用户名: 密码: 验证码:
重庆市城镇污水处理系统碳排放研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球气温逐渐升高的大环境下,为应对气候变化,各国政府都开始采取措施,减少温室气体排放。在各类碳排放行业中,城市水处理系统虽然是很小的一个行业,但由于城镇水系统与人类生活密切相关,产生的碳排放也越来越受到重视。目前有关城市尺度上污水处理及污泥处理处置过程温室气体排放研究很少,更缺乏重庆地区污水处理系统的碳排放研究。根据联合国政府间气候变化专门委员会(Intergovernmental Panel on Climate Change,IPCC)国家温室气体清单指南、优良作法指南和中国温室气体清单研究成果,结合重庆地区污水处理系统特点,以污水处理系统产生的CH_4、N_2O、生物成因产生的CO_2和能源消耗产生的CO_2为研究对象,系统总结完善了城镇污水处理、污泥处理处置碳排放核算方法和模型。核算和研究了重庆市2000-2009年污水处理碳排放和2005-2009年污泥处理处置碳排放情况和碳排放水平。预测了重庆市污水处理系统碳排放潜势,探讨污水处理系统低碳运行策略。主要研究内容与结论如下:
     ①在城市尺度上总结完善了污水处理和污泥处理处置碳排放核算方法和模型。参考IPCC计算方法和相关资料,总结了生活污水和工业废水处理CH_4、N_2O和CO_2排放核算方法,以及污泥生物处理、填埋、焚烧碳排放核算方法;完善了污泥输送、浓缩和脱水、稳定、干化、热解、土地利用和建材利用等处理处置碳排放核算方法和模型,同时探讨了生物成因的CO_2核算方法和模型。
     ②结合重庆市相关统计资料,对2000-2009年重庆市生活污水、工业废水处理碳排放进行了核算和研究。2000-2009年,重庆市污水处理碳排放总量为338.4万吨。其中,能源消耗间接产生的CO_2是污水处理碳排放的主要贡献者,占87.87%;CH_4排放量占9.6%,N_2O排放量占0.1%,生物成因的CO_2占2.43%。工业废水处理碳排放量高于生活污水处理的碳排放,碳排放百分比分别为:工业废水占77.6%,生活污水占22.4%。重庆市污水处理平均碳排放水平为0.2823 kg GHG/t水(CO_2当量排放水平为0.9307 kg CO_2/t水)。生活污水处理碳排放水平大于工业废水。
     ③结合重庆市污泥处理处置统计数据,对2005-2009年各种污泥处理处置碳排放进行了核算。污泥运输间接产生的碳排放量为59.06万吨,污泥处理处置碳排放量为25.29万吨。在污泥处理处置中,生物成因产生的CO_2是污泥处理处置碳排放的主要贡献者,占47.25%,能源消耗产生的CO_2占14.71%,CH_4排放量占15.26%,碳储存量占22.77%,N_2O排放量所占百分比不到0.01%。重庆市污泥处理处置平均碳排放水平为0.3239 t GHG/t污泥(CO_2当量碳排放水平为0.6324 t CO_2/t污泥)。重庆市污泥处理处置平均碳排放水平为0.3239 t GHG/t污泥(CO_2当量碳排放水平为0.6324 t CO_2/t污泥)。重庆目前的几种污泥处理处置方式中,污泥消化后综合利用和污泥堆肥后土地利用的碳排放水平相对较低,污泥填埋处置碳排放水平较高。
     ④对重庆市2009年各区县生活污水处理碳排放和各行业工业废水处理碳排放进行了核算和研究。污水处理系统产生的碳排放共70.71万吨(CO_2当量为190.42万吨)。其中,能源消耗间接产生的CO_2是主要碳排放源,占碳排放总量的85.08%,其次是生物成因的CO_2,占6.04%,CH_4排放量占5.05%,碳储存量为3.8%,N_2O排放量最小,仅占0.03%。重庆市各区域(按区县划分)生活污水处理碳排放量顺序为:主城区(经济发达区)>一小时经济圈>渝东北翼>渝东南翼。重庆市各行业工业废水处理碳排放量大小顺序为:制造业>电力、燃气及水的生产与供应业>采矿业。
     ⑤若不采取有效的碳减排措施,2015年,重庆市污水处理系统产生碳排放将达到106.97万吨,CO_2当量为256.07万吨。其中,能源消耗间接产生的CO_2占84.91%,具有较大的减排空间;CH_4占6.29%,也具有一定减排潜力。
     ⑥重庆市城镇污水处理系统建设在合理规划排水管网、提高污水管道输送效率的同时,还需选择合适的污水处理技术和污泥处理处置方式、降低污水处理能耗,探索废水处理系统CDM机制,减少碳排放,促进城镇污水处理系统低碳运行。
With the global temperature increasing gradually,the governments in most countries have begun to take measures to reduce greenhouse gas emissions and cope with climate change. In various carbon-emission industries, urban water treatment system, a smaller industry, is closely related to human life, and so its carbon-emission is obtained more and more concerns. Nowadays, the research about greenhouse gas emission during urban wastewater treatment and sludge treatment and disposal is limited. What is more, the carbon-emission research in wastewater treatment system in Chongqing is rare. Based on the IPCC’s National Greenhouse Gas List Guide, Good Practice Guide and Chinese greenhouse gas list research results, this paper combined the characteristics of wastewater treatment system in Chongqing, and summarized and improved the carbon-emission calculation method and model in urban wastewater treatment and sludge treatment and disposal, investigated Chongqing's carbon-emission level in the wastewater treatment system from 