用户名: 密码: 验证码:
东北地区松针中多环芳烃的污染水平与特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多环芳烃(PAHs)是环境中广泛存在的一类典型的半挥发性有机污染物,主要来自于化石燃料和生物质的不完全燃烧。许多PAHs具有“三致”效应,对环境和人类健康具有较大危害,因而引起广泛关注。东北地区是我国重要的老工业基地之一,区域内重工业密集,人口众多,各类能源消耗量大。此外,该地区冬季取暖期较长,用于采暖的煤炭和生物质燃料使量较大。因此,东北地区的PAHs污染应该较严重。松科植物在环境中分布广泛,四季常青;松针具有脂含量高、比表面积大的特点,可以作为天然被动采样材料富集空气中半挥发性有机污染物(SOCs),反映区域中SOCs污染水平与特征。
     本研究采集东北地区及典型城区(大连)广泛分布的雪松(Cedrus deodar)和黑松(Pinus thunbergii)的2年生松针样品,分析了松针中PAHs的含量,对该区域PAHs的污染水平、组成特征和主要来源等方面进行了研究。此外,还研究了沉降颗粒物对松针中PAHs的贡献、松针与土壤中PAHs分布特征的联系、及松针生理性质对其富集PAHs能力的影响。本研究的结果,有助于揭示PAHs在较大区域范围的浓度水平及分布规律,判析PAHs的来源,为东北老工业基地PAHs的污染预防和控制提供重要依据。
     考察了大连地区雪松松针中PAHs的浓度及分布特征。与世界其它城市相比,大连地区松针中PAHs处于中等污染程度。由于季风性气候的影响,大连地区春季较强的大气湍流和海、陆空气交换可以减轻大气和松针中PAHs污染,减小大连地区春、秋季松针中PAHs的浓度差异。随着距交通干线距离的增加,松针中PAHs浓度呈降低趋势,表明交通对松针中PAHs的影响非常显著。大连地区松针中PAHs以3环和4环PAHs为主。随着远离城市交通区,3环PAHs占∑PAHs的比例变化不大,4环PAHs的比例逐渐降低,而5,6环PAHs的比例略有增加。主成分分析表明,PAHs的气/固相分配行为对松针富集PAHs有重要影响。对PAHs来源判析表明:交通排放是大连地区松针中PAHs的主要来源,煤和生物质的燃烧对大连地区松针中PAHs也有重要贡献。随着远离市区,煤和生物质燃烧对松针中PAHs的贡献逐渐增加。
     通过清洗去除松针表面的颗粒物,研究了颗粒物沉降对松针中PAHs的贡献。结果表明,沉降颗粒物对松针中PAHs浓度的平均贡献(P)为(23.1±3.4)%,随着PAHs正辛醇/空气分配系数(logK_(OA))的增大而增大。随着远离交通繁忙区,P值逐渐降低,呈交通繁忙区→非主干交通区→居民区及公园/海岛区依次降低的空间变化趋势。清洗前后松针中3环和4环PAHs浓度没有显著变化;5环和6环PAHs浓度有显著差异,但由于其在松针中所占比例较小(仅为2~5%),因此对松针中PAHs组成特征的影响不显著。
     比较松针和土壤中PAHs的含量,发现大连市区土壤中PAHs浓度远高于松针中PAHs浓度。定义f为空气颗粒物中PAHs浓度占整个空气中PAHs总浓度(包括纯气态和颗粒物吸附态)的比例。将土壤中PAHs浓度经f值换算后,得到来自于大气颗粒物沉降的土壤中PAHs浓度(C_(PS))。比较C_(PS)与清洗后松针中PAHs的浓度(C_(WP)),发现log(C_(PS)/C_(WP))与PAHs的固/气相分配系数(logK_(PA))及logK_(OA)具有显著的线性关系。利用苯并(a)芘(BaP)的浓度,可以有效指示松针中PAHs基于BaP的毒性当量(TEQ)。大多数土壤样品中PAHs基于BaP的TEQ远高于松针中TEQ。
     比较了雪松和黑松松针的生理性质对PAHs浓度影响。脂含量是决定不同种属松针中∑PAHs差异的首要因素。进行脂含量归一化后,不同种属松针中PAHs浓度具有较好的可比性。对于雪松和黑松,3环PAHs浓度与脂含量的回归方程的斜率约为4环PAHs的2倍,对于5环和6环的PAHs,未发现其浓度与脂含量之间的相关关系。这表明,随着分子量增大,PAHs更易于附着颗粒物上,较难被松针表皮蜡脂吸收进入松针内部。雪松和黑松松针的脂含量与其比表面积之间具有相反的变化规律,两种松针中∑PAHs与比表面积间变化规律亦相反。松针比表面积和气孔密度对5环和6环PAHs浓度有显著影响。
     对东北地区黑松松针中PAHs的研究表明:受冬季采暖影响,采暖期松针中PAHs的浓度明显高于非采暖期,采暖期与非采暖期松针样品中不同PAHs的分布特征无显著差异。松针中的PAHs以菲(32%)为主,其次为萘(26%)和荧蒽(18%)。15种PAHs之间以及与∑PAHs间具有显著的相关关系。随着采样点所处地理纬度的增加,PAHs浓度的分布呈现3个明显的峰值,分别位于铁岭、抚顺和吉林市。对PAHs的同分异构体的比值分析表明,东北地区松针中PAHs主要来自于煤和生物质燃烧,并受其它排放源的影响。对松针中典型PAHs比值的三角分布图分析表明,城市区与偏远地区松针中PAHs的主要来源具有一定的差异性。随着城市人口密度增大,松针中∑PAHs浓度增加。除大庆和盘锦外,东北地区主要城市的松针中∑PAHs随第二产业国内生产总值(GDP_2)与城市总GDP比值的增大而增加,两者呈显著正相关。不同城市第一、二和三产业GDP占总GDP的比例,对该区域松针中PAHs的浓度有重要影响。随着城市民用汽车拥有量的增大,主要城市松针中∑PAHs呈增加趋势,两者呈显著正相关关系。
Polycyclic aromatic hydrocarbons (PAHs), a group of ubiquitous semivolatile organic compounds (SOCs), are mainly originated from incomplete combustion of fossil fuel and biomass. Due to possible human carcinogens, PAHs have become an issue of increasing concern in recent decades. Northeastern area is one of typical traditional industrial bases in China. Over the last century, increases in population and industry in the region have resulted in high consumption of fossil fuel. In addition, biomass burning is a traditional practice for heating and cooking in rural areas. Thus, it was expected that Northeastern area might suffer from severe PAH pollution. Pine is most widely distributed conifer in the world. Due to lipid-rich cuticle and pore structure of its surfaces, pine needles have a high affinity for SOCs and can be used as passive samplers to monitor regional contaminations and to identify point sources of SOCs. The PAH levels in pine needles from Northeastern area and Dalian were investigated, which is very important to understand the characters of PAH pollution in Northeastern China. In addition, contributions of deposited particle bound PAHs, relationships of PAH profiles and distribution between pine needle and soil samples and influence of pine needle's physiological properties on the capabilities of PAH accumulation were investigated.
     The levels and distribution of PAHs in Dalian pine (Cedrus deodar) needles were investigated. The strong turbulence and air exchange may facilitate air depuration effectively and also mitigate the diffusion of PAHs into the pine needles. Consequently, PAH concentrations were no statistically significant differences among the different sampling campaigns. The concentrations of PAHs in Dalian were comparable with that in other regions in the world. Pine needle PAH concentrations showed a major traffic areas - minor traffic -residential areas - city parks/island gradient. The profiles in all pine needle samples were dominated by 3- and 4-ring PAHs. The profiles of 4-ring PAHs decreased along the heavy traffic - minor roads - residential areas - city parks/island transect, whereas the franctions of 5- and 6-ring PAHs increased slightly among the four areas. The plots of selected PAH diagnostic ratios in the four sampling areas suggested that pine needle PAHs were mainly from traffic emission in the urban areas and coal/wood combustion in the suburban and rural areas.
