用户名: 密码: 验证码:
特高压输电线路继电保护问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了满足未来持续增长的电力需求,提高我国能源开发和利用效率,国家电网公司提出了加快建设由百万伏级交流和正负800千伏级直流系统构成的特高压电网的发展目标。2009年初,我国第一条1000kV晋东南—南阳—荆门特高压交流试验示范工程建成投运,标志着我国在远距离、大容量、低损耗的特高压核心技术和设备国产化上取得了重大突破,对保障国家能源安全和电力可靠供应具有非常重要的意义。
     特高压长距离输电线路具有输送功率大、波阻抗小、分布电容大等特点,线路上的分布电容电流会达到很高的水平,这将导致继电保护装置在某些情况下拒动、灵敏度下降等问题。解决这个问题可以采取两种措施:其一是采用电容电流补偿的方法来消除影响;另外就是采用受电容电流影响小或甚至不受电容电流影响的保护新原理、新判据和新算法。论文以解决电容电流对保护装置的影响作为核心内容展开深入研究,在对特高压试验示范工程进行暂态特性仿真分析的基础上,提出了基于Marti模型的特高压输电线路电流差动保护的新思路,有效地克服了分布电容电流的影响,提高了保护装置的可靠性和灵敏度。对于装设有并联电抗器的线路,提出了一种时域计算电抗器电流的方法,利用隐式梯形积分法与后退欧拉法相结合的处理方式,来获得稳定又精确的数值解。同时将基于Marti模型的电流差动保护原理应用于我国皖电东送特高压双回输电线路这一典型工程,最后提出了基于线路分布参数的同杆双回特高压输电线路电容电流补偿方法,获得了一些重要的研究成果。论文所做的工作主要包括以下几个方面:
     (1)根据我国特高压试验示范工程的原始条件精确地计算线路参数,对短路故障及断路器操作过程中出现的各种暂态分量的特性进行仿真分析,为后续工作奠定了基础。
     (2)提出了基于Marti模型的特高压输电线路电流差动保护原理,该原理既不受电容电流影响,又考虑了线路参数的频变特性,使计算结果更加精确,并且配合简单实用的保护判据,给出了动作电流的表达式。仿真计算表明该保护原理动作准确、可靠,同时具有较高的灵敏度及允许过渡电阻的能力。
     (3)提出了基于Marti模型的电流差动保护原理应用于装有并联电抗器的特高压线路时的处理方法,该方法在时域中求取并联电抗器的电流,在一般时刻采用隐式梯形积分法计算,而在网络突变时刻采用后退欧拉法进行处理,这样既保证了暂态过程的精确度又能够消除数值振荡。
     (4)以我国淮南-皖南(皖电东送)特高压同杆双回输电工程为背景,建立了双回线路的数学模型,计算了线路参数,对发生短路故障,特别是跨线故障时的暂态特性进行仿真,分析其对继电保护造成的影响。
     (5)为了将基于Marti模型的电流差动保护原理应用于特高压双回线路,扩展了相模变换矩阵,将整个双回线作为一个统一的保护对象,给出了保护的工作过程,仿真结果验证了该保护原理应用于双回线的正确性。
     (6)特高压双回线发生故障时,与故障相同名异线的非故障相动作电流畸变严重,使用传统的半波傅氏算法无法获得满意的效果。针对这一问题,本文采用一种改进的半波傅氏算法进行滤波,既满足保护快速性的要求,又能够得到较高的精度。
     (7)提出了同杆双回特高压输电线路电容电流补偿方法,该方法建立在具有分布参数特性的输电线路模型的基础上,对于电流的瞬时采样值按模量进行补偿计算,能够有效地补偿暂态和稳态电流,且计算工作量小,不要求较高的采样频率,实用化程度高。
     上述研究工作及成果表明,本文提出的基于Marti模型的电流差动保护新原理并使之应用于特高压单回和双回输电线路中,能够较好地解决传统保护应用于特高压线路时带来的问题,具有重要的理论和实际意义。
In order to meet the continued load growth in the future and improve the efficiency of energy utilization in our country, a development goal to accelerate the construction of a UHV backbone network, comprised by1000kV UHVAC transmission systems and±800kV UHVDC projects was proposed by the Sate Grid Corporation of China (SGCC). In early2009, the first1000kV UHVAC Jindongnan-nanyang-jingmen pilot demonstration project in China was put into operation, which indicated that China has achieved a breakthrough in the UHV core technologies and equipment localization, and had an important significance to ensure national energy safety and reliable power supply.
