of at ernary complex of synapt obrevin/syntaxin and SNAP-25 in the membrane of monodiperse synaptic vesicles[J].Proc Natl. Acad. Sci. USA,1997,94:6197-6201.
    42. Hanson PI, Heuser JE, Jahn R. Neurotransmitter release-four years of SNARE complexes [J]. Curr. Opi. Neurobiol,1997,7:310-315.
    43. Lin C.R, Scheller R.H. Structural organization of the synaptic exocytosis core complex [J].Neuron,1997,19:1087-1094.
    44. Hilfiker S, Greengard P, Augustine GJ. Coupling calcium to SNARE-mediated synaptic vesicle fusion[J]. Nat. Neurosci,1999,2:104-106.
    45. S heng ZH, Westenbroek RE, Catterall WA. Physical link and functional coupling of presynaptic calcium channels and the synaptic vesicl edocking/fusion machinery [J]. J. Bioenerg Biomembr,1998,30(4):335-345.
    46. Zhang, C. and Z. Zhou, Ca(2+)-independent but voltage-dependent secretion in mammalian dorsal root ganglion neurons. Nat Neurosci,2002.5(5):425-30.
    47.袁小鹏,焦伟华,徐如祥.肿瘤细胞AO/EB荧光染色法在药敏试验中的可行性探讨.癌症,1999,18(3):359-360.
    48. Solly K, Wang XB, Xu X. Application of real-time cell electronic sensing (RT-CES) technology to cell-based assays [J]. Assay Drug Dev. Technol.,2004,2(4):363-372.
    49. Hoagland DR, Hibbard PL, Davis AR. The influence of light, temperature,and other conditions on the ability of nitella cells to concentrate halogens in the cell sap [J]. J Gen Physiol.,1926,10(1): 121-146.
    50.Mellors RC. Instrumentation for analytical cytology [J]. J Natl Cancer Inst,1952,13(1):235-236.
    51. Schulte A, Schuhmann W. Single-Cell Microelectrochemistry [J]. Angew. Chem. Int. Ed.,2007,46(46):8760-8777.
    52. Brehm-Stecher BF; Johnson EA. Single-cell microbiology:Tools, technologies, and applications [J]. Microbiol. mol. boil, rev.,2004,68(3):538-559.
    53. Lu X, Huang WH, Wang ZL, Cheng JK. Recent developments in single-cell analysis[J]. Anal Chim Acta,2004,510(2):127-138
    54.吕冬霞.细胞生物学技术[M].北京:科学出版社,2010.
    55.程介克等.单细胞分析[M].北京:科学出版社,2005.
    56.Lee C, Kwak J, Bard AJ. Application of scanning electrochemical microscopy to biological samples [J].Proc. Acad. Sci. USA.,1990,87(5):1740-1743.
    57.Cai CX, Liu B, Mirkin MV. Scanning electrochemical microscopy of living cells.3. Rhodobacter sphaeroides [J]. Anal. Chem.,2002,74(1):114-119.
    58. Liebetrau JM, Miller HM, Baur JE.Scanning electrochemical microscopy of model neurons: Imaging and real-time detection of morphological changes [J]. Anal. Chem.,2003,75(3):563-571
    59.Yasukawa T, Kondo Y, Uchida I, et al. Imaging of Cellular Activity of single cultured cells by scanning electrochemical microscopy [J]. Chem. Lett.,1998,27(8):767-768.
    60. Cohen D, Dickerson JA, Whitmore CD, Chemical cytometry: fluorescence-based single-cell analysis [J]. Annu Rev Anal Chem,2008,1(10):165-190.
    61. Kostal V, Arriaga EA, Recent advances in the analysis of biological particles by capillary electrophoresi [J]. Electrophoresis,2008 29(12):2578-2586.
    62.Lapainis T, Sweedler JV, Contributions of capillary electrophoresis to neuroscience [J]. J Chromatogr A,2008,1184(1-2):144-158.
    63.Woods LA, Roddy TP, Ewing AG, Capillary electrophoresis of single mammalian cells [J]. Electrophoresis,2004,25(9):1181-1187.
    64. Chiu DT, Lillard SJ, Scheller RH, Zare RN, Probing single secretory vesicles with capillary electrophoresis[J]. science,1998,279(5354):1190-1193
    65. Chen DY, Dovichi NJ, Yoctomole detection limit by laser-induced fluorescence in capillary electrophoresis[J], J Chromatogr B,1994,657(2):265-269.
