用户名: 密码: 验证码:
单光子调制光谱与成像特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子信息技术是量子物理与信息技术相结合发展起来的新学科,已成为目前最具吸引力的前沿领域之一,涉及众多学科领域,在量子信息领域开展的工作主要有量子通信、量子计算、量子成像等方面,具有经典信息技术无法比拟的优势和前景。单光子的产生、检测和操纵不断开拓光物理应用的新领域。
     由于在量子信息领域的广泛应用,单光子源的研究引起了人们的极大兴趣。一方面,作为一个非经典光源,单光子源可以用来演示量子力学的基本原理,展现量子物理的奇异性。另一方面,基于量子力学的量子信息技术也需要利用单光子源来实现量子保密通信和量子计算。因此,对实用、可靠的单光子源的制备、测量和操控已经成为当前量子物理学最前沿的研究内容之一。利用单量子体系产生单光子是制备单光子源的有效手段之一,我们研究了光场激发单分子单光子源,在利用单光子调制光谱研究单分子系统动力学过程中,发现了许多新奇的实验现象。在此基础上对激发光场进行强度调制,实现对单分子荧光光子的强度调制,利用锁相放大器解调后的模拟信号消除了分子荧光辐射起伏、光子计数的量子涨落,实现高清晰度的单SR分子荧光成像,给出一种有效提高信噪比的单分子荧光成像方法。利用光子计数调制的方法测量了DiD分子的荧光寿命,研究了外加电场对分子荧光强度的操控。
     到目前为止,还没有理想的单光子源达到商业应用状态,现有的研究中大多采用衰减相干光模拟单光子源,在这种准单光子源的测量中,灵敏度、信噪比等关键技术问题一直是很大的困扰。我们利用单光子调制光谱技术和锁相放大技术,明显改善了单光子探测器的探测效率,消除了量子涨落的影响,提高微弱信号检测中的信噪比。
     本论文工作的创新点:
     1.提出了一种可靠的单光子调制的方法,将相干光衰减至单光子量级,提高了1.55微米InGaAs单光子雪崩光电二极管的探测效率,抑制了探测背景噪声。通过对较低的甄别电压进行优化,利用单光子调制的方法可将在1.55微米波长的探测效率比传统的光子计数方法提高1.87倍。增加了在高背景噪声场合下进行高灵敏探测的可能性,这种灵敏测量可以扩展到其他波长的单光子有效检测。
     2.测量单光子调制吸收光谱。将1.5微米分布反馈半导体激光器的输出光衰减至单光子量级,测量得到乙炔气体v1+v3带P5e支的单光子吸收光峰。这种单光子波长高频调制吸收光谱消除了低频段较高背景的噪声,通过探测乙炔气体的单光子吸收光谱,对离散的单光子响应脉冲进行锁定放大,获得信噪比为51的激光器频率锁定的鉴频曲线,稳频后的激光在175s内频率起伏小于25MHz。
     3.无量子涨落的单分子荧光成像,利用声光调制器对激发光场进行强度调制,实现了对单分子荧光光子的强度调制,通过锁相放大器解调,使得只包含荧光信号的调制谐波信号成分得到了放大,其它频率的背景信号被明显抑制,显著提高了光谱成像信号的信噪比,将量子涨落由1/3压制到了1/15,实现了高清晰度的单分子荧光成像。
     4.单光子源的外场操控,测量了系综分子和DiD分子的荧光寿命,并研究了外加电流对荧光寿命的影响,研究发现在电流作用下,分子荧光平均寿命减小大约20%。利用外电场调制单SR分子荧光强度,实现了单分子荧光强度的外场调控。
Quantum information technology is one of the most attractive frontiers, emerging interdisciplinary in recent years, involving many disciplines. For centuries, physicists have been trying to understand the nature of light. Single-photon generation, detection and manipulation as a strong technology supported several interesting photophysical new areas.
     Due to the wide range of applications of quantum information, the single photon sources have attracted great interest. On the one hand, as non classical light sources, single photon sources can be used to demonstrate the quantum mechanics basic principles, to show the singularity of quantum physics. On the other hand, quantum information technology also need to use the single-photon sources for quantum cryptography and quantum computing based on quantum mechanics,. Therefore, the preparation, measurement and manipulation of practical and reliable single-photon sources have become one of the forefront researches in quantum physics. Single photon prepared from a single quantum system is an effective means of single-photon source; we study single photon sources by light field excited single-molecule. Single-molecule system dynamics was studied by single photon modulation spectroscopy, we found many novel experimental phenomena. On this basis, the single molecule fluorescence photon intensity modulation achieved by lock-in amplifier and eliminated the quantum fluctuations of the molecular fluorescence radiation fluctuations. The high definition imaging for single SR molecule fluorescence gives an effective single molecule fluorescence imaging methods with hign signal to noise ratio. The fluorescence lifetime of the DiD molecule was measured by photon counting modulation, Manipulation the molecular fluorescence intensity by the electric field.
     So far, no ideal single photon source to the commercial application, usually, the weak coherent light were used to simulate the single photon source in most studies. The measurement of single-photon sources, including the sensitivity, signal to noise ratio and other key technologiesthe problem were a great distress. Single photon modulation spectroscopy and lock-in amplifier technology improved the detection efficiency of single photon detectors, significantly. The influence of quantum fluctuations was eliminated and the signal to noise ratio of weak signal detection was improved.