2000 to 2009, and also carbon-emission level in sludge treatment and disposal from 2005 to 2009, and predicted Chongqing’s carbon-emission potential in wastewater treatment system. The method and model was based on CH_4 and N_2O generated by wastewater treatment system, and CO_2 from bio-generation and energy consumption. According to the prediction results, this paper discussed the carbon-reduction measures and low-carbon operation strategy. The main research contents and conclusions are as follows:
     ①This paper summarized and improved the carbon-emission calculation method and model in urban wastewater treatment and sludge treatment and disposal. The CH_4, CO_2 and N_2O emissions calculation method in urban sewage wastewater treatment and industry wastewater treatment was summarized based on the calculation method of IPCC. The carbon-emission calculation method was developed for sludge treatment and disposal including sludge transportation, thickening, digestion, and dewatering, drying, thermal treatment and sludge land applications and so on.
     ②?The total amount of carbon emissions from wastewater treatment was 3.384 million tons in Chongqing from 2000 to 2009, of which the CO_2 produced from energy consumes, CH_4, N_2O and bio-process CO_2 accounted 87.87%, 9.6%, 0.1%, 2.43%, respectively. The carbon emission from industrial wastewater treatment and domestic wastewater treatment was 77.6% and 22.4% of total carbon emissions. The carbon-emission level from wastewater treatment was 0.2823 kg GHG/t (equivalent to 0.9307 kg CO_2/t).
     ③The total amount of carbon emissions from sludge treatment and disposal was 252,900 tons in Chongqing from 2000 to 2009, of which the CO_2 emission indirectly from bio-process, energy consumes, CH_4, and N_2O accounted 47.25%, 14.71%, 15.26%, 0.01%, respectively. The carbon-emission level from sludge treatment and disposal was 0.3239 t GHG/t (equivalent to 0.6324 t CO_2/t).The carbon emission during application of digested sludge and of composted sludge was relatively lower in all the types of sludge treatment and disposal, and the carbon emission from sludge land-fill was higher.
     ④The amount of total carbon emissions from wastewater treatment was 707,100 tons (equivalent to 1904,200 t CO_2) in Chongqing in 2009, of which the CO_2 emission produced indirectly from energy consumes, CO_2 emission generated from bio-process, CH_4 emission, carbon storage, N_2O emission accounted 85.08%, 6.04%, 5.05%, 3.8% and 0.03%, respectively. The carbon emission from domestic wastewater treatment in the parts of Chongqing in the sequence was main city zone > one hour economy circle of Chongqing > northeast wing of Chongqing > southeast wing of Chongqing. The carbon emission from industries wastewater treatment in Chongqing in the sequence was manufacturing industry > municipal service industry(including electricity, natural gas and water production and supply)> mining industry.