    66.Page JS, Rubakhin SS, Sweedler JV, Single-neuron analysis using CE combined with MALDI MS and radionuclide detection[J]. Anal Chem,2002,74(3):497-503.
    67. Kennedy RT, Oates MD, Cooper BR, Nickerson B, Jorgenson JW, Microcolumn separations and the analysis of single cells [J]. Science,1989,246(4926):57-63.
    68. Wallingford RA, Ewing AG, Capillary zone electrophoresis with electrochemical detection in 12.7 microns diameter columns [J] Anal Chem,1988,60(18):1972-1975.
    69.Chen GY, Gavin PF, Luo GA, Ewing AG, Observation and quantitation of exocytosis from the cell body of a fully-developed neuron in planorbis-conmeus [J]. J Neurosci,1995,15(11):7747-7755.
    70. Miao H, Rubakhin SS, Sweedler JV, Analysis of serotonin release from single neuron soma using capillary electrophoresis and laser-induced fluorescence with a pulsed deep-UV NeCu laser [J]. Anal Bioanal Chem,2003,377(6):1007-1013.
    71. Jeffrey N. Stuart, Jonathan V. Sweedler. Single-cell analysis by capillary electrophoresis [J]. Anal Bioanal Chem,2003,375(1):28-29.
    72. Imee G. Arcibal,Michael F. Santillo,Andrew G. Ewing. Recent advances in capillary electrophoretic analysis of individual cells[J]. Anal Bioanal Chem,2007,387(1):51-57.
    73. Schulte, A. and W. Schuhmann, Single-cell microelectrochemistry. Angew Chem Int Ed Engl, 2007.46(46):8760-77.
    74.张祖训.超微电极电化学[M].北京:科学出版社,1998.
    75. Compton G R, Wildgoose GG, Rees VN, Design, fabrication, characterisation and application of nanoelectrode arrays [J]. Chemical Physics Letters,2008,459(1-6):1-17.
    76. Kissinger PT, Hart JB, Adams RN. Voltammetry in brain tissue-a new neurophys iological measurement [J]. Brain R esearch,1973,55(1):209-213.
    77. Wightman, R.M., et al., Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proc Natl Acad Sci U S A,1991.88(23):10754-8.
    78. Chen, T.K., G Luo, and A.G. Ewing, Amperometric monitoring of stimulated catecholamine release from rat pheochromocytoma (PC12) cells at the zeptomole level. Anal Chem,1994.66(19): 3031-5.
    79. Wu WZ, Huang WH, Monitoring Dopamine Release from Single Living Vesicles with Nanoelectrodes [J]. J. Am. Chem. Soc,2005,127(25):8914-8915.
    80. Whitesides G M, The origins and the future of microfluidics [J]. Nature,2006,442(7101): 368-373.
    81.Breslauer DN, Lee PJ, Lee LP. Microfluidics-based systems biology [J]. Mol Bio Syst,2006, 2(2):97-112.
    82. Yu LF, Huang HQ, Dong XL, Simple, fast and high-throughput single-cell analysis on PDMS microfluidic chips[J]. Electrophoresis,2008,29(24):5055-5060.
    83. Yu Lin fen, Shen Z, Mo JK, Microfluidic chip-based cell electrophoresis with multipoint laser-induced fluorescence detection system [J]. Electrophoresis,2007,28 (24):4741-4747.
    84. Qin JH, Ye NN, Liu X. Microfluidic devices for the analysis of apoptosis [J]. Electrophoresis, 2005,26 (19):3780-3788.
    85. El-Ali J, Sorger PK, Jensen KF. Cells on chips.Nature,2006,442(7101):403-411. 86. Whitesides G M. The origins and the future of microfluidics [J].Nature,2006,442:368-373.
    87. El-Ali J, Sorger PK, Jensen KF. Cells on chips.Nature,2006,442 (7101):403-411.
    88.卢斯媛,蔡绍皙.微流控芯片在细胞微环境研究中的应用.生物医学工程学杂志.2010,27(3):675-679.
    89.邵建波,吴蕾,赵辉,郑允焕.不同材质微芯片内细胞生长状态分析.生物物理学报,2008,24(4):268-272.
    90. Sasaki DY, Cox JD, Follstaedt SC, Curry MS, Skirboll SK,Gourley PL. Glial cell adhesion and protein absorption on SAM coated semiconductor and glass surfaces of a microfluidic structure [J]. Proc SPIE,2001,2(22):152-163.