     The innovations of this paper:
     1. A reliable single-photon modulation technology was proposed, improved the detector efficiency of1.55μm InGaAs single photon avalanche photodiode, and restrained the background noise. The detection effiency of1.55μm wavelength can be increased1.87times than the traditional photon counting method by optimizing the threshold voltage of the detector using single photon locked technology. The possibility of highly sensitive detection in high background noise was improved; such sensitive measurements can be extended to other wavelengths of single photon detection.
     2. Measure the single-photon modulation spectroscopy. Single photon absorption peak of acetylene gas was measured by1.5-micron distributed feedback semiconductor laser. The high-frequency modulation of single-photon wavelength absorption spectra eliminates the background noise in low frequency. The error signal was obtained by Single-photon absorption spectroscopy of acetylene gas, the laser frequency stabilization in the175s frequency fluctuation less than25MHz.
     3. Single molecule fluorescence imaging without quantum fluctuations. The single-molecule fluorescence photon intensity modulation was achieved the intensity modulation of the excitation light field using acousto-optic modulator. The logic pulse signal output from single-photon detector was demodulated by lock-in amplifier. The background signal of other frequency was significantly inhibited, significantly. The signal to noise ratio of spectral imaging was improved, suppressed the quantum fluctuations from1/3to1/15, to achieve a high-resolution single-molecule fluorescence imaging, and achieved the high-definition single-molecule fluorescence imaging.
     4. External manipulation of single-photon source, measuring the fluorescence lifetime of the ensemble molecules and DiD molecules, studied the influence of impressed current on the fluorescence lifetime, the study found the average molecular fluorescence lifetime reduced about20%by current. The single-molecule fluorescence intensity control was achieved by external electric field modulation of single SR molecule fluorescence intensity.
引文
[1]Beveratos A, Brouri R, Gacoin T, Villing A, Poizat J-P and Grangier P, Single photon quantum cryptography, Phys. Rev. Lett.,2002, Vol.89,187901
    [2]R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R.H. Hadfield, S. W. Nam and G. S. Buller. Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength. Opt. Lett.,2007, Vol.32,2266-8
    [3]R. J. Collins, R. H. Hadfield, V. Fernandez, S. W. Nam and G. S. Buller. Low timing jitter detector for gigahertz quantum key distribution. Electron. Lett.,2007, Vol.43, 180-2
    [4]S. Nie, and R. N. Zare. Optical detection of single molecules. Annu Rev Biophys Biomol. Struct.,1997, Vol.26,567-596
    [5]R. Foord, R. Jones, C. J. Oliver and E. R. Pike The use of photomultiplier tubes for photon counting. Appl. Opt.,1969, Vol.8,1975-89
    [6]Burle Industries Inc. Photomultiplier Handbook,1980
    [7]G. A. Morton. Photon counting. Appl. Opt.,1968, Vol.7,1-10
    [7]J. P. Rodman and H. J. Smith. Tests of photomultipliers for astronomical pulse counting applications.Appl. Opt.,1963, Vol.2,181-6
    [9]J. Gower. Optical Communications Systems 2nd edn (Englewood Cliffs, NJ:Prentice Hall),1993
    [10]J. Wilson and J. Hawkes. Optoelectronics:An Introduction 3rd edn (Englewood Cliffs, NJ:Prentice Hall),1998
    [11]R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, S. D. Cova, R. A. Lamb and G. S. Buller. Enhanced performance photon-counting time of flight sensor. Opt. Express,2007, Vol.15,423-9
    [12]W. Kubo and T. Tatsuma, Mechanisms of Photocatalytic Remote Oxidation. J. Am. Chem. Soc.,2006, Vol.128,16034
    [13]J. J. Degnan. Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements. J. Geodyn.,2002, Vol.34,503-49
    [14]S. Cova, M. Ghioni, A. Lacaita, C. Samori and F. Zappa. Avalanche photodiodes and quenching circuits for single-photon detection. Appl. Opt.,1996, Vol.35,1956-76
    [15]W. O. Oldham, R. R. Samuelson and P. Antognetti. Tiggering phenomena in avalanche diodes. IEEE Trans. Electron Devices,1972, Vol.19,1056-60
    [16]G. Vincent, A. Chantre and D. Bois. Electric field effect on the thermal emission of traps in semiconductor junctions. J. Appl. Phys.,1979, Vol.50,5484-7
    [17]吴青林,刘云,陈巍,韩正甫,王克逸,郭光灿,单光子探测技术,物理学进展,2010,Vol.30,296
    [18]Warburton R E, Itzler M A and Buller G S, Improved free-running InGaAs/InP single photon avalanche diode detectors operating at room temperature, Electron. Lett. 2009, Vol.45,996-7
    [19]N. Namekata, S. Adachi and S. Inoue.1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode. Opt. Express,2009, Vol.17,6275-82
    [20]Z. L. Yuan, B. E. Kardynal, A. W. Sharpe and A. J. Shields High speed single photon detection in the near infrared. Appl. Phys. Lett.,2007, Vol.91,041114
    [21]R. T. Thew, D. Stucki, J. D. Gautier, H. Zbinden and A. Rochas Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths. Appl. Phys. Lett.,2007, Vol.91,201114
    [22]Wang C F, Choi Y-S, Lee J C and Hu E L, Observation of whispering gallery modes in nanocrystaline diamond microdisks,Appl. Phys. Lett.,2007, Vol.90,081110
    [23]S. E. Dempster, S. Jang, and R. J. Silbey. Single molecule spectroscopy of disordered circular aggregates:A perturbation analysis. J. Chem. Phys.,2001, Vol.114,10015