     ⑤Up to 2015, the carbon emissions from wastewater treatment system will reach 1.0697 million tons (equivalent to 2.5607 million t CO_2) in Chongqing, of which the CO_2 emission produced indirectly from energy consumes. CO_2, CH_4 and N_2O emission will occupy 84.91%, 6.29% and 0.04%, respectively.
     ⑥Based on the target of low-carbon emissions, some measures taken in the urban wastewater treatment system should be focused on planning drainage network reasonably, improving the efficiency of the sewage pipeline transportation, reducing energy consumption of sewage treatment, selecting wastewater treatment technology and sludge treatment and disposal methods appropriately, exploring CDM mechanisms about wastewater treatment system to reduce carbon emissions and promote low-carbon running of wastewater treatment system.
引文
[1] Ahmaruzzaman, M., A review on the utilization of fly ash[J]. Progress in Energy and Combustion Science, 2010. 36(3): 327-363.
    [2] Almudena Hospido, M Teresa Moreira, María Martín, et al. Environmental Evaluation of Different Treatment Processes for Sludge from Urban Wastewater Treatments: Anaerobic Digestion versus Thermal Processes[J]. Urban Wastewater Treatments, 2005,10(5): 336-345.
    [3] Annemarie C, Kerkhof, Henri C, et al. Taxation of multiple greenhouse gases and the effects on income distribution: A case study of the Netherlands [J]. Ecological Economics. 2008, 29(2): 569-578.
    [4] Anrelie Metay, Robert Oliver, et al. N2O and CH4 emissions from soils under conventional and no-till management practices in Goiania[J]. Geoderma, 2007, 141(7): 78 -88
    [5] AECOM Asia Co. Ltd., Tongji University. Carbon Footprint Study of PRC Sludge Treatment & Disposal Processes[Z]. 2010
    [6] Bandivadekar A , et al. Reducing the fuel use and greenhouse gas emissions of the US vehicle fleet[J]. Energy Policy. 2008, 29(3): l-7
    [7] Bani S M, Yerushalmi L, Haghighat F. Impact of Process design on greenhouse gas(GHG) Generation by wastewater treatment Plants[J]. Water Research, 2009(43): 2679-2687
    [8] Brack C L. Pollution mitigation and carbon sequestration by an urban forest[J]. Environmental Pollution. 2002, 116(4): 195-200.
    [9] Bingemer, H. G. and P. J, Crutzen. The production of methane from solid wastes[J]. Journal of Geophysical Research, 1987, 92 (2): 2181-2187.
    [10] Carmen Richerzhagen, Imme Scholz. China Capicities for Mitigating Climate Change[J]. World Development. 2008, 36(02): 308-24.
    [11] Carbon Dioxide Information Analysis Center. Global Regional And National Fossil Fuel CO2 Emissions[EB/OL]. Http: //cdiac. orn. lgov/, 2007.
    [12] Clemens J, Cuhls C. Greenhouse gas emissions from mechanical and biological waste treatment of municipal waste [J]. Environ Techno, 2003(6): 745-754.
    [13] Chen Tsao-Chou, Lin Cheng-Fang. Greenhouse gases emissions from waste management practices using Life Cycle Inventory model[J] . Journal of Hazardous Materials. 2008, 155: 23-31.
    [14] Doorn M R J ,Strait R, Barnard W, et al. Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091, Preparedfor United States Environmental Protection Agency, Research Triangle Park, NC, USA, 1997
    [15] Doorn M R J and Liles D. Global Methane, Quantification of Methane Emissions and Discussion of Nitrous Oxide, and Ammonia Emissions from Septic Tanks, Latrines, and Stagnant Open Sewers in the World. EPA-600/R-99-089, Prepared for U. S. EPA, Research Triangle Park, NC, USA,1999
    [16] David J. Reardon and Gordon L. CulP. Energy conservation for treatment facilities. Pollution Engineering, 1987, (6): 42-44
    [17] Emmanouil H, Heracles P. CO2 emissions in Greece for 1990-2002: A decomposition analysis and comparison of results using the Arithmetic Mean Divisia Index and Logarithmic Mean Divisia Index techniques[J]. Energy, 2008, 33(4): 492-499.