    91. Toepke MW, Beebe DJ. PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip,2006,6(12):1484-1486.
    92. Di Carlo D, Wu L Y, Lee LP, Dynamic single cell culture array [J]. Lab Chip,2006, 6(11):1445-1449.
    93.Barbulovic-Nad I, Au S H, Wheeler A R. A microfluidic platform for complete mammalian cell culture[J]. Lab Chip,2010,10(12):1536-1542.
    94.Taylor A M, Blurton-Jones M, Rhee S W, A microfluidic culture platform for CNS axonal injury, regeneration and transport [J]. Nat. Methods,2005,2(8):599-605
    95. Lee P J, Hung P J, Rao VM, Nanoliter scale microbioreactor array for quantitative cell biology [J]. Biotechnol. Bioeng,2006,94(1):5-14.
    96. Liu W, Li L, Wang X, Ren L, Wang J, Tu Q, An integrated microfluidic system for studying cell-microenvironmental interactions versatilely and dynamically [J]. Lab Chip,2010, 10(13):1717-1724.
    97. Chung S, Sudo R, Mack PJ, Cell migration into scaffolds under co-culture conditions in a microfluidic platform[J]. Lab Chip,2009,9(2):269.
    98. Park JY, Kim HO, Kim SK, Lee SK, Jung H. Monitoring the status od T-cell activation in a microfluidic sy stem [J]. Analyst.2011,136(13):2831-2836.
    99. Sudo R, Chung S, Transport-mediated angiogenesis in 3D epithelial coculture [J]. FASEB J, 2009,23(7):2155-2164.
    100. Wei CW, Cheng JY, Young TH. Elucidating in vitro cell-cell interaction using a microfluidic coculture system[J]. Biomed Microdevices,2006,8(1):65-71.
    101. Abbott A. Cell culture.-Biology's new dimension[J].Nature,2003,424(6951):870-872.
    102. Kim M S, Yeon J H, Park J K. A microfluidic platform for 3-dimensional cell culture and cell-based assays [J]. Biomed. Microdevices,2007,9(1):25-34.
    103. Cullen D K, Vukasinovic J, Glezer A, Laplaca M C. Microfluidic engineered high cell density three-dimensional neural cultures [J]. Neural. Eng.2007,4(2):159-172
    104. Hsu S, Thakar R, Liepmann D, Li S. Effects of shear stress on endothelial cell haptotaxis on micropatterned surfaces [J]. Biochem. Biophys. Res. Commun.,2005,337 (1):401-409.
    105. Toriello NM, Douglas ES, Mathies RA. Microfluidic device for electric field-driven single- cell capture and activation [J]. Anal Chem,2005,77(21):6935-41.
    106.Arakawa T, Noguchi M, Sumitomo K, Yamaguchi Y,Shoji S. High-throughput single-cell manipulation system for a large number of target cells [J]. Biomicrofluidics,2011,5(1):14114
    107. Jang K J, Suh KY. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells[J]. Lab Chip,2010,10(l):36-42
    108. Takayama S, Ostuni E, LeDuc P, Naruse K, Ingber DE, Selective chemical treatment of cellular microdomains using multiple laminar streams[J]. Chem Biol,2003,10(2):123-130.
    109. Wlodkow ic D, Faley S, Zagnoni M, Microfluidic Single-Cell Array Cytometry for the Analysis of Tumor Apoptosis[J]. Anal Chem,2009,81(13):5517-5523.
    110.Skelley AM, Kirak O, Suh H, Jaenisch R,Voldman J, Microfluidic control of cell pairing and fusion [J]. Nat Methods,2009,6(2):147-152.
    111.Bao N, Zhan Y, Lu C, Microfluidic electroporative flow cytometry for studying single-cell biomechanics [J]. Anal Chem,2008,80(20):7714-7719.
    112. Ye NN, Qin JH, Shi WW, Lin BC. Characterizing doxorubicin-induced apoptosis in HepG2 cells using an integrated microfluidic device[J]. Electrophoresis,2007,28(7):1146-1153.
    113. Douma S, van Laar T, Zevenoevn J, et al. Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature,2004,430:1034-40.
    114. Paola Chiarugi, Elisa Giannoni. Anoikis:A necessary death program for anchorage-dependent cells. Biochemical pharmacology,2008,76:1352-1364.
    115. Howe AK. Cell adhesion regulates the interaction between Nck and p21-activated kinase. J Biol Chem,2001,276:14541-4.