    [24]Lacaita A, Ghioni M and Cova S, Double epitaxy improves single-photon avalanche diode performance, Electron. Lett.,1989, Vol.25,841-3
    [25]Foord R, Jones R, Oliver C J and Pike E R, The use of photomultiplier tubes for photon counting,Appl. Opt.,1969, Vol.8,1975-89
    [26]Cova S, Ghioni M, Lacaita A, Samori C and Zappa F, Avalanche photodiodes and quenching circuits for single-photon detection, Appl. Opt.1996, Vol.35,1956-76
    [27]J. S. Massa, G. S. Buller and A.C.Walker, Time-resolved photoluminescence studies of cross-well transport in a biased GaAs/AlGaAs multiple quantum well p-i-n structure, J. Appl. Phys.,1997, Vol.82,712-7
    [28]Dautet H, Deschamps P, Dion B, MacGregor A D,MacSween D, McIntyre R J, Trottier C and Webb P P, Photon counting techniques with silicon avalanche phootdiodes, Appl. Opt.,1993, Vol.32,3894-900
    [29]Buzhan P et al Silicon photomultiplier and its possible applications Nucl. Instrum. Methods Phys. Res. A,2003, Vol.504,48-52
    [30]Sciacca E et al, Silicon planar technology for single-photon optical detectors, IEEE Trans. Electron Devices,2003, Vol.50,918-25
    [31]Zhao K, You S, Cheng J and Lo Y, Self-quenching and self recovering InGaAs /InAlAs single photon avalanche detector, Appl. Phys. Lett.,2008, Vol.93,153504
    [32]Namekata N, Sasamori S and Inoue S,800 MHz single-photon detection at 1550 nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating, Opt. Express,2006, Vol.14,10043
    [33]R. Hanbury Brown and R. Q. Twiss, Correlation between photons in two coherent beams of light, Nature,1956, Vol.177,27-9
    [34]L. Fleury, Ph. Tamarat, B. Lounis, J. Bernard and M. Orrit. Fluorescence spectra of single pentacene molecules in p-terphenyl at 1.7 K. Chem. Phys. Letters,1995, Vol. 236,87-95
    [35]Kerman A J, Dauler E A, Keicher W E, Yang J K W, Berggren K K, Gol'tsman G and Voronov B, Kinetic-inductance-limited reset time of superconducting nanowire photon counters, Appl. Phys. Lett.,2006, Vol.88,111116
    [36]Stevens M J, Hadfield R H, Schwall R E, Nam S W, Mirin R P and Gupta J A, Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,Appl. Phys. Lett.,2006, Vol.89,031109
    [37]Hadfield R H, Habit J L, Schlafer J, Schwall R E and Nam S W, Quantum key distribution at 1550 nm with twin superconducting single-photon detectors, Appl. Phys. Lett.,2006, Vol.89,241129
    [38]Takesue H, Nam S W, Zhang Q, Hadfield R H, Honjo T, Tamaki K and Yamamoto Y, Quantum key distribution over a 40-dB channel loss using superconducting single photon detectors, Nat. Photonics,2007,Vol.1,343-8
    [39]毕思文,量子光谱成像,北京,科学出版社,2007
    [40]F. Kulzer and M. Orrit. Single-molecule Optics. Ann. Rev. Phys. Chem.,2004, Vol. 55,585-611
    [41]P. A. Hiskett, D. Rosenberg, C. G. Peterson, R. J. Hughes, S. Nam, A. E. Lita, A. J. Miller and J. E. Nordholt, Long-distance quantum key distribution in optical fibre, New J. Phys.,2006, Vol.8,193
    [42]W. E. Moerner, and L. Kador. Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett.,1989, Vol.62,2535-2538
    [43]H. J. Kimble and L. Mandel, Resonance fluorescence with excitation of finite bandwidth, Phys. Rev. A,1977, Vol.15,689-99
    [44]E. Betzig, and R. J. Chichester. Single molecules observed by near-field scanning optical microscopy. Science,1993, Vol.262,1422-1425
    [45]S. Tomljenovic-Hanic, M. J. Steel, C. Martijn de Sterke and J. Salzman Diamond based photonic crystal microcavities, Opt. Express,2006, Vol.14,3556-62
    [46]M. Orrit and J. Bernard., Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys. Rev. Lett.,1990, Vol.65,2716-2719
    [47]X. S. Xie, and R. C. Dunn., Probing single molecule dynamics. Science.1994, Vol. 265,361-364
    [48]A. B. Myers, P. Tchenio, M. Z. Zgierski, and W. E. Moerner. Vibronic Spectroscopy of Individual Molecules in Solids. J. Phys. Chem.,1994, Vol.98 (41),10377-10390
    [49]T. Funatsu, Y. Hanada, M. Tokunaga, K. Saito, and T. Yanagida. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature (London),1995, Vol.374,555-559
    [50]M. Orrit. Photon statistics in single molecule experiment. single molecule,2002, Vol. 3,255-265
    [51]李哲,曹莉.荧光单分子检测技术在生命科学中的应用.细胞生物学杂志,2005,Vol.27,649—651
    [52]J. A. Veerman, M. F. Garcia-Parajo, L. Kuipers, and N. F. Van Hulst, Time Varying Triplet State Lifetimes of Single Molecules. Phys. Rev. Lett.,1999, Vol.83, 2155-2158
    [53]N. Tomczak, A. L. Renaud Vallee, M. H. P. Erik van Dijk, M.Garcia Parajo, L. Kuipers, Niek F. van Hulst, G. Julius Vancso. Probing polymers with single fluorescent molecules. European Polymer Journal,2004, Vol.40,1001
    [54]Y. Wada. Prospects for single molecule information processing devices. Current Applied Physics,2001, Vol.1,28
    [55]S. Kubatkin, A. Danilov, M. Hjor, J. Cornil, J. Bredas, N. Stuhr-Hansen, P. Hedegard and T. Bjrnholm. Single-electron transistor of a single organic molecule with access to several redox states. Nature,2003, Vol.425,698-701
    [56]J. Laurat, H. de Riedmatten, D. Felinto, C.-W. Chou, E. W. Schomburg, and H. J. Kimble, Efficient retrieval of a single excitation stored in an atomic ensemble, Opt. Express,2006, Vol.14,6912
    [57]P. Kolchin, C. Belthangady, S.Du, G.Y.Yin and S. E. Harris, Electronic-optic modulation if single photons, Phys. Rev. Lett.,2008, Vol.101,103601