    [18] EPA(Environmental Protection Agency). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2009[M]. U.S.,2011
    [19] Fadel M E, Massoud M, Methane Emissions form Waste Water Management, Environmental Pollution, 2001(114): 177-185.
    [20] Foley J, Yuan Z G, Lant P. Dissolved methane in rising main sewer systems: field measurements and simple mode development for estimating greenhouse gas emission s[J]. Water Science and Technology, 2009(11): 2963-2971.
    [21] Fytili D, Zabaniotou A. Utilization of Sewage Sludge in EU Application of old and new methods-a review[J] . Renewable and Sustainable Energy Reviews, 2008, (12) : 116- 140.
    [22] George M. Wesner, Gordon L. CulP, et al. Energy conservation in municipal wastewater treatment. MCD-32. EPA430/9-77-011. Prepared for the U. S. Environmental Protection Agency, Office of Water Program Operations, Washington, D. C. , 1987.
    [23] Gianfranco C, Pierluigi M. Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems. Part I: Models and indicators[J]. Energy. 2008, 33(06)410-417.
    [24] Guisasola A. Methane formation in sewer systems[J]. Water Research, 2008, 42: 1421~1430
    [25] Houillon G, Jolliet O. Life cycle assessment of processes for the treatment of wastewater urban sludge: energy and global warming analysis [J]. Journal of Cleaner Production, 2005(13): 287-299
    [26] Hwang Y, Hanaki K. The generation of CO2 in sewage sludge treatment systems: life cycle assessment[J]. Water Science and Technology, 2000, 41(8): 107-113
    [27] Hans W, Gottinger. Greenhouse gas economics and computable general equilibrium[J]. Journal of Policy Modeling. 1998, 20(5): 537-580.
    [28] IPCC(Intergovernmental Panel on Climate Change. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Volume 3 Reference, IPCC/OECD/IEA, Paris,France,1997
    [29] IPCC (Intergovernmental Panel on Climate Change. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories[M], IPCC/OECD/IEA/ IGES, Hayama, Japan ,2000
    [30] IPCC. IPCC Guidelines for National Greenhouse Gas Inventories; Intergovernmental Panel on Climate Change[EB/OL]. Bracknell, U. K. , 2006; http: //www. ipcc-nggip. Iges. or. jp/ public/ 2006gl/ index. htm (accessed September 17, 2007).
    [31] IPCC. Summary for Policymakers of Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M].Cambridge: Cambridge University Press, 2007.
    [32] Johan Albrecht, Delphine Francois, ICoen Schoors. A Shapley decomposition of carbon emissions without residuals[J]. Energy Policy, 2002(30):727-736
    [33] Kaya D, Yagmur E A, Yigit K S, et al. Energy efficiency in pumps [J]. Energy Convers Manage, 2008, 49 ( 6 ): 1662- 1673.
    [34] Kobayashi H and S. R., Life cycle assessment of energy consumption and CO2 emissions in the nitrogen and phosphate fertilizer manufacturing process[R]. in Proceedings of the Fourth International Conference on Ecobalance. 2000: Tsukuba, Japan. 415-418.
    [35] Koener B, KloPatek J. Anthropogenic and natural CO2 emission sources in an arid urban environment [J]. Environmental Pollution2002, 116(12): 45-51.
    [36] Ludovico S and Vesilind P A. Sludge into Biosolids: Processing, Disposal and Utilization[M]. London: IWA Publishing. 2001
    [37] Lexmond M J and Zeeman G. Potential of controlled anaerobic wastewater treatment in order to reduce the global emissions of the greenhouse gases methane and carbon dioxide. Report No. 95-1, Department of Environmental Technology, Agricultural University of Wageningen, P. O. Box 8129, 6700 EV Wageningen, The Netherlands,1995
    [38] Levy P E, Mobbs D C, et al. Simulation of fluxes of greenhouse gases from European gasslands using the DNDC model [J]. Agriculture, Ecosystems&Environmeni. 2007, 121(l-2): 186-192.
