用户名: 密码: 验证码:
基于应变场和光纤光栅传感的机械结构裂纹扩展识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业设备大型化和规模化的发展,机械结构的承载越来越大,工作时间越来越长,机械结构的断裂失效已经成为设备结构安全性、可靠性、使用寿命的最大威胁。据统计,在各种机械结构的断裂事故中,有80%的事故缘于疲劳断裂,故疲劳断裂具有很大的危险性。监测机械结构疲劳裂纹的产生和扩展对结构安全性至关重要。针对这一问题,本文提出了一种有效的机械结构裂纹损伤扩展识别方法,以对裂纹的产生和扩展进行识别和监测,这对基于裂纹损伤的机械结构的健康监测和安全分析具有一定的参考价值。
     本文首先综述和分析国内外的裂纹损伤识别技术的研究现状,着重介绍基于应变类参数的裂纹识别技术和光纤光栅传感技术在裂纹识别和监测中的应用,分析各种技术的优缺点。接着研究基于应变参数的裂纹识别理论,通过三种方法研究应变模态的推导,应变模态测试方法和模态参数识别方法。介绍四种基于应变参数的损伤识别方法,阐明其公式、原理和特点,并对四种方法做对比分析,得出应变频响函数损伤识别参数具有易测量、精度高的优势。应用有限元软件ANSYS建立带穿透性三维裂纹板的有限元模型,对结构应变场进行有限元分析,计算裂纹尖端应力强度因子;对四角固支的含裂纹薄板在正弦激励下的应变场进行有限元分析,并对裂纹扩展和应变场分布的关系进行了分析;提出基于应变频响函数变化幅值的裂纹损伤扩展识别指标。最后研究了光纤光栅应变传感应变原理,构建基于光纤光栅传感的四角固支薄板裂纹扩展识别实验台,进行了实验和理论分析。实验表明:本文方法可以有效的对裂纹损伤发生及扩展进行识别和监测。
     本文创新点是提出了基于应变频响函数变化幅值的裂纹损伤扩展识别指标。其基本原理是结构发生裂纹损伤后,承载能力下降,裂纹尖端附近产生应力集中,应变发生突变,结构损伤前后的应变频响函数发生变化。并且随着裂纹的扩展,变幅将增大,而远离裂纹的区域的应变频响函数的变幅则不明显。利用此指标对裂纹尖端定位,即可对裂纹损伤发生及扩展进行识别和监测。
     本文的研究成果是一种有效的机械结构裂纹损伤扩展识别的新方法,对基于裂纹损伤的机械结构的健康监测和安全分析具有一定的参考价值。
With the development of modern industrial equipment large-scale, the mechanical structure bearing is more and more heavier, the working time is more and more longer. Fracture failure of mechanical structure has become the biggest threat of equipment structure of safety, reliability and service life. According to statistics, in all kinds of mechanical structure of the fracture accident,80%of them are ascribed to fatigue fracture, the fatigue fracture of great danger[2]. Monitoring the mechanical structure fatigue crack and the formation of the extension of structure security is very important. To solve this problem, a kind of effective mechanical structure crack propagation identification method is researched in this paper, which is used to identify and monitor the fatigue crack propagation. It has reference value on crack damage mechanical structure health monitoring and safety analysis.+
     This paper first reviews, and analysis of crack identification technology at home and abroad, and the research status, emphasis on the introduction of the parameters based on strain crack identification technology and FBG sensing technology in crack identification and monitoring application, the analysis of various technical advantages and disadvantages. Then it is studied on the crack identification theory based on strain parameters, deduces strain mode through three methods, modal test method research strain and modal parameter identification method. Then it introduces four kinds of parameters of the damage identification based on strain method, expounds formulas, principle and features. By analysing four damage detecting methods based on strain parameters, figures out that strain frequency response function parameters is the most advantage in crack damage identification. The author establishes finite element model of the penetrated crack sheet by using finite element software ANSYS. The stress intensity factor at the crack tip is calculated. Finite element analysis on strain field of a four corners fixed sheet with crack is carried out. The distribution of strain field around and change in crack propagation process is analysed. The crack damage identification index based on change amplitude of strain frequency response function parameters(SFRF) is presented. Finally, the fiber Bragg grating strain sensor strain principle is studied. The sheet crack propagation identification test bench based on optical fiber grating sensors is established. Experiments and analysis are carried out. Experiments show that:the technique in this paper can identify and monitor crack damage occurs and propagation effectively.