    [58]H. P. Lu, L. Xun, and X. S. Xie. Single-Molecule Enzymatic Dynamics. Science, 1998, Vol.282,1877-1882
    [59]Kaiser W and Bond W L, Nitrogen, a major impurity in common type 1 diamond Phys. Rev.,1959, Vol.115,857-63
    [60]Clark C D, Kanda H, Kiflawi I and Sittas G, Silicon defects in diamond, Phys. Rev. B 1995, Vol.51,16681-8
    [61]Wang C, Kurtsiefer C, Wienfurter H and Burchard B Single photon emission from SiV centres in diamond produced by ion implantation, J. Phys. B:At. Mol. Opt. Phys. 2006, Vol.39,37-41
    [62]R. Alleaume, F. Treussart, J.-M. Courty and J.-F. Roch. Photon statistics characterization of a single-photon source. New J. Phys.,2004, Vol.6,85
    [63]T. Ha, T. A. Laurence, D. S. Chemla, and S. Weiss. Polarization Spectroscopy of Single Fluorescent Molecules. J. Phys. Chem. B,1999, Vol.103,6839-6850
    [64]G. P. Guo, C. F. Li, B. S. Shi, J. Li, and G.. C. Guo. Quantum key distribution scheme with orthogonal product states. Phys. Rev. A,2001, Vol.64,042301
    [65]B. S. Shi, Y. K. Jiang, and G. C. Guo. Quantum key distribution using different frequency photons. Appl. Phys. B,2000, Vol.70,415-417
    [66]A. C. Funk, and M. G. Raymer. Quantum key distribution using nonclassical photon number correlations in macroscopic light pulses. Phys. Rev. A,2002, Vol.65,042307
    [67]M. Matsuoka, and T. Hirano. Quantum key distribution with a single photon from a squeezed coherent state. Phys. Rev. A,2003, Vol.67,042307
    [68]F. Treussart, R. Alleaume, L. T. Xiao, J.-M. Courty, and J.-F. Roch. Direct measurement of the photo statistics of a triggered single photon source, Phys. Rev. Lett.,2002, Vol.89, No.9,093601
    [69]T. Huang, S. L. Dong, X. J. Guo, L. T. Xiao and S. T. Jia, Signal-to-noise ratio improvement of photon counting using wavelength modulation spectroscopy App. Phys. Lett,2006, Vol.89,061102
    [70]T. Iwata, A. Hori and T.Kamada,Photon-Counting Phase-Modulation Fluorometer, Opt. Rev.,2001 Vol.8,326-330
    [1]Xie. X. Sunney. Statistical Approaches for Probing Single-Molecule Dynamics Photon-by-Photon. Chem. Phys.,2002, Vol.284,423
    [2]N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden. Quantum cryptography. Rev. Mod. Phys.,2002, Vol.74B,145
    [3]W. E. Moerner, and T. Basche. Optical Spectroscopy of Single Impurity Molecules in Solids. Angew. Chrm. Inr. Ed. Engl.,1993, Vol.32,451-476
    [4]H. de Vries and D. A. Wiersma. Fluorescence transient and optical free induction decay spectroscopy of pentacene in mixed crystals at 2 K. J. Chem. Phys.,1979, Vol.70, 5807-5822
    [5]M. Orrit, J. Bernard and R. Personov. High-resolution spectroscopy of organic molecules in solids:from fluorescence line narrowing and hole burning to single molecule spectroscopy. J. Phys. Chem.,1993, Vol.97,10256-10268
    [6]T. Basche, W. E. Moerner, M. Orrit and H. Talon. Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. Phys. Rev. Lett.,1992, Vol. 69,1516-1519
    [7]W. Shu-Dong, Z. Zhi-Ming and J. Li-Xia. Photon statistics of the micromaser with a Kerr medium. Chin.Phys.,2002, Vol.11,1272
    [8]W. E. Moerner, and L.Kador. Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett.,1989, Vol.62,2535
    [9]M. Orrit. Single-molecule spectroscopy:The road ahead. J. of Chem. Phys.,2002, Vol. 117,10938-10946
    [10]P. Kask, P. Piksarv, and U. Mets. Fluorescence correlation spectroscopy in the nanosecond time range:photon antibunching in dye fluorescence. Eur. Biophys. J., 1985, Vol.12,163-166
    [11]D. Magde, E. L. Elson, and W.W. Webb. Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett., 1972, Vol.29,705-711
    [12]B. Lounis, W.E. Moerner. Single photons on demand from a single molecule at room temperature.2000, Nature, Vol.407,491-493
    [13]L.Fleury, J.-M.Segura, et al., Nonclassical photon statistics in single-molecule fluorescence at room temperature, Phys. Rev. Lett.,2000, Vol.84,1148-1151
    [14]X. B. Wang, G. F. Zhang, R. Y. Chen, Y. Gao, L.T. Xiao and S.T. Jia, Detection efficiency enhancement of single-photon detector at 1.55-μm by using of single photons lock-in and optimal threshold, Optics & Laser Technology,2012, Vol.44, 1773-1775
    [15]M. K. Barnoski, M. D. Rourke, S. M. Jensen, and R. T. Melville optical time domain reflectometer, Applied Optics,1977, Vol.16,2375
    [16]D. Magde, W.W. Webb, and E. Elson. Fluorescence correlation spectroscopy. uniform translation and laminar flow. Biopolymers,1978, Vol.17,361-376
    [17]S. M. Jensen and M. K. Barnoski, Fiber waveguides:a novel technique for investigating attenuation characteristics, Appl. Opt.1976, Vol.15,2112
    [18]A. L. Lacaita, P. A. Francese and S. Cova, Single-photon Optical-time Domain Reflectometer at 1.3 μm with 5 cm Resolution and High Sensitivity, Opt. Lett.,1993, Vol.18,1110-1112
    [19]S. D. Personik, Photon probe-an optical fiber time-domain reflectometer, Bell. Syst. Tech.J.,1977, Vol.56,355
    [20]E. Brinkmeyer, Analysis of the backscattering method for single mode optical fibers, J.Opt.Soc.Am.,1980, Vol.70,1010
    [21]A. H. Hartog, A. P. Leach, M. P. Gold. Distributed temperature sensing in solid core fiber, Electronics Letters,1985, Vol.21,1061
    [22]F. T. Arecchi, E. Gatti and A. Sona, Measurement of Low Light Intensities by Synchronous Single Photon Counting, Review of Scientific Instruments.,1966, Vol.37,942.