    [39] Manual R, Houghton, J. T. IPCC Draft Guidelines for National Greenhouse Gas Inventories, IPCC t al. (eds), 3Volumes. 1994
    [40] Netherlands Environmental Assessment Agency. Greenhouse Gas Emission in the Netherlands 1990-2008 National Inventory Report 2010[M]. Netherlands,2010
    [41] New Zealand Climate Change Office. National Inventory Report: National Inventory Report New Zealand Greenhouse Gas Inventory 1990-2001[M]. New Zealand, 2003
    [42] New Zealand Climate Change Office. New Zealand’s Greenhouse Gas Inventory 1990–2009[M],New Zealand, 2011
    [43] WRI/WBCSD (World Resources Institute and World Business Council for Sustainable Development). The Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard: Revised Edition[EB /OL]. http: / / www. ghgprotocol. org / , 2009.
    [44] William. M. Prindle, Deems A. Buell and Larry J. Scully. A management approach to energy cost control in wastewater utilities. Journal WPCF, 1983, 55(10): 1239-1243.
    [45] Wu Libo, Kaneko, Shinji, et al . Driving Forces behind the Stagnan cy of China’s Energy-related CO:Emisions from 1996 to 1999:the Relative Importance of Stmctural Change, Intensity Chan geand Scale Change[J].Energy Policy,2005,33:319—335.
    [46] Yezza A, Tyagi R D, Valero J R, et al. Bioconversion of industrial wastewater and wastewater sludge into bacillus thuringiensis based biopesticides in pilot fermentor[J]. Bioresource Technology, 2006, 97(15) : 185- 187.
    [47] Yoichi Kaya. Impact of Carbon Dioxide Emission on GNP Growth:Interpretation of Proposed Scenarios [R]. Presentation to the Energy and Industry Subgroup, Response StrategiesWorking Group, IPCC, Paris, 1989
    [48] You Li, C. N. Hewitt. The effect of trade between China and the UK on national and global carbon dioxide emissions[J] . Energy Poliey. 2008, 36(6): 1907-1914.
    [49] Bates, B. C. , Z. W. Kundzewicz, S. Wu, et al.编辑.气候变化与水[M].政府间气候变化专门委员会的技术报告, IPCC秘书处,日内瓦,2008
    [50]蔡博峰,刘春兰,陈操操等.城市温室气体清单研究[M].北京化学工业出版社, 2009, 21-48.
    [51]蔡博峰.城市温室气体清单研究[J].气候变化研究进展, 2011,7(1):23-28
    [52]陈宗兴.低碳经济区:中国经济转型的试验地[J].中国经济周刊, 2009,(41)
    [53]常江,杨岸明,甘一萍等.城市污水处理厂能耗分析及节能途[J].中国给水排水, 2011,27(4): 33-36
    [54]杜吴鹏.城市固体废弃物(MSW)填埋处理温室气体—甲烷排放研究[D].南京信息工程大学》,2006
    [55]高现文,单春贤,李海英等.温度对污泥热解产物及特性的影响[J].生态环境, 2007, 16(4): 1189-1192.
    [56] "公路医生"编辑部.算算公路养护中碳排放这笔账[J].交通世界(建养机械), 2010. (4):卷首语
    [57]顾朝林,谭纵波,刘宛等.气候变化、碳排放与低碳城市规划研究进展[J].城市规划学刊,2009a,(3):38-45
    [58]顾朝林,谭纵波,刘宛.低碳城市规划:寻求低碳化发[J].建设科技,2009b,(15):40-41
    [59]桂轶.城市生活污水污泥处理处置方法研究——以合肥市为例[D].合肥工业大学,2007
    [60]郭运功.特大城市温室气体排放量测算与排放特征分析—以上海为例[D].上海,华东师范大学, 2009.
    [61]郭瑞,陈同斌,张悦等.不同污泥处理与处置工艺的碳排放[J].环境科学学报, 2011, 31(4) : 673-679.