     The UHVAC long distance transmission lines have characteristics of huge transmission capacity, small characteristic impedance and large distributed capacitance. The large capacitive current would cause malfunction, sensitivity decrease and other issues of relay protection devices in some cases. Two measures can be applied to solve these problems. One is a compensation of the capacitive current, and the other one is a new protection principle not affected by the capacitive current. A depth study on the solution of influences on the protection device caused by the capacitive current is carried on. On the basis of simulation and analysis on the transient characteristics for the UHVAC pilot demonstration project, a novel principle of current differential protection based on Marti model applying for the UHVAC transmission lines is presented. The proposed principle does hardly affected by the capacitive current. Moreover it ensures both sensitivity for internal faults and reliability for external faults of the protection devices. A method to calculate reactor current in the time domain is put forward when circuits are installed shunt rectors. The Implicit Trapezoidal Integration Method and the Backward Euler Method are integrated to obtain the stable and accurate numerical solution. Then the novel principle of current differential protection based on Marti model is applied in the double circuit UHVAC lines, and a capacitive current compensation algorithm for double circuit UHVAC transmission lines is also presented. The detailed research work is shown as follows:
     (1) The line parameters of UHVAC pilot demonstration project in China are calculated according to the original conditions. Varieties of transient components emerging during faults and breakers operation are simulated and analyzed, which lay a firm foundation for the later research.
     (2) The current differential protection principle based on Marti line model applied in the UHVAC transmission lines is proposed, which does not affected by the capacitive current. More accurate results will be obtained by way of the principle taking account of frequency-dependent characteristics of line parameters. A simple and practical criterion is also given. The expressions of operating current at the conditions of various short-circuit faults are deduced. The high sensitivity and allowable transition resistance ability of the proposed protection principle are verified by simulations.
     (3) A method to use current differential protection principle based on Marti model into the UHV transmission lines equipped with the shunt reactors is put forward. The reactor current is calculated in the time domain by way of Implicit Trapezoidal Integration Method on the normal time, and the Backward Euler Method on the network jumping moment. This disposal can not only avoid the oscillation of numerical calculation, but also improve the simulating accuracy as much as possible. At last the modified reactor current will be counted into the protective criterion.
     (4) The simulation model of the Huainan-Wannan UHVAC double circuit lines in China are constructed after the calculations of line parameters. Simulation on the conditions of various short-circuit faults, especially faults between differential lines are carried out. At the same time the impact on the relaying protection is also analyzed.
     (5) In order to use the aforementioned current differential protection in the UHVAC double circuit lines, the phase-mode transformation matrix is extended firstly. In the operation, the double-circuit six lines are regarded as a unified protected object. The working steps are also listed in the dissertation. The simulation results verify the correctness of the protection principle applied to the double circuit lines.
     (6) When an internal fault occurs on the double circuit lines, the transient current of non-fault-phase distorts greatly. At this time the traditional half-wave Fourier Transform Algorithm does not function properly. For these reasons, an improved half-wave Fourier Transform Algorithm is applied to filter. Simulations show the algorithm has good precision and speediness.
     (7) A capacitive current compensation algorithm for double circuit UHVAC lines is presented. On the basis of the transmission line model with distributed parameters, the current sample values are compensated after calculating the capacitive currents. The algorithm does not require excessive high sample frequency and has a wide practical value.
     The above researches and results show that the proposed current differential protection principle based on Marti model is suitable for the UHVAC single circuit or double circuit transmission lines. This principle can solve the difficulties in the traditional relay protection, and related study has more significance in theory and practice.
引文
[1]刘振亚.特高压电网[M].北京:中国经济出版社,2005
    [2]Yinbiao shu. Current status and development of national grid of China[J].Transmission and Distribution Conference and Exhibition:Asia and Pacific,2005. IEEE/PES 2005 Page(s):1-2
    [3]董新洲,苏斌,薄志谦等.特高压输电线路继电保护特殊问题的研究[J].电力系统自动化.2004.28(24):19~22
    [4]贺家李,李永丽,郭征等.特高压输电线继电保护配置方案:(一)特高压输电线的结构与运行特点[J].电力系统自动化.2002.26(23):1-6
    [5]贺家李,李永丽,李斌等.特高压输电线继电保护配置方案:(二)保护配置方案[J].电力系统自动化.2002.26(24):1-6
    [6]刘万顺.电力系统故障分析(第二版)[M].北京:中国电力出版社,1998
    [7]李杨,李永丽.750kV及特高压输电线路的暂态电流研究[J].电力系统及其自动化学报.2006.18(3):18-23
    [8]1000kV晋东南—南阳—荆门特高压交流输电线路工程建设管理纲要[R].国家电网建设有限公司,2006
    [9]GB/T1179-2008圆线同心绞架空导线[S]. 中国国家标准化管理委员会
    [10]1000kV交流输电示范工程(晋-南-荆线)过电压校核研究[R].国家电网公司电力科学研究院,2008
    [11]王庆平,陈超英,王海吉,刘秀玲,刘益青,梁雷.输电线路电磁暂态仿真研究及其展望[J].电力自动化设备,2002,22(1):71-74.