    [23]F. T. Arecchi, E. Gatti, and A. Sona, Time distribution of photons from coherent and Gaussian sources, Phys. Lett.,1966., Vol.20,27
    [24]P. Healey and P. Hensel, Optical time domain reflectometry by photon counting, Electron. Lett.,1980,Vol.16,631-633,.
    [25]G. Bondarenko et al., Limited Geiger-mode silicon photodiode with very high gain, Nucl. Phys. B,1998, Vol.6,1347.
    [26]P. Finocchiaro et al., Features of silicon photo multipliers, IEEE Trans. Nucl. Sci. 2009, Vol.56,1033
    [27]L. T. Xiao, Y. T. Zhao et al., Effect of background noise on the photon statistics of triggered single molecules,2004, Chin. Phys. Lett. Vol.21489
    [28]X. B. Wang, J. J. Wang, G. F. Zhang, L. T. Xiao and S. T. Jia, Photon counts modulation in optical time domain reflectometry. Chinese Physics B,2011, Vol.20, 064204
    [29]F. T. Arecchi, E. Gatti, and A. Sona, Time distribution of photons from coherent and Gaussian sources, Phys. Lett.,1966., Vol.20,27
    [30]F. T. Arecchi, E. Gatti and A. Sona, Measurement of Low Light Intensities by Synchronous Single Photon Counting, Review of Scientific Instruments.,1966, Vol.37,942.
    [31]T. Huang, S. L. Dong, X. J. Guo, L. T. Xiao and S. T. Jia, Signal-to-noise ratio improvement of photon counting using wavelength modulation spectroscopy App. Phys. Lett,2006, Vol.89,061102
    [32]D. Magde, E. Elson, and W.W. Webb. Fluorescence correlation spectroscopy. Ⅱ:an experimental realization. Biopolymers,1974, Vol.4,29-61
    [33]F. T. Arecchi., Measurement of the statistical distribution of Gaussian and laser sources, Phys.Rev.Lett.,1965, Vol.15,912
    [34]M. Wegmuller, F. Scholder, and N. Gisin, Photon-counting OTDR for local birefringence and fault analysis in the metro environment, J. Lightwave Technol., 2004, Vol.22,390-400
    [35]S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, Avalanche photodiodes and quenching circuits for single-photon detection, Appl.Opt.,1996,Vol.35,1956-1976,.
    [36]X. B. Wang, J. J. Wang, B. He, L. T. Xiao and S. T. Jia, Photon counting optical time domain reflectometry applying single photon modulation technique. Chinese Physics Letter,2011, Vol.28,070302
    [37]C. Brunel, B. Lounis, P. Tamarat, and M.1 Orrit. Triggered source of single photons based on controlled single molecule fluorescence. Phys. Rev. Lett.,1999, Vol.83, 2722
    [38]R.Alleaume, F.Treussart, J-M Courty and J-F Roch, Photon statistics characterization of a single-photon source. New J. Phys.,2004, Vol.6,85
    [39]H. R Brown, and R. Q Twiss.. Correlation between Photons in Two Coherent Beams of Light. Nature,1956, Vol.177,27-29
    [40]Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble. Measurement of Conditional Phase Shifts for Quantum Logic, Phys. Rev. Lett.,1995, Vol.75, 4710-4713.
    [1]S. Yamada, Applications of Strong Interactions between Photons and Molecules to Analytical Sciences, Analytical sciences,2009, Vol.25,1059
    [2]G. N. Price, S. T. Bannerman, E. Narevicius, and M.G. Raizen, Single-photon atomic cooling, Laser physics,2007, Vol.17,1
    [3]B. C. Young, F. C. Cruz, W. M. Itano, J. C. Bergquist, Visible lasers with subhertz linewidths, Phys. Rev. Lett,1999, Vol.82,3799
    [4]D. Pinotsi and A. Imamoglu, Strong Electron- hole Exchange in Coherently Coupled Quantum Dots, Phys. Rev.Lett,2008, Vol.100,093603
    [5]N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin and J. Eschner, Polarization-correlated photon pairs from a single ion, Nature Physics,2011, Vol.7,17
    [6]W. H. Farr and K. Birnbaum, Bias-dependant jitter of InGaAs(P) single-photon detectors, Proc. SPIE Int. Soc. Opt. Eng.2010,7681 76810U.