     The contributions of deposited particles (P) to PAH levels in pine (Cedrus deodar) needles sampled from Dalian region were evaluated. The results showed that the average contributions of deposited particles (P) were (23.1±3.4)%, and positively correlated with logarithm of octanol/air partition coefficients (logK_(OA)) of each PAH significantly. P were high for traffic areas, and low for residential or park areas, implying the significant contributions of PAHs in both gas and particle phases emitted by vehicles. However, PAH profiles in pine needles were not significantly altered by the washing, due to the low fractions (2~5%) of the 5- and 6-ring PAHs in ZPAHs.
     The concentrations and profiles of PAHs in soil and pine neddle samples were investigated.ΣPAHs in soil samples are higher than in pine needles from Dalian areas. Significant correlations were observed between logarithm of particle/gas partition coefficient, as well as logK_(OA), and logarithm of soil PAH concentrations from atmosheirc particle deposition vs. washed pine needle PAH levels. Benzo(a)pyrene (BaP) was a good indicator for assessing the potential toxicity of PAHs. Toxic equivalent concentrations based on the toxic equivalency factor of BaP of most soil samples are higher than pine needles.
     The influences of the physiological properties on the accumulation of PAHs in pine (Cedrus deodar and Pinus thunbergii) needles were investigated. The lipid content is the principal factor influencing the PAH levels in different species of pine needles. Pine needles are prone to accumulate gas phase PAHs, such as 3-ring PAHs. There are no significant correlations between the levels of 5- and 6-ring PAHs and lipid contents for two species. For two species, the correlations between lipid contents and specific surface areas are different, which result in the contrary correlations between the PAH levels and specific surface areas for Cedrus deodar and Pinus thunbergii. Specific surface areas and stomata density affect the levels of 5- and 6-ring PAHs in pine needles significantly.
     The levels and distribution of PAHs in pine (Pinus thunbergii) needles from Northeastern area were investigated. Due to high combustion of coal for heating in autumn and winter, PAH levels in pine needle samples were statistically significant differences between heating and non-heating periods, whereas insignificant differences of the PAH composition profiles by ring size were observed. Pine needle PAHs were dominated by phenanthrene, naphthalene and fluoranthene. With the latitude increasing, pine needle PAH concentrations in major cities presented three peak values in Tieling, Fushun and Jilin City, respectivly. The results of diagnostic ratios indicated that pine needle PAHs in the study area were mainly from incomplete combustion of coal and/or biomass, and were affected by other emission sources, too. Significant correlations were observed between population densities and pine needle PAHs in major cities as well as the ratio of second gross domestic product (GDP) vs. total GDP. High traffic densities could lead to high XPAHs.
引文
[1] Menzie, C. A., Potocki, B. B., Santodonato, J. Exposure to carcinogenic PAHs in the environment. Environmental Science & Technology. 1992.26(7): 1278-1284.
    [2] US EPA. Evaluation and estimation of potential carcinogenic risk of polynuclear aromatic hydrocarbons. Carcinogen assessment group, office of health and environmental assessment, office of research and development, US EPA, Washington DC. 1985.
    [3] Nauss, K. M. Critical issues in assessing the carcinogenicity of diesel exhaust: A synthesis of current knowledge. In: Diesel Exhaust: A Critical Analysis of Emissions, Exposure and Health Effects. 1995, Cambridge, MA: Health Effects Institute, Diesel Working Group.
    [4] IARC. Polynuclear aromatic compounds. Part 1, Chemical, environmental and experimental data. Monographs on the evaluation of the carcinogenic risk of chemicals to humans. Vol. 32. 1983, Lyon: International Agency for Reasearch on Cancer.
    
    [5] 戴树桂.环境化学.北京:高等教育出版社.1996.
    
    [6] Behymer, T. D., Hites, R. A. Photolysis of polycyclic aromatic hydrocarbons adsorbed on fly ash. Environmental Science & Technology. 1988.22(11): 1311-1319.
    [7] Freeman, D. J., Cattell, F. C. R. Woodburing as a source of atmospheric polycyclic aromatic hydrocarbons. Environmental Science & Technology. 1990.24(10): 1581-1585.
    [8] Poeton, T. S., Stensel, H. D., Strand, S. E. Biodegradation of polyaromatic hydrocarbons by marine bacteria: Effect of solid phase on degradation kinetics. Water Research. 1999.33(3): 868-880.
    [9] Gabos, S., Ikonomou, M. G., Schopflocher, D., et al. Characteristics of PAHs, PCDD/Fs and PCBs in sediment following forest fires in northern Alberta. Chemosphere. 2001.43(4-7): 709-719.
    [10] Yan, B. Z. PAH sources and depositional history in sediments from the Lower Hundson River Basin: [Doctoral Dissertation]. New York: Rensselaer Polytechnic Institute. 2004.
    
    [11] Baumard, P., Budzinski, H., Michon, Q., et al. Origin and bioavailability of PAHs in the Mediterranean sea from mussel and sediment records. Estuarine Coastal and Shelf Science. 1998.47(1): 77-90.
    
    [12] Yunker, M. B., Macdonald, R. W. Alkane and PAH depositional history, sources and fluxes in sediments from the Fraser River Basin and Strait of Georgia, Canada. Organic Geochemistry. 2003. 34(10): 1429-1454.
    [13] Thiele, S., Brummer, G. W. Bioformation of polycyclic aromatic hydrocarbons in soil under oxygen deficient conditions. Soil Biology & Biochemistry. 2002.34(5): 733-735.
    [14] Golomb, D., Barry, E., Fisher, G., et al. Atmospheric deposition of polycyclic aromatic hydrocarbons near New England coastal waters. Atmospheric Environment. 2001. 35(36): 6245-6258.
    [15] Van Metre, P. C, Mahler, B. J. The contribution of particles washed from rooftops to contaminant loading to urban streams. Chemosphere. 2003. 52(10): 1727-1741.
    [16] Marr, L. C, Kirchstetter, T. W., Harley, R. A., et al. Characterization of polycyclic aromatic hydrocarbons in motor vehicle fuels and exhaust emissions. Environmental Science & Technology. 1999. 33(18): 3091-3099.
    [17] Benner, B. A., Wise, S. A., Currie, L. A., et al. Distinguishing the contributions of residential wood combustion and mobile source emissions using relative concentrations of dimethylphenanthrene isomers. Environmental Science & Technology. 1995. 29 (9): 2382-2389.
    [18] Mastral, A. M., Callen, M. S. A review an polycyclic aromatic hydrocarbon (PAH) emissions from energy generation. Environmental Science & Technology. 2000. 34(15): 3051-3057.
    [19] See, S. W., Karthikeyana, S., Balasubramanian, R. Health risk assessment of occupational exposure to particulate-phase polycyclic aromatic hydrocarbons associated with Chinese, Malay and Indian cooking. Journal of Environmental Monitoring. 2006. 8(3): 369-376.
    [20] McRae, C, Snape, C. E., Sun, C. G., et al. Use of compound-specific stable isotope analysis to source anthropogenic natural gas-derived polycyclic aromatic hydrocarbons in a lagoon sediment. Environmental Science & Technology. 2000.34 (22): 4684-4686.
    [21] Rogge, W. F., Hildemann, L. M., Mazurek, M. A., et al. Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environmental Science & Technology. 1993. 27(4): 636-651.
    [22] Xu, S. S., Liu, W. X., Tao, S. Emission of polycyclic aromatic hydrocarbons in China. Environmental Science & Technology. 2006.40(3): 702-708.
    [23] Yunker, M. B., Macdonald, R. W., Vingarzan, R., et al. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry. 2002. 33(4): 489-515.
    [24] Hwang, H. M., Wade, T. L., Sericano, J. L. Concentrations and source characterization of polycyclic aromatic hydrocarbons in pine needles from Korea, Mexico, and United States. Atmospheric Environment. 2003.37(16): 2259-2267.
    [25] Zhang, H. B., Luo, Y. M., Wong, M. H., et al. Distributions and concentrations of PAHs in Hong Kong soils. Environmental Pollution. 2006. 141(1): 107-114.
    [26] Graham, S. E. Polycyclic aromatic hydrocarbons in Massachusetts Bay sediment Diagnostics, accumulation, and source apportionment: [Doctoral Dissertation]. North Carolina State University. 1999.