     The innovative point of this paper is presenting crack damage identification index based on change amplitude of SFRF. The basic principle is structure bearing capacity reduces after crack damage occurred, stress concentrates near the crack tip, strain near the crack tip mutates, strain frequency response function parameters change a lot after damage occurred. And with the crack propagation, the change amplitude increase, while it is not obvious in other region far from the crack. We can identify and monitor crack damage occurs and propagation by using the index.
     The achievement of this paper is a new kind of effective mechanical structure crack identification method, it has reference value for mechanical structure health monitoring and safety analysis based on crack damage.
引文
[1]苏瑛.机械零件缺陷检测技术的研究[J].电站系统工程,2002,18(6):56-57.
    [2]王章忠,杜百平,李年.不同类型过载下Ⅰ型疲劳裂纹的扩展行为[J].金属学报,2003,39(8):843-847.
    [3]廖延彪.光纤光学[M].北京:清华大学出版社,2000:197-214.
    [4]卓锋,赵玉成,延凤平.采用光纤光栅的温度和应力传感技术[J].光通信技术,2000,24(2):134-137.
    [5]DAVIS M A, KERSEY A D. Matched-filter interrogation technique for fiber Bragg grating arrays[J].Electron.Lett.1995,31(10):822-825.
    [6]余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社,1993:56-61.
    [7]丁遂栋.断裂力学[M].北京:机械工业出版社,1997:272-275。
    [8]李贵军,王乐勤,郑传祥.高温设备和构件的蠕变损伤和断裂研究进展[J].化工机械,2004,02:45-48.
    [9]S. W. Doebling, C. R. Farrar, M. B. Prime. A summary review of vibration based damage identification methods[J]. The Shock and Vibration Digest,1998(3): 92-105.
    [10]朱鸿茂,刘纯.45#钢裂纹尖端塑性损伤的超声评估[J].华中科技大学学报,2000,02:34-37.
    [11]Vladimir Zilberstein, Darrell Schlicker, Karen Walrath, Volker Weiss, Neil Goldfine. MWM eddy current sensors for monitoring of crack initiation and growth during fatigue tests and in service[J]. International Journal of Fatigue.2001,23: 477-485.
    [12]张善智, 闫云聚.构件表面裂纹损伤电位检测法[J].测控技术,2008,06:33-37.
    [13]Hyeong-Yeon Lee, Jong-Bum Kim, Seok-Hoon Kim, Jae-Han Lee. Assessment of a creep-fatigue crack initiation and crack propagation for a welded cylindrical shell[J], International Journal of Pressure Vessels and Piping,2006,83: 826-834.
    [14]Hiroshi Tsuda, Jung-Ryul Lee, Yisheng Guan, Junji Takatsubo.Investigation of fatigue crack in stainless steel using a mobile fiber Bragg grating ultrasonic sensor Optical Fiber Technology,2007,13:209-214
    [15]L. H. YAM, T.P.LEUNG, D.B.LI, K. Z.XUE. Theoretical and Experimental Study of Modal Strain Analysis[J]. Journal of Sound and Vibration,1996,191(2): 251-260.
    [16]李德葆,诸葛鸿程,王波.实验应变模态分析原理和方法[J].清华大学学报(自然科学版),1990,30(2):105-112.
    [17]郭湘宇,周海燕.应变模态法在悬臂梁结构损伤监测诊断中的应用[J].江南大学学报(自然科学版),2008,7(4):475-478.
    [18]张对红,刘错,张静.裂纹尖端附近区域的应力应变场分析[J].油气储运,2001,20(9):13-22.
    [19]姜德生, 梁磊等.光纤光栅传感技术在重大工程结构监测中的应用[C].2001年国家自然科基金委员会重大工程灾变行为与健康监测学术研讨会.