    [12]吴维韩,张芳榴.电力系统过电压数值计算[M].北京:科学出版社,1989
    [13]J. R. Marti. Accurate Modelling of Frequency-Dependent Transmission Lines in Electromagnetic Transient Simulation [J], IEEE Trans. on Power Apparatus and Systems, Vol. PAS-101, pp.1117-155,1982
    [14]J. R. Marti, L. Marti, H.W. Dommel. Transmission Line Models for Steady-State Transients Analysis [C], Athens Power Tech,1993. APT 93. Proceedings. Joint International Power Conference, vol.2, no., pp.744-750,5-8 Sep 1993
    [15]张武军,何奔腾,沈冰.特高压输电线路空载合闸于故障保护的研究[J].中国电机工程学报,2008,28(16):65-71.
    [16]郭征,贺家李.输电线纵联差动保护的新原理[J].电力系统自动化.2004.28(11):1-5
    [17]刘千宽,黄少锋,王兴国.同杆并架双回线基于电流突变量的综合选相[J].电力系统自动 化.2007.31(21):53-57
    [18]陈珩.电力系统稳态分析(第三版)[M].中国电力出版社2007
    [19]索南家乐,杨铖,杨忠礼,宋国兵.用于同杆双回线保护的时域电容电流的分相补偿法[J].中国电机工程学报2010,30(1)77-81
    [20]张琦兵,邰能灵,袁成,陈康铭.同塔四回线电流差动保护的电容电流补偿分析[J].电力系统自动化2010,34(1)46-50
    [21]Dommel H W, et al著,李永庄,林集明,曾昭华译电力系统电磁暂态计算理论[M].北京:水利电力出版社,1991
    [22]葛耀中.新型继电保护与故障测距原理与技术(第二版)[M]. 西安:西安交通大学出版社2007
    [23]钱鑫,施围.同杆双回路不同换位下模量分析[J].电网技术2001,25(8)
    [24]何奔腾,胡为进.同杆并架双回线路模变换分析[J].电网技术1998,22(1)25-27,30
    [25]郭征.特高压长线路分相电流差动保护新原理[D]. 天津大学博士学位论文2004
    [26]陈超英,贺家李.电力系统数字仿真中消除非原型振荡的一种新方法:龙-库-梯法[J].中国电机工程学报,1995,15(3):210-216.
    [27]刘文焯,汤涌,侯俊贤,宋新立,万磊.考虑任意重事件发生的多步变步长电磁暂态仿真算法[J].中国电机工程学报,2009,29(34):9-15.
    [28]Marti H, Lin Jiming. Suppression of numerical oscillation in the EMTP[J]. IEEE Trans.on Power Systems,1989,4(4):739-747.
    [29]Lin Jiming, Marti H. Implementation of the CDA procedure in the EMTP[J]. IEEE Trans.on Power Systems,1990,5(2):394-402.
    [30]Brandwajn V. Damping of numerical noise in the EMTP solution[J]. EMTP Newsletter,1982, 2(3):10-19.
    [31]刘益青,陈超英.用以消除数值振荡的阻尼梯形法误差分析与修正[J].中国电机工程学报,2003,23(7):57-61.
    [32]张益,周群.电力系统数字仿真中的数值振荡及对策[J].上海交通大学学报,1999,33(12):1545-1549.
    [33]晋东南—南阳—荆门1000kV交流特高压试验示范工程二次系统技术条件[R].国家电网公司,2006
    [34]P M Anderson. Power system protection Ⅱ [M], IEEE Press, New York,1999
    [35]高厚磊,江世芳,贺家李.输电线路新型电流差动保护的研究[J].中国电机工程学报.1999.19(8):49-53
    [36]Bhatti, A.A. Performance analysis of microcomputer based differential protection of UHV lines under selective phase switching[J]. IEEE Trans. Power Del., vol.5, no.2 pp.556-560, April 1990.