    1.胡志强,张晨宁,丘鹏,刘俐宏,奥谷昌之,金子正治.FTO/ITO复层导电薄膜的研究[J].2005,36(12):1886.
    2.Boiadjiev S.I., Dobrikov G.H., and Dobrikov M.M.M.,Preparation and properties of RF sputtered indium-tin oxide thin films for applications as heat mirrors in photothermal solar energy conversion[J]. Thin Solid Films.2007,515:8465.
    3. Zhong Z.Y., Jiang Y.D., Surface modification and characterization of indium-tin oxide for organic light-emitting devices[J].J. Colloid Interface Sci.2006,302:613.
    4. Li X. and Kale G.M., Influence of thickness of ITO sensing electrode film on sensing performance of planar mixed potential CO sensor[J]. Sens. Actuators B.2006,120:1505.
    5.成立顺,孙本双,钟景明,何力军,王东新,陈焕铭.ITO透明导电薄膜的研究进展[J].稀有金属快报.2008年27(3):10-15.
    6.江锡顺,曹春斌,宋学萍,孙兆奇.铟锡氧化程度对IT O薄膜光电特性的影响[J].液晶与显示.2007,24(4):398.
    7. Liu Jiaxiang, Wu Da, Zhang Nan, and Wang Yue. Effect of surfactants on the structure and photoelectric properties of ITO films by sol-gel method[J]. Rare Metals.2010,29, (2):143-148.
    8.马勇,孔春阳.ITO薄膜的光学和电学性质及其应用[J].重庆大学学报,2002,(8):114-117.
    9. Hambergi, Granqvist. Evaporated Sn-doped In2O3 films:Basic optical properties and applications to energy-efficient Window s [J]. J. Appl phys,1986,60 (11):123-159.
    10.严捷,李经建,张波,蔡生民.细胞色素C551在ITO电极上的直接电化学[J].物理化学学报.2001,17(12):1126-1128.
    11. Qiu H., Yan J., Sun X., et.al, Microchip capillary electrophoresis with an integrated indium tin oxide electrode-based electrochemiluminescence detector[J]. Anal. Chem.2003,75(20):5435-5440.
    12.刘秀,魏文娟,周群.金纳米粒子修饰ITO玻璃电极对多巴胺的测定[J].光谱实验室.2011,28(3):1162-1164.
    13. Armistead P.M., Thorp H.H., Oxidation kinetics of guanine in DNA molecules adsorbed onto indium tin oxide electrodes[J]. Anal. Chem.2001,73(3):558-564.
    14. Zhan W., Alvarez J., Crooks R.M. Electrochemical sensing in microfluidic systems using electrogenerated chemiluminescence as a photonic reporter of redox reactions[J]. J. Am.Chem. Soc.,2002,124(44):13265-13270.
    15. Lin J.H., Qu W., Zhang S.S., Disposable biosensor based on enzyme immobilized on Au-chitosan modified ITO electrode with flow injection amperometric analysis[J]. Anal. Biochem., 2007,360(2):288-293.
    16. Chang XQ, Wang S, et al. Photoelectrocatalytic oxidation of GMP on an ITO electrode modified with clay/[Ru(phen)2(dCl 8bpy)]2+hybrid film[J]. Sci China Ser B-Chem.2009,52(3): 318-324.
    17.朱洋,邓世雄,谢国明,甄生航,王艳.基于复合膜修饰ITO电极的乙醇传感器研究[J].传感器与微系统.2010,29(12):19-21.
    18.张麦丽,王秀峰,牟强,张方辉.ITO玻璃光刻工艺的研究[J].液晶与显示.2005,20(1):22-26.
    1. Amatore C, Bouret Y, Travis ER, Wightman RM. Adrenaline release by chromaffin cells: Constrained swelling of the vesicle matrix leads to full fusion[J]. Angew Chem Int Ed.2000, 39:1952-1955.
    2. Amatore C, Arbault S, Chen Y, Crozatier C, Lemaitre F, Verchier Y. Coupling of electrochemistry and fluorescence microscopy at indium tin oxide microelectrodes for the analysis of single exocytotic events[J]. Angew Chem Int Ed .2006, 45:4000-4003.
    3. Amatore C, Arbault S, Chen Y, Crozatier C, Tapsoba I. Electrochemical detection in a microfluidic device of oxidative stress generated by macrophage cells[J] . Lab Chip. 2007, 7:233-238.
    4. Webster NJ, Vaughan PFT, Peers C. Hypoxic enhancement of evoked noradrenaline release from the human neuroblastoma SH-SY5Y[J]. Mol Brain Res. 2001, 89:50-57.