    [27] Zhang, X. L., Tao, S., Liu, W. X., et al. Source diagnostics of polycyclic: aromatic hydrocarbons based on species ratios: a multimedia approach. Environmental Science & Technology. 2005. 39(23): 9109-9114.
    [28] Teinemaa, E., Kirso, U., Strommen, M. R., et al. Atmospheric behaviour of oil-shale combustion fly ash in a chamber study. Atmospheric Environment. 2002. 36(5): 813-824.
    [29] Fraser, M. P., Cass, G. R., Simoneit, B. R. T., et al. Air quality model evaluation data for organics. 5. C6-C22 nonpolar and semipolar aromatic compounds. Environmental Science & Technology. 1998. 32 (12): 1760-1770.
    [30]Wilcke,W.Polycyclic aromatic hydrocarbons(PAHs)in soil - a review.Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde.2000.163(3):229-248.
    [31]Trapido,M.Polycyclic aromatic hydrocarbons in Estonian soil:contamination and profiles.Environmental Pollution.1999.105(1):67-74.
    [32]Buehler,S.S.,Basu,I.,Hites,R.A.A comparison of PAH,PCB,and pesticide concentrations in air at two rural sites on Lake Superior.Environmental Science & Technology.2001.35(12):2417-2422.
    [33]Coleman,P.J.,Lee,R.G.M.,Alcock,R.E.,et al.Observations on PAH,PCB,and PCDD/F trends in U.K.urban air,1991-1995.Environmental Science & Technology.1997.31(7):2120-2124.
    [34]Ngabe,B.,Poissant,L.Polycyclic aromatic hydrocarbons in the air in the St.Lawrence Basin(Quebec).Environmental Science & Technology.2003.37(10):2094-2099.
    [35]Wan,X.L.,Chen,J.W.,Tian,F.L.,et al.Source apportionment of PAHs in atmospheric particulates of Dalian:Factor analysis with nonnegative constraints and emission inventory analysis.Atmospheric Environment.2006.40(34):6666-6675.
    [36]Chen,B.L.,Xuan,X.D.,Zhu,L.Z.,et al.Distributions of polycycic aromatic hydrocarbons in surface waters,sediments and soils of Hangzhou City,China.Water Research.2004.38:3558-3568.
    [37]Tao,S.,Cui,Y.H.,Xu,F.,et al.Polycyclic aromatic hydrocarbons(PAHs)in agricultural soil and vegetables from Tianjin.Science of the Total Environment.2004.320(1):11-24.
    [38]Femandes,M.B.,Sicre,M.A.,Boireau,A.,et al.Polyaromatic hydrocarbon(PAH)distributions in the Seine River and its estuary.Marine Pollution Bulletin.1997.34:857-867.
    [39]Wild,S.R.,Jones,K.C.Organic chemicals in the environmental polycyclic aromatic hydrocarbon uptake by carrots grown in sludge-amended soil.Journal of Environmental Quality.1992.21:217-225.
    [40]罗孝俊.珠江三角洲河流、河口和邻近南海海域水体、沉积物中多环芳烃与有机氯农药研究:[博士论文].中国科学院广州地球化学研究所,广州.2004.
    [41]Howsam,M.,Jones,K.C.,Ineson,P.PAHs associated with the leaves of three deciduous tree species.I-Concentrations and profiles.Environmental Pollution.2000.108:413-424.
    [42]Tremolada,P.,Burnett,V.,Calamari,D.,et al.Spatial distribution of PAHs in the UK atmosphere using pine needles.Environmental Science & Technology.1996.30(12):3570-3577.
    [43]Waliszewski,S.M.,Carvajal,O.,Infanzon,R.M.,et al.Levels of organochlorine pesticides in soils and rye plant tissues in a field study.Journal of Agricultural and Food Chemistry.2004.52(23):7045-7050.
    [44]Simonich,S.L.,Hites,R.A.Vegetation-atmosphere partitioning of polycyclic aromatic hydrocarbons.Environmental Science & Technology.1994.28(5):939-943.
    [45]Lang,Q.,Hunt,F.,Wai,C.M.Supercritical fluid extraction of polycyclic aromatic hydrocarbons from white pine(Pinus strobes)needles and its implications.Journal of Environmental Monitoring.2000.2:639-644.
    [46]刘向,张干,刘国卿,等.南岭北坡苔藓中多环芳烃的研究.中国环境科学.2005.25(1):101-105.
    [47] Zielinska, B., Sagebiel, J., Arnott, W. P., et al. Phase and size distribution of polycyclic aromatic hydrocarbons in diesel and gasoline vehicle emissions. Environmental Science and Technology. 2004. 38: 2557-2567.
    [48] Liu, G. Q., Zhang, G., Li, J., et al. Spatial distribution and seasonl variations of polycyclic aromatic hydrocarbons (PAHs) using semi-permeable membrane devices (SPMD) and pine needles in the Pearl River Delta, South China. Atmospheric Environment. 2006.40: 3134-3143.
    [49] Blasco, M., Domeno, C, Nerin, C. Use of lichens as pollution biomonitors in remote areas: Comparison of PAHs extracted from lichens and atmospheric particles sampled in and around the Somport tunnel (Pyrenees). Environmental Science & Technology. 2006.40(20): 6384-6391.
    [50] Piccardo, M. T., Pala, M., Bonaccurso, B., et al. Pinus nigra and Pinus pinaster needles as passive samplers of polycyclic aromatic hydrocarbons. Environmental Pollution. 2005.133:293-301.
    [51] Holoubek, I., Korinek, P., Seda, Z., et al. The use of mosses and pine needles to detect persistent organic pollutants at local and regional scales. Environmental Pollution. 2000.109(2): 283-292.
    [52] Lehndorff, E., Schwark, L. Biomonitoring of air quality in the Cologne Conurbation using pine needles as a passive sampler - part II: polycyclic aromatic hydrocarbons (PAH). Atmospheric Environment. 2004. 38: 3793-3808.
    [53] Weiβflog, L., Wenzel, K.-D. The vegetation as sink and biochemical reactor for airborne pollutants. Final report. UFZ-Umweltforschungszentrum Leipzig. 1997: 56.
    [54] Kylin, H. Airborne lipophilic pollutants in pine needles: [Doctoral dissertation]. Stockholm University, Sweden. (ISBN 91-7153-197-1). 1994.
    [55] Motelay-Massei, A., Ollivon, D., Garban, B., et al. Distribution and spatial trends of PAHs and PCBs in soils in the Seine River basin, France. Chemosphere. 2004. 55(4): 555-565.
    [56] Amagai, T., Takahashi, Y., Matsushita, H., et al. A survey on polycyclic aromatic hydrocarbon concentrations in soil in Chiang-Mai, Thailand. Environment International. 1999.25(5): 563-572.
    [57] Mielke, H. W., Wang, G., Gonzales, C. R., et al. PAH and metal mixtures in New Orleans soils and sediments. Science of the Total Environment. 2001.281(1-3): 217-227.
    [58] Nam, J. J., Song, B. H., Eom, K. C, et al. Distribution of polycyclic aromatic hydrocarbons in agricultural soils in South Korea. Chemosphere. 2003. 50(10): 1281-1289.
    [59] Ma, L. L., Chu, S. G., Wang, X. T., et al. Polycyclic aromatic hydrocarbons in the surface soils from outskirts of Beijing, China. Chemosphere. 2005. 58(10): 1355-1363.
    [60] Bucheli, T. D., Blum, F., Desaules, A., et al. Polycyclic aromatic hydrocarbons, black carbon, and molecular markers in soils of Switzerland. Chemosphere. 2004. 56(11): 1061-1076.
    [61] Tang, L., Tang, X. Y., Zhu, Y. G., et al. Contamination of polycyclic aromatic hydrocarbons (PAHs) in urban soils in Beijing, China. Environment International. 2005. 31(6): 822-828.
    [62]Wilcke,W.,Lilienfein,J.,Lima,S.D.,et al.Contamination of highly weathered urban soils in Uberlandia,Brazil.Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenemahrung Und Bodenkunde.1999.162(5):539-548.
    [63]Nadal,M.,Schuhmacher,M.,Domingo,J.L.Levels of PAHs in soil and vegetation samples from Tarragona County,Spain.Environmental Pollution.2004.132(1):1-11.