    [37]李岩,陈德树,张哲,尹项根.超高压长线电容电流对差动保护的影响及补偿对策仿真分析[J].继电器.2001.29(6):6-10
    [38]陈德树,唐萃,尹项根,张哲,陈卫,郭贤珊.特高压交流继电保护及相关问题[J].继电器.2007,35(5):1-3
    [39]伍叶凯,邹东霞.电容电流对差动保护的影响及补偿方案[J].继电器.1997,25(4):4-8
    [40]毕天妹,于艳莉,黄少锋,杨奇逊.超高压线路差动保护电容电流的精确补偿方法[J].电力系统自动化.2005.29(15):30-34
    [41]Bi, T.S.; Yu, Y.L.; Huang, S.F.; Yang, Q.X.. "An accurate compensation method of distributed capacitance current in differential protection of UHV transmission line" Power Engineering Society General Meeting,2005. IEEE 12-16 June 2005 Page(s):770-774
    [42]桑丙玉,王晓茹.特高压长线路电流差动保护自适应电容电流补偿方法[J].电力系统保护与控制.2010,38(8):1-5
    [43]索南加乐,张泽宁等.n模型时域电容电流补偿的电流差动保护研究[J].中国电机工程学报.2006.26(5):12-18
    [44]苏斌,董新洲,孙元章.适用于特高压的差动保护分布电容电流补偿算法[J].电力系统自动化.2005.29(8):36-40
    [45]吴通华,郑玉平,朱晓彤.基于暂态电容电流补偿的线路差动保护[J].电力系统自动化.2005.29(12):61-65
    [46]郑玉平,吴通华,丁琰等.基于贝瑞隆模型的线路差动保护实用判据[J].电力系统自动化.2004.28(11):1-5
    [47]袁荣湘,陈德树,张哲.高压输电线路新型差动保护的研究[J].中国电机工程学报.2000.20(4):9-13
    [48]Li Yan; Chen De-Shu; Yuan Rong-Xiang; Yin Xiang-Geri; Zhang Zhe. Study of the transient current differential protection based on correlation analysis[J]. Transmission and Distribution Conference and Exhibition 2002:Asia Pacific. IEEE/PES Volume 2,6-10 Oct.2002 Page(s):830-834
    [49]Z. Y. Xu, Z. Q. Du, L. Ran, Y. K. Wu, Q. X. Yang, and J. L. He. A current differential relay for a 1000-kV UHV transmission line[J]. IEEE Trans. Power Del, vol.22, no.3, pp.1392-1399, Jul.2007.
    [50]徐晓松,贺家李,李永丽,王艳,李斌.特高压输电线分相电流相位差动保护的研究[J].继电器.2007.35(3):1-5
    [51]朱声石.高压电网继电保护原理与技术(第三版)[M].中国电力出版社,2005
    [52]李斌,贺家李,杨洪平等.特高压长线路距离保护算法改进[J].电力系统自动化.2007.31(1):43-47
    [53]李斌,李永丽,贺家李.特高压长线路电容电流对距离保护的影响[J].天津大学学报.2006.39:83-87
    [54]Z. Y. Xu, S. F. Huang, L. Ran, J. F. Liu, Y. L. Qin, Q. X. Yang, and J. L. He. A Distance Protection Relay for a1000-kV UHV Transmission Line[J]. IEEE Trans. Power Del., vol 23, Issue 4, pp:1795-1804, Oct.2008
    [55]柴济民,郑玉平,吴通华.交流1000kV特高压输电线路距离保护特殊问题[J].电力系统自动化.2007.31(12):55-59
    [56]Li Bin, Ma Chao, He Jiali, Bo Zhiqian. The Negative-Sequence Distance Protection for UHV Long Distance Transmission Line[J]. Developments in Power System Protection,2008. DPSP 2008. IET 9th International Conference on 17-20 March 2008 Page(s):632-637
    [57]罗四倍,段建东,张保会.基于暂态量的输电线路超高速保护研究现状与展望[J].电网技术.2006.30(22):32-40
    [58]Takagi T, Baba J, Uemura K, et al. Fault protection based on traveling wave theory, part 1: theory[C]. IEEE PES Summer Meeting, MexicoCity,1977.
    [59]Takagi T, Baba J, Uemura K, et al. Fault protection based on traveling wave theory, part 2: sensitivity analysis and laboratory test[C]. IEEE PES Winter Meeting, New York,1978.