    [7]T. Huang, S. L. Dong, X. J. Guo, L. T. Xiao and S. T. Jia, Signal-to-noise ratio improvement of photon counting using wavelength modulation spectroscopy App. Phys. Lett,2006, Vol.89,061102
    [8]D. Pulford, C. Robillard, E. Huntington, Single photon locking of an all-fiber interferometer,Review of Scientific instrument,2005, Vol.76,063114
    [9]X. B. Wang, J. J. Wang, G. F. Zhang, L. T. Xiao, and S. T. Jia, Photon counts modulation in optical time domain reflectometry, Chin. Phys. B,2011 Vol.20,064204
    [10]J. E. Bateman, R. L. D. Murray, T. Freegarde, Hansch Couillaud locking of Mach?Zehnder interferometer for carrier removal from a phase-modulated optical spectrum, J.Opt.Soc.Am.B,2010, Vol.27,1530
    [11]D. Pulford, C. Robillard, E. Huntington, Single photon locking of an all-fiber interferometer, Review of Scientific instrument,2005, Vol.76,063114
    [12]J. K. Trautmann, J. J. Macklin, L. E. Brus, and E. Betzig, Near-field spectroscopy of single molecules at room temperature. Nature,1994, Vol.369,40-42
    [13]P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse and S. K. Buratto, Quantum correlation among photons from a single dot at room temperature, Nature, 2000, Vol.406,968-70
    [14]B. Lounis, and W. E. Moerner. Single photons on demand from a single molecule at room temperature. Nature,2000, Vol.407, No.6803,491-493
    [15]J. P. Rodman and H. J. Smith, Tests of photomultipliers for astronomical pulse counting applications, Appl. Opt.,1963, Vol.2,181-6
    [16]C. Brunel, B. Lounis, P. Tamarat and M. Orrit. Triggered Source of Single Photons based on Controlled Single Molecule Fluorescence. Phys. Rev. Lett.,1999, Vol.83, 2722-2725
    [17]Ph. Tamarat, A. Maali, B. Lounis, and M. Orrit. Ten Years of Single-Molecule Spectroscopy. J. Phys. Chem. A.,2000, Vol.104,1-16
    [18]T. H. Stievater, X. Li, J. R. Guest, D. G. Steel, D. Gammon, D. S. Katzer and D. Park, Wavelength modulation spectroscopy of single quantum dots. Appl. Phys. Lett.,2002, Vol.80, No.11,1876-1878
    [19]R. Alleaume, F. Treussart, G. Messin, Y. Dumeige, J-F. Roch, A. Beveratos, R. Brouri-Tualle, J-P. Poizat, and P. Grangier. Experimental open-air quantum key distribution with a single-photon source. New J. Phys.,2004, Vol.6,92
    [20]B. Lounis and M. Orrit. Single photon sources. Rep. Prog. Phys.,2005, Vol.68,1129
    [21]M. K. Barnoski, S. M. Jensen, Fiber waveguides:a novel technique for investigating attenuation characteristics, Appl. Opt.,1976, Vol.15,2112
    [22]M. Legre, R. Thew, H. Zbinden, N. Gisin, High resolution optical time domain reflectometer based on 1.55m up-conversion photon-counting module, Opt.Exp., 2007, Vol.15,8237
    [23]G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, R. Sobolewski, Picosecond superconducting single-photon optical detector, Appl. Phys. Lett.,2001, Vol.79,705
    [24]S. Castelletto, I.P. Degiovanni, V. Schettini, and A. Migdall, Reduced Deadtime and Higher Rate Photon-Counting Detection using a Multiplexed Detector Array, J.Mod.Opt.,2007, vol.54,337
    [25]V. Golovin, V. Saveliev, Novel type of avalanche photodetector with Geiger mode operation, Nucl. Instr. Meth. Phys. Res. A,2004, Vol.518,560
    [26]A. Lacaita, S. Cova, F. Zappa, and P. A. Francese, Subnanosecond single-photon timing with commercially available germanium photodiodes, Opt. Lett.,1993, Vol. 18,75
    [27]F. Bondu, P. Fritschel, C. N. Mann and A. Brillet, Ultrahigh-spectral-purity laser for the VIRGO experiment, Opt. Lett.,1996, Vol.21,582
    [28]K. Schneider, S. Schiller, J. Mlynek, M. Bode and I. Freitag,1.1W Single Frequency 532 nm Radiation by Second Harmonic Generation of a Miniature Nd:YAG Ring Laser, Opt. Lett.,1996, Vol.21,1999
    [29]B. C. Young, F. C. Cruz, W. M. Itano, J. C. Bergquist, Visible lasers with subhertz linewidths, Phys. Rev.Lett.,1999, Vol.82,3799
    [30]M. D. Eisaman, L. Childress, A. Andre, F. Massou, A. S. Zibrov, and M. D. Lukin. Shaping quantum pulses of light via coherent atomic memory. Phys. Rev. Lett.2004, Vol.93,233602