    [62]国家发展改革委.关于开展低碳省区和低碳城市试点工作的通知,发改气候[2010]1587号,2010-07-19
    [63]国家发展和改革委员会能源研究所课题组.中国2050年低碳发展之路:能源需求暨碳排放情景分析[M].北京:科学出版社,2009
    [64]国家气候变化对策协调小组办公室,国家发展和改革委员会能源研究所.中国温室气体清单研究[M].北京:中国环境出版社, 2007
    [65]郝晓地.可持续污水-废物处理技术[M].北京:中国建筑工业出版社,2006
    [66]郝晓地,涂明,蔡正清等.污水处理低碳运行策略与技术导向[J].中国给水排水,2010,26(24):1-6
    [67]胡初枝,黄贤金,钟太洋等.中国碳排放特征及其动态演进分析[J].中国人口资源环境,2008,(3):38~42.
    [68]环境保护部.污水处理厂污泥处理处置最佳可行技术导则(编制研究报告)[E]. 2008a.
    [69]环境保护部.污水处理厂污泥处理处置最佳可行技术导则(征求意见稿)[E]. 2008b.
    [70]环境保护部.城市污水处理厂污泥处理处置污染防治最佳可行技术指南(试行)[M]. 2010.
    [71]黄耀.中国的温室气体排放、减排措施与对策[J].第四纪研究, 2006,26( 6) : 722- 732
    [72]金昌权,汪诚文,曾思育等.污水处理厂能耗特征分析方法与节能途径研究[J].给水排水(增刊), 2009, 35:270-274
    [73]姜莫菡,王灿.中国工业废水处理过程CDM项目机会研究[J].环境科学与管理, 2009,26(1):178-183
    [74]姜文超,张智,王志飞等.重庆市城市污水厂污泥处理处置规划及有关问题[J].中国给水排水, 2008,24(18):19-23
    [75]雷晓玲,刘贤斌,叶方剑等.重庆市唐家沱污水处理厂工艺设计及其污泥的处理与处置[J].给水排水,2009,35(8):44-47
    [76]李欢,金宜英,李洋洋.污水污泥处理的碳排放及其低碳化策略[J].土木建筑与环境工程, 2011, 33(2):117-121
    [77]李海英,张书廷,赵新华.城市污水污泥热解实验及产物特性[J].天津大学学报, 2006.39(6): 739-744.
    [78]李志富.中国水资源的特点、存在的问题及对策.科技信息, 2009(33):531
    [79]李建军.新型微孔曝气器的工艺及特性研究[D].天津大学, 2008
    [80]刘洪涛,陈同斌,杭世珺等.不同污泥处理与处置工艺的碳排放分析[J].中国给水排水, 2010a, 26(17): 106-108.
    [81]刘洪涛,陈同斌,高定等.城镇污水厂污泥处理处置工艺的碳排放比较[J].水工业市场, 2010b,(9): 40-41.
    [82]刘洪涛,陈同斌,高定等.污水厂污泥处理处置工艺碳排放比较[J].建设科技, 2010c, (19):82-83
    [83]刘炎.谈能源与环境[J].能源与环境,2004(1):1
    [84]刘毅.世界气象组织发布2009年度《温室气体公报》[N].人民日报,2010-11-30
    [85]罗孝君.我国自然资源状况及可持续利用途径[J].合作经济与科技,2010,(387):4-5
    [86]马欣.中国城镇生活污水处理厂温室气体排放研究[D].北京林业大学, 2011.
    [87]马娜,陈玲,何培松等.城市污泥资源化利用研究[J].生态学杂志,2004,23(1):86-89
    [88]马棚良.城市污水处理厂的能耗[J].江苏环境科技, 2003, 13(l): 10-12.
    [89]孟德良,刘建广.污水处理厂的能耗与能量的回收利用[J].给水排水, 2002, 28(4): 18-20.
    [90]能源研究所“中国可持续发展能源暨碳排放分析”课题组.中国可持续发展能源暨碳排放情景研究[J].中国能源, 2003(6): 4-10.