    [60]苏斌,董新洲,孙元章.特高压带并联电抗器线路的行波差动保护[J].电力系统自动化.2004.28(23):41-44
    [61]V. Pathirana, P. G. McLaren. A hybid algorithm for high speed transmission line protection[J]. IEEE Trans. Power Del., vol 20, No.4, pp:2422-2428, Oct.2005
    [62]夏勇军,尹项根,胡刚,张哲,董永德.同杆双回线路继电保护原理及工程应用[J].电力系统保护与控制.2009.37(3):98-102
    [63]张延,雷雨田,吴云.同杆双回线路继电保护方案研究[J].继电器,2004,32(13),40-43
    [64]索南加乐.同杆双回线的故障分析及继电保护[D].西安交通大学博士学位论文,1991
    [65]林军.超高压同杆双回线多重故障的计算[J].中国电机工程学报,2010,30(13),89-94
    [66]郑玉平.串补线路继电保护的研究与同杆双同线继电保护及重合闸的研究[D],武汉大学博士学位论文,2004
    [67]Hesse M H. Circulating currents in paralleled untransposed milticircuit lines:I numerical evaluations[J]. IEEE Trans. on Power Apparatus and Systems,1966,85(7):802-811
    [68]Hesse M H. Circulating currents in paralleled untransposed milticircuit lines:Ⅱ methods for estimating current unbalance[J]. IEEE Trans. on Power Apparatus and Systems,1966, 85(7):812-820
    [69]Jones, M.S., Thomas, D.W.P., Christopoulos, C.. Anonpilot phase selector based on superimposed components for protection of double circuit lines[J]. Power Delivery, IEEE Transactions on, vol.12, no.4, pp.1439-1444, Oct 1997
    [70]索南加乐,刘东,谢静,等.同杆并架输电线路跨线故障识别元件[J].电力系统自动化.2007,31(1):47-52
    [71]俞波,杨奇逊,李营,等.同杆并架双回线保护选相元件研究[J].中国电机工程学报.2003,23(4):38-42
    [72]孟恒信,朱良肄,张涛.双回线路跨线故障及保护动作行为分析[J].电力系统自动化.2006,30(18):103-107
    [73]李斌,李学斌,丁茂生,曾红艳.同杆双回线环流对方向纵联保护的影响及改进[J].电力系统自动化.2011,35(8):103-107
    [74]孔伟彬,朱晓彤,张俊洪,等..同杆双回线上零序功率方向继电器的误判问题[J].电力系统自动化,2002,26(22),45-48.
    [75]刘玲,范春菊.基于六序分量法的跨电压等级的同塔四回线的故障计算[J].电力系统保护与控制.2010,38(9):6-11
    [76]吴永刚,思晓兰,张惠芳.330 kV同杆并架双回线继电保护优化配置及应用[J].电力系统自动化.2001,4(10):64-66
    [77]Jongepier, A.G., van der Sluis, L.. Adaptive distance protection of a double-circuit line[J]. Power Delivery, IEEE Transactions on, vol.9, no.3, pp.1289-1297, Jul 1994
    [78]Jongepier, A. G., van der Sluis, L.. Adaptive distance protection of double-circuit lines using artificial neural networks[J]. Power Delivery, IEEE Transactions on, vol.12, no.l, pp.97-105, Jan 1997
    [79]Eissa, M.M., Malik, O.P.. Laboratory investigation of a distance-protection technique for double circuit lines[J]. Power Delivery, IEEE Transactions on, vol.19, no.4, pp.1629-1635, Oct.2004
    [80]余鲲.存在零序互感的同杆并架多回线保护整定计算的研究[J].电力科学与工程,2007,23(1),45-48.
    [81]Seyedi, H., Behroozi, L.. New distance relay compensation algorithm for double-circuit transmission line protection[J]. Generation, Transmission & Distribution, IET, vol.5, no.10, pp.1011-1018, October 2011
    [82]焦彦军,侯仰栋,章政杰,吴佳毅.基于分布参数的特高压交流双回长线路距离保护[J].电网技术.2008.32(2):118-123
    [83]宋国兵,刘志良,康小宁,赵选宗,索南加乐.一种同杆并架双回线接地距离保护方案[J]..电力系统保护与控制.2010,38(12):102-106
    [84]孟远景,鄢安河,李瑞生,胡家跃.同杆双回线的六相序阻抗距离保护方案研究[J].电力系统保护与控制.2010,38(6):12-16
    [85]卜明新,常风然,林榕.双回线保护方案探讨[J].继电器.2008.36(1),84-86
    [86]康小宁,梁振锋.同杆平行双回线路保护及自动重合闸综述[J].继电器.2004,32(23):72-76.