    [31]D. A. Shaddock, M. B. Gray, D. E. Mcclelland, Frequency locking a laser to an optical cavity by use of spatial mode interference, Opt. Lett.,1999, Vol.24,1499
    [32]Wieman C E, Gilbert S L, Laser-frequency stabilization using mode interference from a reflecting reference interferometer, Opt. Lett.,1982, Vol.7,480
    [33]D. Pulford, C. Robillard, E. Huntington, Single photon locking of an all- fiber interferometer, Review of Scientific instrument,2005, Vol.76,063114
    [1]J. I. Cirac P. Zoller, H. J. Kimble and H. Mabuchi, Quantum state transfer and entanglement distribution among distant nodes in a quantum network, Phys. Rev. Lett., 1997, Vol.78,3221
    [2]K. Inoue E.Waks, and Y.Yamamoto, Differential Phase Shift Quantum Key Distribution, Phys. Rev. Lett.,2002, Vol.89,037902
    [3]M. Keller B. Lange, K. Hayasaka, W. Lange, and H. Walther, Continuous generation of single photons with controlled waveform in an ion-trap cavity system Nature (London) 2004, Vol.431,1075
    [4]M. A. Bopp, A. Sytnik, T. D. Howard, R. J. Cogdell, and R. M. Hochstrasser. The dynamics of structural deformations of immobilized single light-harvesting complexes. Proc. Natl Acad. Sci. U.S.A.,1999, Vol.96,11271-11276
    [5]E. Betzig and R. J. Chichester. Single molecules observed by near-field scanning optical microscopy. Science,1993, Vol.262,1422-1425
    [6]J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus. Imaging and Time-Resolved Spectroscopy of Single Molecules at an Interface. Science,1996, Vol. 272,255-258
    [7]G. B. DeMaggio, W. E. Frieze, D. W.Gidley, M. Zhu, H. A. Hristov, and A. F. Yee. Interface and surface effects on the glass transition in thin polystyrene films. Phys. Rev. Lett.,1997, Vol.78,1524-1528
    [8]A. Kuhn M. Hennrich and G. Rempe, Deterministic single-photon source for distributed quantum networking, Phys. Rev. Lett.,2002, Vol.89,067901
    [9]C. H. van der wal, M. D. Eisaman, A. A. Andre, Atomic memory for correlated photon states. Science 2003, Vol.301,196
    [10]A. Kuzmich W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.M. Duan and H. J. Kimble, Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles. Nature (London),2003, Vol.423,731
    [11]R. M. Dickson, D. J. Norris, and W. E. Moerner. Simultaneous Imaging of Individual Molecules Aligned Both Parallel and Perpendicular to the Optic Axis. Phys. Rev. Lett.,1998, Vol.81,5322-5325
    [12]Fasel S, Alibart O, Tanzilli S, Baldi P, Beveratos A, Gisin N and Zbinden H High quality asynchronous heralded single-photon source at telecom wavelength, New J. Phys.2004, Vol.6,163
    [13]Castelleto S, Degiovanni I P, Schettini V and Migdall A, Optimizing single photon source heralding efficiency and detection efficiency metrology at 1550 nm using periodically poled lithium niobate, Metrologia,2006, Vol.43, S56-60
    [14]Soujaeff A, Takeuchi S, Sasaki K, Hasegawa T and Matsui M Heralded single photon source at 1550 nm from pulsed parametric down conversion, J. Mod. Opt. 2007,Vol.54,467-71
    [15]M. Bohmer and J. Enderlein. Orientation imaging of single molecules by wide-field epifluorescence microscopy. J. Opt. Soc. Am. B,2003, Vol.20,554-559
    [16]J. K. Thompson, J. Simon, H. Loh, V. Vuletic, A high-brightness source of narrowband, identical photon pairs. Science,2006, Vol.313,74
    [17]C. W. Chou, S. V. Polyakov, A. Kuzmich, H. J. Kimble, Single-photon generation from stored excitation in an atomic ensemble, Phys. Rev. Lett.,2004, Vol.92,213601
    [18]M. D. Eisaman, L. Childress, A. Andre, F. Massou, A. S. Zibrov, and M. D. Lukin. Shaping quantum pulses of light via coherent atomic memory, Phys. Rev. Lett.2004, Vol.93,233602
    [19]M. D. Eisaman, A. Andre, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, Electromagnetically induced transparency with tunable single-photon pulses. Nature (London),2005,Vol.438,837
    [20]T. Chaneliere, D. Matsukevich, S. Jenkins, S. Lan, T. Kennedy, and A. Kuzmich, Entanglement of remote atomic qubits. Nature (London),2005, Vol.438,833 ().