    5. Vaughan PFT, Peers C, Walker JH. The use of the human neuroblastoma SH-SY5Y to study the effect of second messenger on noradrenaline release[J]. Gen Pharmacol. 1995,26:1191-1201.
    6. Vaughan PFT, Walker JH, Peers C. The regulation of neurotransmitter secretion by protein kinase C[J]. Mol Neurobiol .1998,18:125-155.
    7. Liu L, Zhu XL, Zhang DM, Huang JY, Li GX . An electrochemical method to detect folate receptor positive tumor cells[XJ. Electrochem Commun. 2007, 9:2547-2550.
    8. Wightman RM, Jankowski JA, Kennedy RT, Kawagoe KT, Schroeder TJ, Leszczyszyn DJ, Near JA, Diliberto EJ, Viveros OH. Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells[J]. Proc Natl Acad Sci USA. 1991,88:10754-10758.
    9. Chow RH, Von Ruden L, Neher E. Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells[J]. Nature. 1992,356:60—63.
    10. Adams RN. Probing brain chemistry with electroanalytical techniques[J]. Anal Chem. 1976, 48:1126A-1138A.
    11. Clark P. Cell behaviour on micropatterned surfaces. Biosens Bioelectronf[J]. 1994, 9:657-661.
    12. Tsai WB, Lin JH. Modulation of morphology and functions of human hepatoblastoma cells by nano-grooved substrata[J]. Acta Biomaterialia.2009,5:1442-1454.
    13. Bastaki SMA, Adeghate E, Chandranath IS, Amir N, Tariq S, Hameed RS, Adem, A. Effects of streptozotocin-induced long-term diabetes on parietal cell function and morphology in rats[J]. Mol Cell Biochem.2004,341:43-50.
    14. Yue A, Yang G, Wu J, Lai Y, Huang H, Chen HQ. The influence of the pulsed electrical stimulation on the morphology and the functions of the endothelial cells [J]. J Biomed Eng. 2008,25:694-698.
    15.吕冬霞.细胞生物学技术[M].北京:科学出版社,2010.
    16. Meng FB, Yang JH, Liu T, Zhu XL, Li GX. Electric Communication between the Inner Part of a Cell and an Electrode: The Way To Look inside a Cell[J]. Anal Chem.2009,81:9168-9171.
    17. Mosharov EV, Sulzer D. Analysis of exocytotic events recorded by amperometry[J]. Nat Methods.2005,2:651-658.
    18. Shi BX, Wang Y, Zhang K, Lam HTL. Monitoring of dopamine release in single cell using ultrasensitive ITO microsensors modified with carbon nanotubes. Biosens Bioelectron[J].2011, 26:2917-2921.
    19. Agis-Torres A, Ball SG, Vaughan PFT. Chronic treatment with nicotine or potassium attenuates depolarisation-evoked noradrenaline release from the human neuroblastoma SH-SY5Y[J]. Neurosci Lett.2002,331:167-170.
    20. Shi BX, Wang Y, Lam TL, Huang WH, Zhang K, Leung YC, Chan HLW. Release monitoring of single cells on a microfluidic device coupled with fluorescence microscopy and electrochemistry [J]. Biomicrofluidics.2010,4:1-9.
    21. Clark RA, Ewing AG. Quantitative measurements of release amines from individual exocytosis events[J]. Mol Neurobiol.1997,15:1-16.
    1.Vardjan, N. and R. Zorec, Overview: Exocytosis continues to amaze us[J]. Ann N YAcad Sci, 2009.1152:ix-xiii.
    2. L. Li, L. S. Chin. The molecular machinery of synaptic vesicle exocytosis[J]. Cell. Mol. Life Sci.2003,60:942-960.
    3. S. Sugita. Mechanisms of exocytosis[J]. Acta Physiol.2008,192:185-193
    4.李亚,吴馥梅.神经递质释放的胞吐过程膜融合机制的新观点[J]细胞生物学杂志.2000,22(4):181-183.
    5. Gerber, S.H. and T.C. Sudhof, Molecular determinants of regulated exocytosis[J]. Diabetes, 2002.51 Suppl 1:p. S3-11.
    6.朱丹.Ca2+依赖和Ca2+不依赖的囊泡分泌研究进展.现代生物学进展[J].2008,8(3):548-550.
    7. Zhang, C. and Z. Zhou, Ca(2+)-independent but voltage-dependent secretion in mammalian dorsal root ganglion neurons. NatNeurosci,2002.5(5):425-30.