    [20]黄艳红,高晓蓉,杜路泉.光纤光栅传感器在桥梁缺陷检测和结构健康监测中的应用[J].铁道技术监督,2007,11:17-20.
    [21]姜德生,罗裴,梁磊.光纤布拉格光栅传感器与基于应变模态理论的结构损伤识别[J].传感器技术,2003,2:17-19.
    [22]Addis Kidane, Vijaya B. Chalivendra, Arun Shukla. Thermo-mechanical stress fields and strain energy associated with a mixed-mode propagating crack[J]. Acta Mech,2010,215:57-69.
    [23]R. P. C. SAMPAIO, N. M. M. MAIA, J. M. M. SILVA. Journal of Sound and Vibration[J],1999,226(5):1029-1042.
    [24]L.H. Yam, Y.Y.Li, W.O. Wong. Sensitivity studies of parameters for damage detection of plate-like structures using static and dynamic approaches[J]. Engineering Structures,2002,24:1465-1475.
    [25]Y.Y.Li, L.Cheng, L.H. Yam, W.O. Wong. Identification of damage locations for plate-like structures using damage sensitive indices:strain modal approach[J]. Computers and Structures,2002,80:1881-1894.
    [26]孙曼,植涌,叶丰,刘浩吾.裂缝损伤的光纤Bragg光栅传感检测与应变片检测对比研究[J].四川大学学报(工程科学版),2007,39(6):45-49.
    [27]潘吉明,卢耀祖,周中坚,陆雄华.利用应变实时监测研究后桥疲劳裂纹扩展规律[J].同济大学学报,1999,27(6):745-748.
    [28]卢耀祖,张全慧.汽车后桥疲劳试验时裂纹扩展与应变变化的试验研究[J].机械强度,2001,23(1):025-028.
    [29]徐玉秀,周晓梅,闻邦椿.薄壁圆盘裂纹的应变分形特征及诊断识别研究[J].振动与冲击,2007,26(5):8-12.
    [30]Rodrigo A.Silva-Munoz, Roberto A.Lopez-Anido. Structural health monitoring of marine composite structural joints using embedded fiber Bragg grating strain sensors[J]. Composite Structures,2009,89:224-234.
    [31]Hiroshi Tsuda, Jung-Ryul Lee, Yisheng Guan, Junji Takatsubo. Investigation of fatigue crack in stainless steel using a mobile fiber Bragg [J]. Optical Fiber Technology,2007,13:209-214.
    [32]Yoji Okabe, Ryohei Tsuji, Nobuo Takeda.Application of chirped fiber Bragg grating sensors for identification of crack locations in composites [J]. Composites, 2004, Part A 35:59-65.
    [33]李德葆,陆海秋.实验模态分析及其应用[M].北京:科学出版社,2001
    [34]王术新,姜哲.基于结构振动损伤识别技术的研究现状及进展[J].振动与冲击,2004,23(4):99-102.
    [35]L. H. Yam, T. P. Leung, D. B. Li, K. Z. Xue. Theoretical and exprimental study of modal strain analysis[J]. Journal of Sound and Vibrtion, (1996)191(2),251-260.
    [36]R.P.C. Sampaio, N.M.M. Maia, J.M.M. Silva. Damage detection using the frequency-response-function curvature method[J]. Journal of Sound and Vibration, 1999,226:1029-1042.
    [37]Z.Y. Shi, S. S. Law, L. M. Zhang. Structural damage detection from modal strain energy change[J]. Journal of Engineering Mechanics,2000,126:1216-1223.
    [38]J.R.Rice.A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech,1968,35:379-386.
    [39]周益春,郑学军.材料的宏微观力学性能[M].北京:高等教育出版社,2009:92-95.
    [40]Barry D.Fehl,Kevin Z.Truman. An evaluation of fracture mechanics quarter point displacement techniques used for computing stress intensity factors[J]. Engineering Structures,1999,21:406-415.
    [41]杨大智.智能材料与智能系统[M].天津:天津大学出版社,2000:76-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700