    [91]聂梅生。高度重视绿色低碳水业[J].建设科技,2009(23):63-64
    [92]潘巧明,楼永通,陈小良等.膜法处理糖蜜制酒精废水的初探[J].水处理技术, 2000,26(6):340-342
    [93]蒲贵兵,吕波,尹洪军.生活污水生物处理领域中的CDM机会探讨[J],中国给水排水, 2009, 25(14)
    [94]仇保兴.创建低碳社会提升国家竞争力——英国减排温室气体的经验与启示[J].城市发展研究,2008,15(2):1-8
    [95]仇保兴.立足国家战略把握两个导向——在水专项“十二五”实施计划编制启动会暨地方科技需求座谈会上的讲话[J].建设科技,2010a,(3):10-12
    [96]仇保兴.全面推进城镇污水处理工作——在“全国城镇污水处理建设与运行工作现场会议”上的讲话[J].建设科技,2010b,(11):12-17
    [97]曲建升,王琴,陈发虎等.甘肃省温室气体排放评估及其特征分析[J].开发研究, 2008(3): 55-58
    [98]世界银行著,胡光宇等译. 2010年世界发展报告:发展与气候变化[M].北京:清华大学出版社,2010
    [99]王洪臣.城镇污水处理领域的碳减排[J].给水排水,2010,36(12):1-3,52
    [100]王绍文,秦华.城市污泥资源化利用与污水土地处理技术[M].北京:中国建筑工业出版社, 2007
    [101]王世和,远藤郁夫.常温厌氧污泥消化的停留时间分析[J].中国环境科学, 1998. 18(3).
    [102]温信均,钟丽琼,谢光炎.污水处理厂的节能技术探讨[J].环境, 2007(8):100-102
    [103]韦玮.我国小城镇给水系统建设技术及给水污泥资源化研究[D].重庆大学,2006
    [104]吴英.浅析城镇污水处理厂处理构筑物的能耗[J].能源与环境,2008,6:61-62
    [105]夏能宏.朱家桥污水处理厂采取的节能措施[J].工业用水与废水, 2001,32(4):29-30
    [106]薛万新.城市污水处理厂的能耗分布与节能管理对策探析[J].资源环境, 2009(6): 72-73.
    [107]熊艾玲.城市污水处理工艺的生命周期能耗分析及节能试验研究[D].重庆大学,2004
    [108]羊寿生.城市污水厂的能源消耗[J] .给水排水, 1984,( 6) : 15- 19.
    [109]杨斌.一体化氧化沟能量供给优化试验研究[D].重庆大学, 2006
    [110]杨玉梅.重庆鸡冠石污水处理厂的设计特点及运行管理改进[J],中国给水排水, 2008, 24(16): 35-39.
    [111]姚远,张丹丹,楚英豪.城市污水处理厂中的能耗及能源综合利用[J],资源开发与市场,2010 26( 3):202-205.
    [112]应启锋,王佳伟,高金华等.小红门污水处理厂利用沼气拖动鼓风机的节能效果[J].中国给水排水, 2010,26(12):130-132
    [113]喻泽斌,阮付贤,甘激文等.糖蜜酒精废水处理项目实施CDM效益分析[J],中国给水排水, 2008, 24( 2) : 84- 87
    [114]苑卫军,李建胜,李金海. CRCD煤气化技术与石灰生产的节能减排[J].冶金能源,2009, 28(3): 39-41.
    [115]张德英.我国工业部门碳源排碳量估算方法研究[D].北京林业大学, 2006.
    [116]张辰,陈嫣,谭学军等.城市污水系统温室气体排放与对策研究[J].给水排水, 2010(9): 29-33.
    [117]张自杰,排水工程(下) [M] .北京:中国建筑工业出版社, 1987.
    [118]赵天涛,阎宁,赵由才.环境工程领域温室气体减排与控制技术[J].北京:化学工业出版社,2009.
    [119]赵丽君,李成江.污泥稳定化处理与资源化技术生产性研究[J]. 2006; Available from: http://www.studa.net/huanjing/060313/10431980-2.html.
    [120]住房和城乡建设部,国家发展和改革委员会《.城镇污水处理厂污泥处理处置技术指南(试行)》,2011.
    [121]中国新闻网.中国节能获全球首个垃圾焚烧发电CDM注册项目[EB/OL].http://news.sohu.com/20091214/n268939250.shtml, 2009-12-14
    [122]中华人民共和国气候变化初始国家信息通报[M].北京:中国计划出版社, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700