    8. Evans AE. Staging and treatment of neuroblastoma[J]. Cancer.1980.45(7 Suppl):1799-1802.
    9. Laverty R. Catecholamines:role in health and disease[J]. Drags 1978; 16:418-440.
    10.沈金花.人神经母细胞瘤SH-SY5Y细胞凋亡及分化调控[D].北京:中国协和医科大学,2004.
    11.张锦华.小儿神经母细胞瘤[M].北京:人民卫生出版社,2009.
    12. Xie HR, Hu LS, LI GY. SH-SY5Y human neuroblastoma cell line:in vitro cell model of dopaminergic neurons in Parkinson's disease [J]. Chin Med J 2010;123(8):1086-1092.
    13. H. Zhao, L. Li, H. J. Fan, F. Wang, L. M. Jiang, P. G He, Y. Z. Fang. Exocytosis of SH-SY5Y single cell with different shapes cultured on ITO micro-pore electrode[J]. Mol. Cell Biochem. 2012,363:309-313.
    14. Zhou Z, Stanley Misler. Amperometric detection of stimulus-induced quantal release of catecholamines from cultured superior cervical ganglion neurons[J]. Proc. Natl. Acad. Sci. USA Vol.1995,92(7):6938-6942.-
    15. Zerby, S.E. A.G Ewing. The latency of exocytosis varies with the mechanism of stimulated release in PC12 cells[J]. J Neurochem,1996.66(2):651-7.
    16.叶琴,陈良怡,瞿安连,徐涛SH-SY5Y细胞的钙缓冲研究[J].中国应用生理学杂志.2001,17(4):352-355.
    17.雷洪伊,张庆国,徐世元,许平.人神经母细胞瘤SK-N-SH细胞Ca2+通道的电生理特性[J].广东医学2003,24(8):821-822.
    18. Dajas-Bailador FA, Mogg AJ,Wonnacott S. Intracellular Ca2+ signals evoked by stimulation of nicotinic acetylcholine receptors in SH-SY5Y cells:contribution of voltage-operated Ca2+ channels and Ca2+ store[J]. Journal of neurochemistry.2002,81(3):606-614.
    19. Gould J,Reeve HL,Vaughan PF, et al. Nicotinic acetylcholine receptors in human neuroblastoma (SH-SY5Y)cells[J]. Neurosci Lett.1992,145(2):201-204.
    20. Amano, T., et al., Identification of a novel regulatory mechanism for norepinephrine transporter activity by the IP3 receptor[J]. Eur J Pharmacol,2006.536(1-2):62-8.
    21.Dani, J.A., Overview of nicotinic receptors and their roles in the central nervous system[J]. Biol Psychiatry,2001.49(3):166-74.
    1. Kissinger PT, Hart JB, Adams RN. Voltammetry in brain tissue-a new neurophys iological measurement [J].Brain R esearch,1973,55(1):209-213.
    2. Adams, R.N., Probing brain chemistry with electroanalytical techniques [J]. Anal Chem,1976. 48(14):1126A-1138A.
    3. Wightman RM, Jankowski JA, Kennedy RT,.et. al. Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells[J]. Proc Natl Acad Sci USA. 1991,88:10754-10758
    4. Chien, J.B., R.A. Wallingford, and A.G. Ewing. Estimation of free dopamine in the cytoplasm of the giant dopamine cell of Planorbis corneus by voltammetry and capillary electrophoresis[J]. J. Neurochem,1990.54(2):633-8.
    5. Chen, T.K., G. Luo, and A.G. Ewing, Amperometric monitoring of stimulated catecholamine release from rat pheochromocytoma (PC 12) cells at the zeptomole level[J]. Anal Chem,1994. 66(19):3031-5.
    6. Kawagoe, K.T., J.A. Jankowski, and R.M. Wightman, Etched carbon-fiber electrodes as amperometric detectors of catecholamine secretion from isolated biological cells[J]. Anal Chem, 1991.63(15):1589-94.
    7. Cooper, B.R., et al., Quantitative determination of catecholamines in individual bovine adrenomedullary cells by reversed-phase microcolumn liquid chromatography with electrochemical detection[J]. Anal Chem,1992.64(6):691-4.