    [87]杨忠礼,宋国兵,姚永峰,梁振锋,索南加乐.基于跨线故障判别的平行双回线路选相方案[J].西安交通大学学报.2011,45(2):97-105
    [88]黄益庄,李春光.微处理机方向横差保护装置的研究与应用[J].清华大学学报(自然科学版),1997,37(1),45-48.
    [89]宋斌,陈玉兰,徐秋林,等.微机横联差动电流方向保护装置[J].电力系统自动化,2003,27(10):85-88.
    [90]梁振锋,康小宁,索南加乐,罗云照.平行双回线路故障分量电流平衡保护研究[J].中国电机工程学报.2008,28(19):106-111
    [91]解建宝,梁振锋,康小宁,等.平行双回线电流平衡保护的仿真研究[J].电网技术,2007,31(9),81-83.
    [92]康小宁,梁振锋,索南加乐.相邻线路零序互感对平行双回线电流平衡保护的影响及改进措施[J].继电器,2005,33(20),1-4
    [93]曾耿晖,黄明辉,刘之尧,等.同杆线路纵联零序保护误动分析及措施[J].电力系统自动化,2006,30(20),103-107.
    [94]孔伟彬,朱晓彤,张俊洪,等.同杆双回线上零序功率方向继电器的误判问题[J].电力系统自动化,2002,26(22),45-48.
    [95]宋国兵,索南加乐,许庆强,张健康,康小宁.同杆双回线环流量的行波特点[J].继电器.2004,32(3):1-5
    [96]张武军,何奔腾,洪光辉,饶玉凡.同杆并架双回线路行波差动保护[J].电力系统自动化.2008.32(17):66-71
    [97]Bollen, M.H.J.. Travelling-wave-based protection of double-circuit lines[C]. Generation, Transmission and Distribution, IEE Proceedings, vol.140, no.l,pp.37-47, Jan 1993
    [98]Bo, Z.Q., Dong, X.Z., Caunce, B.R.J., Millar, R.. Adaptive noncommunication protection of double-circuit line systems[J]. Power Delivery, IEEE Transactions on, vol.18, no.1, pp.43-49, Jan 2003
    [99]张举,李志雷,周强强,杨春光.基于故障暂态电流分量的双回线保护原理[J].华北电力大学学报.2006,33(2):50-54
    [100]蔡国伟,周国屏,李凌.基于同步相量测量的同杆双回路继电保护方案的研究[J].电力自动化设备,2007,27(6),56-59.
    [101]汤涌.电力系统数字仿真技术的现状与发展[J].电力系统自动化,2002,26(17),66-70.
    [102]解广润.电力系统过电压[M].北京:水利电力出版社,1985
    [103]王庆平,陈超英,王海吉,刘秀玲,刘益青,梁磊.输电线路电磁暂态仿真研究及其展望[J].电力自动化设备,2002,22(1),72-76.
    [104]王锐,李瑞生,李文霞,王莉.特高压交流1000kV示范工程故障电流谐波分析[J].继电器,2007,35(23),1-5.
    [105]Xiangning Lin, Jingguang Huang, Linjun Zeng, Bo, Z.Q.. Analysis of Electromagnetic Transient and Adaptability of Second-Harmonic Restraint Based Differential Protection of UHV Power Transformer[J]. Power Delivery, IEEE Transactions on, vol.25, no.4, pp.2299-2307, Oct.2010
    [106]梁振锋,康小宁,索南加乐.基于故障类型的同杆双回线故障分量提取算法[J].电力系统自动化,2005,29(20):50-54
    [107]傅旭,王锡凡.同杆双回线跨线短路故障计算的等值双端电源相分量法[J].电力系统自动化,2004,28(7):54-57
    [108]刘为雄,蔡泽祥,邱建.融合对称分量法与相分量法的大规模电力系统跨线故障计算[J].电工技术学报,2007,22(5):140-145
    [109]杨奇逊,黄少锋.微型机继电保护基础[M].北京:中国电力出版社2005
    [110]丁书文,张承学,龚庆武,肖迎元.半波傅氏算法的改进-一种新的微机保护交流采样快速算法[J].电力系统自动化,1999,23(5):18-22
    [111]宋国兵,蔡新雷,高淑萍,索南家乐,李广VSC-HVDC频变参数电缆线路电流差动保护新原理[J].中国电机工程学报,2011,31(22):105-111

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700