    [64]Wong,F.,Harner,T.,Liu,Q.T.,et al.Using experimental and forest soils to investigate the uptake of polycyclic aromatic hydrocarbons(PAHs)along an urban-rural gradient.Environmental Pollution.2004.129(3):387-398.
    [65]Ping,L.F.,Luo,Y.M.,Zhang,H.B.,et al.Distribution of polycyclic aromatic hydrocarbons in thirty typical soil profiles in the Yangtze River Delta region,east China.Environmental Pollution.2007.147(2):358-365.
    [66]段永红,陶澍,王学军,等.天津表土中多环芳烃含量的空间分布特征与来源.土壤学报.2005.42(6):942-947.
    [67]Sawicki,E.,EIbert,W.C.,Hauser,T.R.,et al.Benzo(a)pyrene content of the air of American communities.American Industrial Hygiene Association Journal.1960.21:443-451.
    [68]Meijer,S.N.,Ockenden,W.A.,Sweetman,A.,et al.Global distribution and budget of PCBs and HCB in background surface soils:Implications or sources and environmental processes.Environmental Science &Technology.2003.37(4):667-672.
    [69]Gioia,R.,Steinnes,E.,Thomas,G.O.,et al.Persistent organic pollutants in European background air:derivation of temporal and latitudinal trends.Journal of Environmental Monitoring.2006.8(7):700-710.
    [70]Meijer,S.N.,Ockenden,W.A.,Steinnes,E.,et al.Spatial and temporal trends of POPs in Norwegian and UK background air:Implications for global cycling.Environmental Science & Technology.2003.37(3):454-461.
    [71]Harrison,R.M.,Smith,D.J.T.,Luhana,L.Source apportionment of atmosphere collected from an urban location in Birmingham UK.Environmental Science & Technology.1996.30:825-832.
    [72]Nikolaou,K.Sources and chemical reactivity of polynuclear aromatic hydrocarbons in atmosphere:A critical review.Science of the Total Environment.1984.32(2):103-132.
    [73]Menichini,E.,Monfredini,F.,Merli,F.The temporal variation of the profile of carcinogenic polycyclic aromatic hydrocarbons in urban air:a study in a medium traffic in Rome.Atmospheric Environment.1999.33:3739-3750.
    [74]祁士华,盛国英,傅家谟,等.澳门大气气溶胶中多环芳烃的源解析尝试.中国环境科学.2002.22(2):118-122.
    [75]王静,朱利中.空气中多环芳烃的污染源研究.浙江大学学报(理学版).2001.28(3):303-308.
    [76]曾凡刚,王关玉,田健,等.北京市部分地区大气溶胶中多环芳烃污染特征及污染源探讨.环境科学学报.2002.22(3):284-288.
    [77]万显烈,杨凤林.大连市区大气中PAHs来源、分布及随季节变化分析.大连理工大学学报.2003.43(2):160-163.
    [78]张树才,张巍,王开颜,等.北京东南郊大气TSP中多环芳烃浓度特征与影响因素.环境科学.2007.28(3):460-465.
    [79]Xu,D.D.,Zhong,W.K.,Deng,L.L.,et al.Levels of extractable organohalogens in pine needles in China.Environmental Science & Technology.2003.37(1):1-6.
    [80]Chen,J.W.,Zhao,H.M.,Gao,L.,et al.Atmospheric PCDD/F and PCB levels implicated by pine(Cedrus deodara)needles at Dalian,China.Environmental Pollution.2006.144(2):510-515.
    [81]Guddal,E.Isolation of polynuclear aromatic hydrocarbons from roots of Chrysant hemun Vulgare Barnh.Acta Chemica Scandinavica.1959.13(4):834-835.
    [82]Simonich,S.L.,Hites,R.A.Importance of vegetation in removing polycyclic aromatic hydrocarbons from the atmosphere.Nature.1994.370:49-51.
    [83]Gunther,F.A.,Buzzetti,F.,Resuduebe,W.E.W.Havior of polynuclear hydrocarbons on and in organges.Residue Reviews.1967.17:81-104.
    [84]Edwards,N.T.Uptake,translocation and metabolism of anthracene in bush bean(Phaseolus bulgaris L.).Environmental Toxicology and Chemistry.1986.5(5):659-665.
    [85]刘国卿,张干,刘向,等.大气中多环芳烃(PAHs)在松针和SPMD上的分布.环境化学.2005.24(1):81-85.
    [86]Liu,G.Q.,Zhang,G.,Li,J.,et al.Spatial distribution and seasonal variations of polycyclic aromatic hydrocarbons(PAHs)using semi-permeable membrane devices(SPMD)and pine neeldes in the Pearl River Delta,South China.Atmospheric Environment.2006.40:3134-3143.
    [87]王雅琴,左谦,焦杏春,等.北京大学及周边地区非取暖期植物叶片中的多环芳烃.环境科学.2004.25(4):23-27.
    [88]潘勇军,田大伦,唐大武,等.樟树林生态系统中多环芳烃含量和分布特征.林业科学.2004.40(6):2-7.
    [89]Niu,J.F.,Chen,J.W.,Martens,D.,et al.The role of UV-B on the degradation of PCDD/Fs and PAHs sorbed on surfaces of spruce(Picea abies(L.)Karst.)needles.Science of the Total Environment.2004.322(1-3):231-241.
    [90]潘勇军.樟树人工林生态系统多环芳烃(PAHs)积累与分布特征研究:[博士论文].中南林学院.2005.
    [91]Edwards,N.T.Polycyclic aromatic hydrocarbons(PAH's)in the terrestrial envrionment - a review.Journal of Environmental Quality.1983.12(4):427-441.
    [92]章海波,骆永明,黄铭洪,等.香港土壤研究Ⅲ.土壤中多环芳烃的含量及其来源初探.土壤学报.2005.42(6):936-941.
    [93]郑一,王学军,李本纲,等.天津地区表层土壤多环芳烃含量的中尺度空间结构特征.环境科学学报.2003.23(3):311-316.
    [94]陶澍,骆永明,朱利中,等.典型微量有机污染物的区域环境过程.环境科学学报.2006.26(1):168-171.
    [95]Zuo,Q.,Duan,Y.H.,Yang,Y.,et al.Source apportionment of polycyclic aromatic hydrocarbons in surface soil in Tianjin,China.Environmental Pollution.2007.147(2):303-310.
    [96]White,J.C.,Wang,X.P.,Gent,M.P.N.,et al.Subspecies-level variation in the phytoextraction of weathered p,p'-DDE by Cucurbita pepo.Environmental Science & Technology.2003.37(19):4368-4373.
    [97]刘国卿.珠江三角洲地区多环芳烃的区域地球化学初步研究:[博士论文].中国科学院广州地球化学研究所:广州.2005.
    [98]王新红,徐立,陈伟琪,等.厦门西港沉积物中多环芳烃的垂直分布特片与污染追踪.中国环境科学.1997.17(1):19-22.
    [99]孟庆昱,毕新慧,徐晓白.玉渊潭底泥中烃类物质研究.环境科学学报.2001.21(1):117-119.
    [100]许示奋,蒋新,王连生,等.长江和辽河沉积物中的多环芳烃类污染物.中国环境科学.2000.20(2):128-131.
    [101]刘现明,徐学仁,张笑天,等.大连湾沉积物中PAHs的初步研究.环境科学学报.2001.21(4):507-509
    [102]Guband,L.,Jougen,C.Z.,Nina,G.Organic Micropollutants in Precipitation in Norway.Environmental Pollution.1977.11:1007-1014.
    [103]Gigliotti,C.L.,Totten,L.A.,Offenberg,J.H.,et al.Atmospheric concentrations and deposition of polycyclic aromatic hydrocarbons to the Mid-Atlantic East Coast Region.Environmental Science &Technology.2005.39(15):5550-5559.
    [104]Sun,P.,Back-us,S.,Blanchard,P.,et al.Annual variation of polycyclic aromatic hydrocarbon concentrations in precipitation collected near the Great Lakes.Environmental Science & Technology.2006.40(3):696-701.