    8. Zhou, R., G. Luo, and A.G. Ewing, Direct observation of the effect of autoreceptors on stimulated release of catecholamines from adrenal cells[J]. J Neurosci,1994.14(4):2402-7
    9. Hochstetler, S.E., et al., Real-time amperometric measurements of zeptomole quantities of dopamine released from neurons[J]. Anal Chem,2000:72(3):489-96.
    10. Aspinwall, C.A., et al., Comparison of amperometric methods for detection of exocytosis from single pancreatic beta-cells of different species[J]. Anal Chem,1999.71(24):p.5551-6.
    11.彭图治,王国顺,李惠萍,刘国卿,曹于平.碳纤维微电极伏安法测定动物脑内5-羟吲哚乙酸、尿酸和高香草酸[J].高等学校化学学报,1993,14:1374
    12.彭图治,杨丽菊,李惠萍,王国顺,洪佳琼.复合高分子膜修饰电极直接测定大脑内源性神经递质[J].高等学校化学学报,1995,16:1847
    13. Wu WZ, Huang WH, Wang W, Wang ZL, Cheng JK, XU T. Monitoring Dopamine Release from Single Living Vesicles with Nanoelectrodes [J].J. am.chem. soc.2005,127,8914-8915
    14.张蓉颖,陈宇,周围.一种形状可控的高韧性碳纤维微电极的制备、表征及其在细胞分泌检测中的应用[J].分析科学学报,2005,21(4):363-366.
    15. Gao, N., et al, Measurement of enzyme activity in single cells by voltammetry using a microcell with a positionable dual electrode [J]. Anal Chem,2006.78(1):231-8.
    16. Gao, N., et al., High-throughput single-cell analysis for enzyme activity without cytolysis[J]. Anal Chem,2006.78(9):3213-20.
    17. Wang, W., S. Han, and W. Jin, Determination of lactate dehydrogenase isoenzymes in single rat glioma cells by capillary electrophoresis with electrochemical detection [J]. J Chromatogr B Analyt Technol Biomed Life Sci,2006.831(1-2):57-62.
    18.张祖训.超微电极电化学[M].北京:科学出版社,1998.
    19. Compton G R, Wildgoose G G, Rees V N, et al. Design, fabrication, characterisation and application of nanoelectrode arrays [J]. Chemical Physics Letters,2008,459(1-6):1-17
    20. Schulte, A. and W. Schuhmann, Single-cell microelectrochemistry[J]. Angew Chem Int Ed Engl,2007.46(46):8760-77.
    21. Kawagoe KT, Zimmerman JB, Wightman RM. Principles of voltammetry and microelectrode surface states[J]. J Neurosci Meth,1993,48:225~240.
    22. Huang, W.H., et al., A method for the fabrication of low-noise carbon fiber nanoelectrodes [J]. Anal Chem,2001.73(5):1048-52.
    23.黄卫华.纳米电极时空监测单细胞释放[D].武汉:武汉大学,2002
    24. Chow RH, Ruden LV. Electrochemical detection of secretion from single cells, Single Channel Recording[M].Bert Sakman and Erwin Neher. New York, Plenum Press,1995,245~ 275.
    25. Schroeder TJ, Janlowski JA, Senyshyn J, et al. Zones of exocytotic release on bovine adrenal medullary cells in culture[J]. J Biol Chem,1994,269 (25):17215~17220.
    26.夏胜.PC12细胞中不同物质囊泡转运机制的比较研究[D]武汉:华中科技大学,2003
    27.黄卫华,张丽瑶,程伟,庞代文,王宗礼,程介克.纳米电极时空分辨监测单个PC12细胞多巴胺量子释放[J].高等学校化学学报.2003,24(3):425-427.
    1. Paola Chiarugi, Elisa Giannoni. Anoikis: A necessary death program for anchorage-dependent cells. Biochemical Pharmacology[J].2008,76(11):1352-1364.
    2. Liotta LA, Kohn E. Anoikis:cancer and the homeless cell[J]. Nature 2004,430(7003):973-974.
    3. Haga, N., N. Fujita, and T. Tsuruo, Involvement of mitochondrial aggregation in arsenic trioxide (As2O3)-induced apoptosis in human glioblastoma cells[J]. Cancer Sci,2005.96(11):.825-833.
    4. Mervis, J., Ancient remedy performs new tricks[J]. Science,1996.273(5275):578.
    5. Ryu K.H., Woo S.Y. et al, Morphological and biochemical changes induced by arsenic trioxide in neuroblastoma cell lines[J]. Pediatr Hematol Oncol,2005.22(7):609-21.
    6. Cho Y H, Takama N, Yamamoto T, et al. Characterization of single red blood cell using twin microcantilever type sensor array [C] The 13th International Conference on Solid State sensors,Actuators and Microsystems. Seoul, Korea,2005:1692-1695.
    7. Lin Yucheng, Li Min, Fan Chunsheng, et al. A microchip for electroporation of primary endothelial cells [J]. Sensors and Actuators A,2003,108:12-19.
    8. Giaever I, Keese CR. Monitoring Fibroblast Behavior in Tissue Culture with an Applied Elect ric Field[J]. Proc Nat l Acad Sci USA.1984,81(12):3761-3764.
    9. Giaever I, Keese CR. A Morphological Biosensor for Mammalian Cells [J]. Nature,1993,366: 591-592.
    10. Solly, K., et al., Application of real-time cell electronic sensing (RT-CES)technology to cell-based assays[J]. Assay Drug Technol,2006.4(5):545-553
    11.肖名非,杨兴,周兆英,吴英等.细胞阻抗谱检测芯片的设计实验[J].纳米技术与精密工程,2007年5(4):301-306.
    12. Yu N., et al., Real-time monitoring of morphological changes in living cells by electronic cell sensor arrays: an approach to study G protein-coupled receptors[J]. Anal Chem,2006.78(1):35-43.
    13. Asphahani F, Zhang M. Cellular Impedance Biosensors for Drug Screening and Toxin Det-ection [J]. Analyst,2007,132:835-841.
    14. Liu Q, Yu J, Xiao L, Tang JCO, Wang P, Yang M. Impedance Studies of Bio Behavior and Chemosensitivity of Cancer Cells by Micro Electrode Arrays [J]. Biosen. Bioelectron.2009,24: 1305-1310.
    15. L. Renea Arias, Carla A. Perry, Liju Yang. Real-time electrical impedance detection of cellular activities of oral cancer cells[J]. Biosensors and Bioelectronics,2010(25):2225-2231
    16. Solly, K., et al., Application of real-time cell electronic sensing (RT-CES) technology to cell-based assays[J]. Assay Drug Dev Technol,2004.2(4):363-72.
    17. http://www.bio-equip.com/showarticle.asp?id=453058122
    18. Davies P F, Robotewskyj A, Griem M L. Endo the lial Cell Adhesion in Real Time. Measurements in Vitro by Tandem Scanning Confocal Image Analysis[J]. J Clin Invest,1993, 91(6):2640-2652.
    19. Jung, H.S., et al., Arsenic trioxide concentration determines the fate of Ewing's sarcoma family tumors and neuroblastoma cells in vitro[J]. FEBS Lett,2006.580(20):4969-75.
    20. Chun, Y.J., et al., Enhancement of radiation response in human cervical cancer cells in vitro and in vivo by arsenic trioxide (As2O3) [J]. FEBS Lett,2002.519(1-3):195-200.
    21. Shavali, S. and D.A. Sens, Synergistic neurotoxic effects of arsenic and dopamine in human dopaminergic neuroblastoma SH-SY5Y cells[J]. Toxicol Sci,2008.102(2):254-61.
    22. Akao Y, Nakagaw a Y, Akiyama K. Arsenic trioxide induces apoptosis in neuroblastoma cell lines through the activation of caspase 3 in vitro[J]. FEBS Lett,1999,455(1-2):59-62.
    23. Ora, I., et al., Arsenic trioxide inhibits neuroblastoma growth in vivo and promotes apoptotic cell death in vitro[J]. Biochem Biophys Res Commun,2000.277(1):179-85.
    24. Karlsson, J., et al., Arsenic trioxide-induced death of neuroblastoma cells involves activation of Bax and does not require p53[J]. Clin Cancer Res,2004.10(9):3179-88.
    25. Miller, W.H., Jr., et al., Mechanisms of action of arsenic trioxide [J]. Cancer Res,2002.62(14): 3893-903.
    26. Davison, K., K.K. Mann, and W.H. Miller, Jr., Arsenic trioxide: mechanisms of action [J]. Semin Hematol,2002.39(2 Suppl 1):3-7.
    27. Karlsson, J., et al., Multidrug-resistant neuroblastoma cells are responsive to arsenic trioxide at both normoxia and hypoxia [J]. Mol Cancer Ther,2005.4(7):1128-35.
    28. Solly K, Wang XB, Xu X. Application of real-time cell electronic sensing (RT-CES) technology to cell-based assays [J]. Assay Drug Dev. Technol.,2004,2(4):363-372.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700