    [105]朱利中,陈宝梁,沈红心,等.杭州市地面水中多环芳烃污染现状及风险.中国环境科学.2003.23(5):485-489.
    [106]郁建栓.固相萃取/等梯度高效液相色谱快速分析地表水中痕量多环芳烃化合物.现代科学仪器.2000.02:36-37.
    [107]Simonich,S.L.,Hites,R.A.Organic pollutant accumulation in vegetation.Environmental Science &Technology.1995.29(12):2905-2914.
    [108]Cousins,I.T.,Kreibich,H.,Hudson,L.E.,et al.PAHs in soils:contemporary UK data and evidence for potential contamination problems caused by exposure of samples to laboratory air.Science of the Total Environment.1997.203(2):141-156.
    [109]Garban,B.,Blanchoud,H.,Motelay-Massei,A.,et al.Atmospheric bulk deposition of PAHs onto France:trends from urban to remote sites.Atmospheric Environment.2002.36(34):5395-5403.
    [110]Brostroem,L.E.,Loevblad,G.Deposition of soot related hydrocarbons during long-range transport of pollution to Sweden.Atmospheric Environment.1991.25A:2251-2257.
    [111]Back,S.O.,Field,R.A.,Goldstone,M.A.,et al.A review of polycyclic aromatic hydrocarbons:sources,fate and behavior.Water Air and Soil Pollution.1991.60:279-300.
    [112]董瑞斌,许东风,刘雷,等.多环芳烃在环境中的行为.环境与开发.1999.14(4):10-11.
    [113]高学晟,姜霞,区自清.多环芳烃在土壤中的行为.应用生态学报.2002.13(4):501-504.
    [114]Carmichael,L.M.,Christman,R.F.,Pfaender,F.K.Desorption and mineralization kinetics of phenanthrene and chrysene in contaminated soils.Environmental Science & Technology.1997.31:126-132.
    [115]Schwab,A.P.,AI-Assi,A.A.,Banks,M.K.Adsorption of naphthalene onto plant roots.Journal of Environmental Quality.1998.27:220-223.
    [116]Cousins,I.T.,Beck,A.J.,Jones,K.C.A review of the processes involved in the exchange of semi-volatile organic compounds(SVOC)across the air-soil interface.Science of the Total Environment.1999.228(1):5-24.
    [117]Riederer,M.Estimating partitioning and transport of organic chemicals in the foliage/atmosphere system:discussion of a fugacity-based model.Environmental Science & Technology.1990.24(6):829-837.
    [118]Jeffr-ee,C.E.G.Structure and ontogeny of plant cuticles.In plant cuticles:an integrated functional approach.Bios Scientific,Lancaster,UK.1996:33-82.
    [119]Schauer,J.J.,Kleeman,M.J.,Cass,G.R.,et al.Measurement of emissions from air pollution sources.5.C-1-C-32 organic compounds from gasoline-powered motor vehicles.Environmental Science &Technology.2002.36(6):1169-1180.
    [120]Kiss,G.,Varga-Puchony,Z.,Rohrbacher,G.,et al.Distribution of polycyclic aromatic hydrocarbons on atmospheric aerosol particles of different sizes.Atmospheric Research.1998.46:253-261.
    [121]Venkataraman,C.,Negi,G.,Sardar,S.B.,et al.Size distributions of polycyclic aromatic hydrocarbons in aerosol emissions from biofuel combustion.Journal of Aerosol Science.2002.33(3):507-518.
    [122]Zielinska,B.,Sagebiel,J.,Arnott,W.P.,et al.Phase and size distribution of polycyclic aromatic hydrocarbons in diesel and gasoline vehicle emissions.Environmental Science & Technology.2004.38:2557-2567.
    [123]Slinn,S.A.,Slinnn,W.G.N.Modeling of atmospheric particulate deposition to natural waters in atmospheric pollutions in natural waters.Ann Arbor science publisher,Inc,Ann Arbor,Mi.1981:23-53.
    [124]Williams,R.W.A model for the dry deposition of particle to natural water surfaces.Atmospheric Environment.1982.16(8):1933-1938.
    [125]Holsen,T.M.,Noll,K.E.Dry deposition of atmospheric particles:application of current models to ambient data.Environmental Science & Technology.1992.26:1807-1815.
    [126]Douglas,G.S.Environmental stability of selected petroleum hydrocarbon source and weathering ratios.Environmental Science and Technology.1996.30(7):2332-2339.
    [127]Bosma,T.N.P.,Harms,H.,Zehnder,A.J.B.The handbook of environmental chemistry,biodegradation of xenobiotics in environment and technosphere.Heidelberg:Springer Berlin.2001:Vol.2K,163-202.
    [128]Sho,M.,Harnel,C.,Greer,C.,et al.Two distinct gene clusters encode pyrene degradation in Mycobacterium sp strain S65.Fems Microbiology Ecology.2004.48(2):209-220.
    [129]张志杰,聂麦茜,葛碧洲.一株芽孢杆菌对多环芳烃的降解性能.水处理技术.2003.29(5):276-278.
    [130]McNally,D.L.,Mihelcic,J.R.,Lueking,D.R.Biodegradation of mixtures of polycyclic aromatic hydrocarbons under aerobic and nitrate-reducing conditions.Chemosphere.1999.38(6):1313-1321.
    [131]Chang,B.V.,Shiung,L.C.,Yuan,S.Y.Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil.Chemosphere.2002.48(7):717-724.
    [132]慕俊泽,张勇,彭景吓.多环芳烃光降解研究进展.安全与环境学报.2005.5(3):69-74.
    [133]Masclet,P.,Mouvier,G.,Nikolaous,K.Relative decay index and sources of polycyclic aromatic hydrocarbons.Atmospheric Environment.1986.20(3):439-446.
    [134]Halsall,C.J.,Sweetman,A.J.,Barrie,L.A.,et al.Modelling the behaviour of PAHs during atmospheric transport from the UK to the Arctic.Atmospheric Environment.2001.35(2):255-267.
    [135]王小萍,姚檀栋,丛志远,等.珠穆朗玛峰地区土壤和植被中多环芳烃的含量及海拔梯度分布.科学通报.2006.51(21):2517-2525.
    [136]Betts,K.S.Secondhand suspicions:breast cancer and passive smoking.Environmental Health Perspectives.2007.115(3):A136-A143.
    [137]US EPA.Technical Support Document:Control of Emissions of Hazardous Air Pollutants from Motor Vehicles and Motor Vehicle Fuels.EPA420-R-00-023.Assessment and Standards Division Office of Transportation and Air Quality.2000.
    [138]US EPA.Integrated Risk Information System(IRIS).National Center for Environmental Assessment,Office of Research and Development,Washington,DC.1999.
    [139]Gundel,L.A.,Dalsey,J.M.,Carvalho,L.R.F.,et al.Polar organic matter in airborne particles:chemical characterization and mutagenic activity.Environmental Science & Technology.1993.27(10):2112-2119.
    [140]徐晓白.硝基多环芳烃-环境中最近发现的直接致突变物和潜在致癌物.环境化学.1984.3(1):1-16.
    [141]White,P.A.The genotoxicity of priority polycyclic aromatic hydrocarbons in complex mixtures.Mutation Research-Genetic Toxicology and Environmental Mutagenesis.2002.515(1-2):85-98.
    [142]戴乾圜.致癌机理的阐明和高选择性抗癌剂的合成.中国科学B辑化学.2005.35(3):177-188.
    [143]Dai,Q.H.Researches on chemical carcinogens and mechanism of chemical carcinogenesis di-region theory - a quantitative molecular orbital model of carcinogenic activity for polycyclic aromatic hydrocarbons.Science in China Series A.1980.23(4):453-470.
    [144]戴乾園.化学致癌剂及化学致癌机理的研究-多环芳烃致癌性能的定量分子轨道模型-“双区理论”.中国科学A辑 1979.10:964-977.
    [145] 戴乾圜.多环芳烃致癌活性的双区理论.自然杂志.1979.2(9):535.
    
    [146] Perera, F. P., Rauh, V., Whyatt, R. M., et al. A summary of recent findings on birth outcomes and developmental effects of prenatal ETS, PAH, and pesticide exposures. Neurotoxicology. 2005. 26(4): 573-587.
    [147] Dejmek, J., Solansky, I., Benes, I., et al. The impact of polycyclic aromatic hydrocarbons and fine particles on pregnancy outcome. Environmental Health Perspectives. 2000. 108(12): 1159-1164.
    [148] Perera, F. P., Rauh, V., Whyatt, R. M., et al. Effect of prenatal exposure to airborne polycyclic aromatic hydrocarbons on neurodevelopment in the first 3 years of life among inner-city children. Environmental Health Perspectives. 2006. 114(8): 1287-1292.
    [149] Choi, H., Jedrychowski, W., Spengler, J., et al. International studies of prenatal exposure to polycyclic aromatic hydrocarbons and fetal growth. Environmental Health Perspectives. 2006.114(11): 1744-1750.
    [150] Incardona, J. P., Day, H. L., Collier, T. K., et al. Developmental toxicity of 4-ring polycyclic aromatic hydrocarbons in zebrafish is differentially dependent on AH receptor isoforms and hepatic cytochrome P4501A metabolism. Toxicology and Applied Pharmacology. 2006.217(3): 308-321.
    [151] Palackal, N. T., Lee, S. H., Harvey, R. G., et al. Activation of polycyclic aromatic hydrocarbon trans-dihydrodiol proximate carcinogens by human aldo-keto reductase (AKR1C) enzymes and their functional overexpression in human lung carcinoma (A549) cells. Journal of Biological Chemistry. 2002. 277(27): 24799-24808.
    [152] Ponten, I., Sayer, J. M., Pilcher, A. S., et al. Sequence context effects on mutational properties of cis-opened benzo[c]phenanthrene diol epoxide-deoxyadenosine adducts in site-specific mutation studies. Biochemistry. 1999. 38(3): 1144-1152.
    [153] Nagalingam, A., Seo, K. Y., Loechler, E. L. Mutagenesis studies of the major benzo[a]pyrene N-2-dG adduct in a 5'-T(G)under-bar versus a 5'-U(G)under-bar sequence: removal of the methyl group causes a modest decrease in the [G -> T/G -> A] mutational ratio. Mutagenesis. 2005. 20(2): 105-110.
    [154] Longwell, A. C. Cytological-cytogenetical perspectives on petroleum effects in the marine environment - chromosome aberrations. Background Paper NAS Review: Petroleum in the marine environment. 1981: 1-65.
    [155] Shoeib, M., Harner, T. Characterization and comparison of three passive air samplers for persistent organic pollutants. Environmental Science & Technology. 2002. 36(19): 4142-4152.
    [156] Wania, F., Shen, L., Lei, Y. D., et al. Development and callibration of a resin-based passive sampling system for monitoring persistent organic pollutants in the atmosphere. Environmental Science & Technology. 2003. 37(7): 1352-1359.
    [157] Reiszner, K. D., West, P. W. Collection and determination of sulfur dioxide incorporating permeation and West-Gaeke procedure. Environmental Science & Technology. 1973. 7: 526-532.
    [158] Gorecki, T., Namiesnik, J. Passive sampling. Trends in Analytical Chemistry. 2002.21(4): 276-291.
    [159] Collins, C, Fryer, M., Grosso, A. Plant uptake of non-ionic organic chemicals. Environmental Science & Technology. 2006.40(1): 45-52.
    [160] Paterson, S., Mackay, D., Tarn, D., et al. Uptake of organic chemicals by plants: a review of processes, correlations and models. Chemosphere. 1990. 21:297-331.
    [161] Jones, K. C, Statford, J. A., Tidridge, P. Polynuclear aromatic hydrocarbons in an agricultural soil: Long-term changes in profile distribution. Environmental Pollution. 1989. 56: 337-351.
    [162] Barber, J. L., Thomas, G. O., Kerstiens, G., et al. Current issues and uncertainties in the measurement and modelling of air-vegetation exchange and within-plant processing of POPs. Environmental Pollution. 2004. 128(1-2): 99-138.
    [163] Barber, J. L., Thomas, G. O., Kerstiens, G., et al. Air-side and plant-side resistances influence the uptake of airborne PCBs by evergreen plants. Environmental Science & Technology. 2002. 36(15): 3224-3229.
    [164] Hung, H., Thomas, G. O., Jones, K. C, et al. Grass-air exchange of polychlorinated biphenyls. Environmental Science & Technology. 2001. 35(20): 4066-4073.
    [165] McCrady, J. K. Vapor-phase 2,3,7,8-TCDD sorption to plant foliage-A species comparison. Chemosphere. 1994. 28(1): 207-216.
    [166] Komp, P., McLachlan, M. S. Interspecies variability of the plant/air partitioning of polychlorinated biphenyls. Environmental Science & Technology. 1997. 31(10): 2944-2948.
    [167] Tolls, J., McLachlan, M. S. Partitioning of semivolatile organic compounds between air and Lolium multiflorum (Welsh ray grass). Environmental Science & Technology. 1994.28(1): 159-166.
    [168] McLachlan, M. S., Welsch-Pausch, K., Tolls, J. Field validation of a model of the uptake of gaseous SOC in Lolium multiflorum (rye grass). Environmental Science & Technology. 1995.29:1998-2004.
    [169] Thomas, G., Sweetman, A. J., Ockenden, W. A., et al. Air-pasture transfer of PCBs. Environmental Science & Technology. 1998.32(7): 936-942.
    [170] Bohme, F., Welsch-Pausch, K., McLachlan, M. S. Uptake of airborne semivolatile organic compounds in agricultural plants: Field measurements of interspecies variability. Environmental Science & Technology. 1999.33(11): 1805-1813.
    [171] Paterson, S., Mackay, D., Bacci, E., et al. Correlation of the equilibrium and kinetics of leaf-air exchange of hydrophobic organic chemicals. Environmental Science & Technology. 1991.25(5): 866-871.
    [172] Ockenden, W. A., Steinnes, E., Parker, C, et al. Observations on persistent organic pollutants in plants: Implications for their use as passive air samplers and for POP cycling. Environmental Science & Technology. 1998. 32(18): 2721-2726.
    [173] Bartkow, M. E., Hawker, D. W., Kennedy, K. E., et al. Characterizing uptake kinetics of PAHs from the air using polyethylene-based passive air samplers of multiple surface area-to-volume ratios. Environmental Science & Technology. 2004.38(9): 2701-2706.
    [174] Odabasi, M., Cetin, E., Sofuoglu, A. Determination of octanol-air partition coefficients and supercooled liquid vapor pressures of PAHs as a function of temperature: Application to gas-particle partitioning in an urban atmosphere. Atmospheric Environment. 2006.40(34): 6615-6625.
    [175] Zhao, H. X., Zhang, Q., Chen, J. P., et al. Prediction of octanol-air partition coefficients of semivolatile organic compounds based on molecular connectivity index. Chemosphere. 2005. 59: 1421-1426.
    [176] Zhang, X. M., Schramm, K-W., Henkelmann, B., et al. A method to estimate the octanol-air partition coefficient of semivolatile organic compounds. Analysis chemistry. 1999. 71: 3834-3838.
    [177] Chen, J. W., Harner, T., Ding, G. H., et al. Universal predictive models on octanol-air partition coefficients at different temperatures for persistent organic pollutants. Environmental Toxicology and Chemistry. 2004. 23(10): 2309-2317.
    [178] McLachlan, M. S. Framework for the interpretation of measurements of SOCs in plants. Environmental Science & Technology. 1999. 33(11): 1799-1804.
    [179] Wang, Q. Q., Zhao, Y. L., Yan, D., et al. Historical records of airborne polycyclic aromatic hydrocarbons by analyzing dated corks of the bark pocket in a Longpetiole Beech Tree. Environmental Science & Technology. 2004. 38(18): 4739-4744.
    [180] Burken, J. G., Schnoor, J. L. Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environmental Science & Technology. 1998.32: 3379-3385.
    
    [181] 林道辉.茶叶中多环芳烃的浓度水平、源解析及风险:[博士论文].浙江大学.2005.
    
    [182] Sodergren, A. Solvent-filled dialysis membranes simulate uptake of pollutants by aquatic organisms. Environmental Science & Technology. 1987.21: 855-859.
    [183] Huckins, J. N., Tubergen, M. W., Manuweera, G. K. Semipermeale membrance devices containing model lipid: a new approach to monitoring the bioavailability of lipophilic contaminants and estimating their bioconcentration factor. Chemosphere. 1990.20: 533-552.
    [184] Huckins, J. N., Manuweera, G. K., Petty, J. D., et al. Liquid containing SPMDs for monitoring organic contaminants in water. Environmental Science & Technology. 1993. 27(12): 2489-2496.
    [185] Ockenden, W. A., Prest, H. F., Thomas, G. O., et al. Passive air sampling of PCBs: Field calculation of atmospheric sampling rates by trolein-contaning semipermeable membrane devices. Environmental Science & Technology. 1998. 32(10): 1538-1543.
    [186] Petty, J. D., Orazio, C. E., Huckins, J. N., et al. Considerations involved with the use of semipermeable membrane devices for monitoring environmental contaminants. Journal of Chromatography A. 2000. 879: 83-95.
    [187] Lohmann, R., Corrigan, B. P., Howsam, M., et al. Further developments in the use of semipermeable membrane devices (SPMDs) as passive air samplers for persistent organic pollutants: Field application in a spatial survey of PCDD/Fs and PAHs. Environmental Science & Technology. 2001. 35: 2576-2582.
    [188]Ockenden,W.A.,Sweetman,A.J.,Prest,H.F.,et al.Toward an understanding of the global atmoshperic distribution of persistent organic pollutants:the use of semipermeable membrance devices as time-integrated passive samplers.Environmental Science & Technology.1998.32:2795-2803.
    [189]Pankow,J.F.,Luo,W.,Isabelle,L.M.,et al.Gas-solid retention volumes of organic compounds on styrene-divinylbenzene and ethylvinylbenzene-divinylbenzene co-polymer sorbent beads.Journal of Chromatography A.1996.732:317-326.
    [190]Jaward,F.M.,Farrar,N.J.,Harner,T.,et al.Passive air sampling of PCBs,PBDEs and organoehlorine pesticides across Europe.Environmental Science & Technology.2004a.38:34-41.
    [191]Jaward,F.M.,Farrar,N.J.,Hamer,T.,et al.Passive air sampling of polycyclic aromatic hydrocarbons and polychlorinated naphthalenes across Europe.Environmental Toxicology and Chemistry.2004b.23:1355-1364.
    [192]Motelay-Massei,A.,Harner,T.,Shoeib,M.,et al.Using passive air samplers to assess urban-rural trends for persistent organic pollutants and polycyclic aromatic hydrocarbons.2.Seasonal trends for PAHs,PCBs,and organochlorine pesticides.Environmental Science & Technology.2005.39(15):5763-5773.
    [193]Wania,F.,Shen,L.,Lei,Y.D.,et al.Development and calibration of a resin-based passive sampling system for monitoring persistent organic pollutants in the atmosphere.Environmental Science &Technology.2003.37(7):1352-1359.
    [194]Wilcockson,J.B.,Gobas,F.A.P.C.Thin-film solid-phase extraction to measure fugacities of organic chemicals with low volatility in biological samples.Environmental Science & Technology.2001.35(7):1425-1431.
    [195]杨敏,倪余文,苏凡,等.辽河沉积物中多环芳烃的污染水平与特征.环境化学.2007.26(2):217-220.
    [196]林秀梅,刘文新.陈江麟,等.渤海表层沉积物中多环芳烃的分布与生态风险评价.环境科学学报.2005.25(1):70-75.
    [197]刘文新,陈江麟,林秀梅,等.渤海表层沉积物中DDTs、PCBs及酞酸酯的空间分布特征.环境科学学报.2005.25(1):58-63.
    [198]Liu,W.X.,Chen,J.L.,Lin,X.M.,et al.Distribution and characteristics of organic micropollutants in surface sediments from Bohai Sea.Environmental Pollution.2006.140(1):4-8.
    [199]孙宪民,孙贵范,田村宪治,等.沈阳市大气悬浮颗粒物及PAHs、NPAHs分析.中国公共卫生.2003.19(7):800-802.
    [200]Hattori,T.,Tang,N.,Tamura,K.,et al.Particulate polycyclic aromatic hydrocarbons and their nitrated derivatives in three cities in Liaoning Province,China.Environmental Forensics.2007.8(1-2):165-172.
    [201]林刚,孙贵范,田村宪治,等.抚顺大气悬浮颗粒物、PAHs和NPAHs污染调查.中国公共卫生.2005.21(5):604-606.
    [202]大连史志办公室.大连市志.http://szb.dl/gov.cn/dlsz/001/004/001/10805_11408.jsp.
    [203]辽宁省统计局.2005辽宁省统计年鉴.中国统计出版社.2005.
    [204]Daniel,W.W.Applied Nonparametric Statistics.Houghton Mifflin Company,Boston.1978.
    [205]Mackay,D.Multimedia Environmental Models:the Fugacity Approach.Chelsea.MI:Lewis Pub.1991.
    [206]Nicola,F.D.,Maisto,G.,Prati,M.V.,et al.Temporal variations in PAH concentrations in Quercus ilex L.(holm oak)leaves in an urban area.Chemosphere.2005.61:432-440.
    [207]大连统计局.大连统计年鉴.2004.
    [208]大连统计局.大连统计年鉴.2005.
    [209]Smith,K.E.C.,Jones,K.C.Particles and vegetation:implications for the transfer of particle-bound organic contaminants to vegetation.Science of the Total Environment.2000.246(2-3):207-236.
    [210]Orlinski,R.Multipoint moss passive samplers assessment of urban airborne polycyclic aromatic hydrocarbons:concentrations profile and distribution along Warsaw main streets.Chemosphere.2002.48(2):181-186.
    [211]Blasco,M.,Domeno,C.,Nerin,C.Use of lichens as pollution biomonitors in remote areas:comparison of PAHs extracted from lichens and atmospheric particles sampled in and around the Somport Tunnel (Pyrenees).Environmental Science & Technology.2006.40(20):6384-6391.
    [212]Statistic,D.M.B.O.Dalian Statistics Yearbook.2004.
    [213]Whylie,P.,Dyke,P.,Albaiges,J.,et al.Global report 2003-regionally based assessment of persistent toxic substances.United Nations Environment Programme.2003.
    [214]Chen,S.J.,Luo,X.J.,Mai,B.X.,et al.Distribution and mass inventories of polycyclic aromatic hydrocarbons and organochlorine pesticides in sediments of the Pearl River Estuary and the northern South China Sea.Environmental Science & Technology.2006.40(3):709-714.
    [215]Yunker,M.B.,Snowdon,L.R.,MacDonald,R.W.,et al.Polycyclic aromatic hydrocarbon composition and potential sources for sediment samples from the Beaufort and Barents Seas.Environmental Science &Technology.1996.30(4):1310-1320.
    [216]Yunker,M.B.,Macdonald,R.W.,Goyette,D.,et al.Natural and anthropogenic inputs of hydrocarbons to the Strait of Georgia.Science of the Total Environment.1999.225(3):181-209.
    [217]Soclo,H.H.,Garrigues,P.,Ewald,M.Origin of polycyclic aromatic hydrocarbons(PAHs)in coastal marine sediments:Case studies in Cotonou(Benin)and Aquitaine(France)areas.Marine Pollution Bulletin.2000.40(5):387-396.
    [218]Hedberg,E.,Kristensson,A.,Ohlsson,M.,et al.Chemical and physical characterization of emissions from birch wood combustion in a wood stove.Atmospheric Environment.2002.36(30):4823-4837.
    [219]Bakker,M.I.,Koerselman,J.W.,Tolls,J.,et al.Localization of deposited polycyclic aromatic hydrocarbons in leaves of Plantago.Environmental Toxicology and Chemistry.2001.20(5):1112-1116.
    [220]焦杏春,左谦,曹军,等.城区中面尘特性及其多环芳烃含量.环境科学.2004.25(2):162-165.
    [221]Tao,S.,Jiao,X.C.,Chen,S.H.,et al.Uptake of vapor and particulate polycyclic aromatic hydrocarbons by cabbage.Environmental Pollution.2006.140(1):13-15.
    [222] Wang, Y. Q., Tao, S., Jiao, X. C, et al. Polycyclic aromatic hydrocarbons in leaf cuticles and inner tissues of six species of trees in urban Beijing. Environmental Pollution. 2007. DOI: 10.1016/j.envpol. 2007.02.005.
    [223] Wide, E., Dent, J., Thomas, G. O., et al. Visualizing the air-to-leaf transfer and within-leaf movement and distribution of phenanthrene: further studies utilizing two-photon excitation microscopy. Environmental Science & Technology. 2006.40: 907-916.
    [224] Urbat, M., Lehndorff, E., Schwark, L., et al. Biomonitoring of air quality in the Cologne conurbation using pine needles as a passive sampler - Part I: magnetic properties. Atmospheric Environment. 2004. 38(23): 3781-3792.
    [225] Terzi, E., Samara, C. Gas-particle partitioning of polycyclic aromatic hydrocarbons in urban, adjacent coastal, and continental background sites of western Greece. Environmental Science & Technology. 2004. 38(19): 4973-4978.
    [226] Sitaras, L. E., Bakeas, E. B., Siskos, P. A. Gas/particle partitioning of seven volatile polycyclic aromatic hydrocarbons in a heavy traffic urban area. Science of the Total Environment. 2004.327(1-3): 249-264.
    [227] Pinder, J. E., McLeod, K. W. I., Lide, R. F., et al. Mass loading of soil particles on a pasture grass. Journal of Environmental Radioactivity. 1991.13: 341-354.
    [228] Hulster, A., Marschner, H. Transfer of PCDD/PCDF from contaminated soils to food and fodder crop plants. Chemosphere. 1993.27:439-446.
    [229] Kipopoulou, A. M., Manoli, E., Samara, C. Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area. Environmental Pollution. 1999.106: 369-380.
    [230] Meharg, A. A., Wright, J., Dyke, H., et al. Polycyclic aromatic hydrocarbon (PAH) dispersion and depisition to vegetation and soil following a large scale chemical fire. Environmental Pollution. 1998. 99: 29-36.
    [231] Bakker, M. I., Casado, B., Koerselman, J. W., et al. Polycyclic aromatic hydrocarbons in soil and plant samples from the vicinity of an oil refinery. Science of the Total Environment. 2000. 263(1-3): 91-100.
    
    [232] Weiss, P. Vegetation/soil distribution of semivolatile organic compounds in relation to their physicochemical properties. Environmental Science & Technology. 2000. 34(9): 1707-1714.
    
    [233] 王震.辽宁地区土壤中多环芳烃的污染特征、来源及致癌风险:[博士论文].大连理工大学.2007.
    
    [234] Wang, Z., Chen, J. W., Qiao, X. L., et al. Distribution and sources of polycyclic aromatic hydrocarbons from urban to rural soils: a case study in Dalian, China. Chemosphere. 2007.68(5): 965-971.
    [235] Li, A., Jang, J. K., Scheff, P. A. Application of EPA CMB8.2 model for source apportionment of sediment PAHs in Lake Calumet, Chicago. Environmental Science & Technology. 2003. 37(13): 2958-2965.
    [236] Colombo, J. C, Cappelletti, N., Lasci, J., et al. Sources, vertical fluxes, and equivalent toxicity of aromatic hydrocarbons in coastal sediments of the Rio de la Plata Estuary, Argentina. Environmental Science & Technology. 2006.40(3): 734-740.
    [237]Nisbet,I.C.T.,LaGoy,P.K.Toxic equivalency factors(TEFs)for polycyclic aromatic hydrocarbons (PAHs).Regulatory Toxicology and Pharmacology.1992.16(3):290-300.
    [238]US EPA.Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons.1993.EPA/600/R-93/089.
    [239]Willett,K.L.,Gardinali,P.R.,Sericano,J.L.,et al.Characterization of the H4IIE rat hepatoma cell bioassay for evaluation of environmental samples containing polynuclear aromatic hydrocarbons(PAHs).Archives of Environmental Contamination and Toxicology.1997.32(4):442-448.
    [240]Wang,Z.,Chen,J.W.,Yang,P.,et al.Polycyclic aromatic hydrocarbons in Dalian soils:distribution and toxicity assessment.Journal of Environmental Monitoring.2007.9(2):199-204.
    [241]Prajapati,S.K.,Tripathi,B.D.Biomonitoring seasonal variation of urban air polycyclic aromatic hydrocarbons(PAHs)using Ficus benghalensis leaves.Environmental Pollution.2007.DOI:10.1016/j.envpol.2007.04.013.
    [242]Galuszka,A.Distribution patterns of PAHs and trace elements in mosses Hylocomium splendens(Hedw.)B.S.G.and Pleurozium schreberi(Brid.)Mitt.From different forest communities:A case study,south-central Poland.Chemosphere.2007.67(7):1415-1422.
    [243]Jouraeva,V.A.,Johnson,D.L.,Hassett,J.P.,et al.Differences in accumulation of PAHs and metals on the leaves of Tilia× euchlora and Pyrus calleryana.Environmental Pollution.2002.120(2):331-338.
    [244]Wagrowski,D.M.,Hites,R.A.Polycyclic aromatic hydrocarbon accumulation in urban,suburban,and rural vegetation.Environmental Science & Technology.1997.31(1):279-282.
    [245]Su,Y.S.,Wania,F.,Harner,T.,et al.Deposition of polybrominated diphenyl ethers,polychlorinated biphenyls,and polycyclic aromatic hydrocarbons to a Boreal Deciduous Forest.Environmental Science &Technology.2007.41(2):534-540.
    [246]Barber,J.L.,Kurt,P.B.,Thomas,G.O.,et al.Investigation into the importance of the stomatal pathway in the exchange of PCBs between air and plants.Environmental Science & Technology.2002.36(20):4282-4287.
    [247]东北振兴网.http://chinaneast.xinhuanet.com/2004-10/28/content_3115778.htm
    [248]黑龙江省统计局.2005黑龙江省统计年鉴.中国统计出版社.2005.
    [249]吉林省统计局.2005吉林省统计年鉴.中国统计出版社.2005.
    [250]中国统计局.中国能源统计年鉴2006.中国统计出版社.2006.
    [251]米红,张文璋.实用现代统计分析方法与SPSS应用.北京:当代中国出版社.2000.
    [252]Reimann,C.,Filzrnoser,P.Normal and lognormal data distribution in geochemistry:death of a myth.Consequences for the statistical treatment of geochemical and environmental data.Environmental Geology.2000.39(9):1001-1014.
    [253] Yang, H. H., Tsai, C. H., Chao, M. R., et al. Source identification and size distribution of atmospheric polycyclic aromatic hydrocarbons during rice straw burning period. Atmospheric Environment. 2006. 40(7): 1266-1274.
    [254] Kakareka, S. V., Kukharchyk, T. I. PAH emission from the open burning of agricultural debris. Science of the Total Environment. 2003. 308(1-3): 257-261.
    [255] Walker, S. E. Polycyclic aromatic hydrocarbon sources and distribution in an urban estuary: [Doctor dissertation]. The College of William & Mary: Williamsburg, 2003.
    [256] Dickhut, R. M., Gustafson, K. E. Atmospheric inputs of selected polycyclic aromatic hydrocarbons and polychlorinated biphenyls to southern Chesapeake Bay. Marine Pollution Bulletin. 1995. 30: 285-296.
    
    [257] Tremolada, P., Burnett, V., Calamari, D., et al. A study of the spatial distribution of PCBs in the UK atmosphere using pine needles. Chemosphere. 1996. 32: 2189-2203.
    [258] David, C, Joseph, F., Christian, B., et al. A general indication of the contemporary background levels of PCDDs, PCDFs, and coplanar PCBs in the ambient air over rural and remotes areas of the United States. Environment Science & Technology. 2007.
    [259] Howe, T. S., Billings, S., Stolzberg, R. J. Sources of polycyclic aromatic hydrocarbons and hexachlorobenzene in spruce needles of Eastern Alaska. Environment Science & Technology. 2004. 38(2): 3294-3298.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700