    [21]T. Chaneliere, D. Matsukevich, S. Jenkins, S. Lan, T. Kennedy, and A. Kuzmich, Entanglement of remote atomic qubits. Nature (London),2005, Vol.438,833
    [22]B. Lounis and M. Orrit. Single-photon sources. Rep. Prog. Phys.,2005, Vol.68, 1129-1179
    [23]F. Kulzer, and M. Orrit. Single-Molecule Optics. Annu. Rev. Phys. Chem.,2004, Vol. 55,585-611
    [24]B. Lounis and M. Orrit. Single-photon sources. Rep. Prog. Phys.,2005, Vol.68, 1129-1179
    [25]S. L. Dong, T. Huang, Y. Liu, J. Wang, G. F. Zhang, L.T. Xiao, S. T. Jia. Fast recognition of single molecules based on single event photon statistics. Phys. Rev. A, 2007, Vol.76,063820
    [26]M. A. Lieb, J. M. Zavislan, and L. Novotny. Single-molecule orientations determined by direct emission pattern imaging. J. Opt. Soc. Am. B,2004, Vol.21,1210-1215
    [27]T. Ha, T. Enderle, D. S. Chemla, P. R. Selvin, and S. Weiss. Single molecule dynamics studied by polarization modulation. Phys. Rev. Lett.,1996, Vol.77, 3979-3982
    [28]Z. Sikorski, and L. M. Davis, Engineering the collected field for single-molecule orientation determination. Opt. Express,2008, Vol.16,3660-3673
    [29]B. Sick, B. Hecht, and L. Novotny. Orientational imaging of single molecules by annular illumination. Phys. Rev. Lett.,2000, Vol.85,4482-4485
    [30]N. Tomczak, Renaud A. L. Vallee, Erik M. H. P. van Dijk, Maria Garcia-Parajo, Laurens Kuipers, Niek F. van Hulst, and G. Julius Vancso. Probing polymers with single fluorescent molecules. Euro. Polym. J,2004, Vol.40,1001-1011
    [31]A. Schob, F. Cichos, J. Schuster, and C. von Borczyskowski. Reorientation and translation of individual dye molecules in a polymer matrix. Euro. Polym. J,2004, Vol.40,1019-1026
    [32]T. Ha, J. Glass, T. Enderle, D. S. Chemla, and S. Weiss. Hindered rotational diffusion and rotational jumps of single molecules. Phys. Rev. Lett.,1998, Vol.80,2093-2096
    [33]K. D. Weston and L. S. Goldner. Orientation imaging and reorientation dynamics of single dye molecules. J. Phys. Chem. B,2001, Vol.105,3453-3462
    [34]C. J. Ellison, and J. M. Torkelson. The distribution of glass- transition temperatures in nanoscopically confined glass formers. Nat. Mater.,2003, Vol.2,695-700
    [35]E. Arunkumar, C. C. Forbes, B. C. Noll, and B. D. Smith. Squaraine-Derived Rotaxanes:Sterically Protected Fluorescent Near-IR Dyes. J. Am. Chem. Soc.,2005, Vol.127,3288-3289
    [36]J. R. Dutcher and M. D. Ediger. Glass surfaces not so glassy. Science,2008, Vol.319, 577-578
    [37]Z. Fakhraai, and J. A. Forrest. Measuring the Surface Dynamics of Glassy Polymers. Science,2008, Vol.319,600-604
    [1]D. W. Pohl, W. Denk, and M. Lanz. Optical stethoscopy:Image recording with resolution λ/20, Appl. Phys. Lett.,1984, Vol.44,651-653
    [2]E. Betzig and J. K. Trautman. Near-field optics:Microscopy, spectroscopy, and surface modification beyond the diffraction limit, Science,1992, Vol.257,189-195
    [3]E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer. Near-field scanning optical microscopy (NSOM):Development and biophysical applications, Biophys. J.,1986, Vol.49,268-279
    [4]A. Lewis, M. Isaacson, A. Harootunian, and A. Muray. Development of a 500A resolution light microscope, Ultramicroscopy,1984, Vol.13,227-231
    [5]L. Novotny and D. W. Pohl. Light propagation in scanning near-field optical microscopy. Eds. Norwell, MA:Kluwer,1995, NATO ASI Series,21-23.
    [6]G. J. Brakenhoff, H. T. M. vande Voort, E. A. van Spronsen, W.A. Linnemans, and N. Nanninga. Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy. Nature,1985, Vol.317,748-749
    [7]R. Rigler, U. Mets, J. Widengren, and P. Kask. Fluorescence correlation spectroscopy with high count rate and low background:Analysis of translational diffusion, Eur. Biophys. J.,1993, Vol.22,169-175
    [8]M. Bohmer, F. Pampaloni, M. Wahl, H. J. Rahn, R. Erdmann, and J. Enderlein. Time-resolved confocal scanning device for ultrasensitive fluorescence detection. Rev. Scie. Instr.,2001, Vol.72(11),4145-4152
    [9]T. Basche, and W. E.Moerner. Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. Phys. Rev. Lett.,1992, Vol.69,1516
    [10]C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter. Stable Solid-State Source of Single Photons. Phys. Rev. Lett.,2000, Vol.85, No.2,290-293
    [11]F. Treussart, A. Clouqueur, C. Grossman and J. F. Roch, Photon antibunching in the fluorescence of a single dye molecule embedded in a thin polymer film, Opt.Lett., 2001, Vol.26, No.19,1504-1506
    [12]James S. Allen. The detection of single positive ions, electrons and photons by a secondary electron multiplier. Phys. Rev.,1939, Vol.55, No.1,966-967
    [13]B. Lounis, and M. Orrit. Single-photon sources. Rep. Prog. Phys.,2005, Vol.68 1129-1179.
    [14]B. Lounis, W. E. Moerner, Single photons on demand from a single molecule at room temperature. Nature,2000, Vol.407, No.6803,491-493
    [15]董双丽,室温单分子的动力学和光谱特性研究,山西大学博士论文,2009
    [16]S. Fray, F. A. Johnson, R. Jones, T. P. McLean, and E. R. Pike. Photon-counting distributions of modulated laser beams. Phys. Rev.,1967, Vol.153, No.2,357-359
    [17]E. Gomez, F. Baumer, A. D. Lange, G. D. Sprouse, and L. A. Orozco, Lifetime measurement of the 6s level of rubidium. Phys. Rev. A,2005, Vol.72, No.1,012502
    [18]E. B. Shera,N. K. Seitzinger, L. M. Davis, R. A. Keller, and S. A.Soper, Detection of single fluorescent molecules. Chem. Phys. Lett.,1990, Vol.174,553-557
    [19]R. Alleaume, F. Treussart, J.-M. Courty and J.-F. Roch., Photon statistics characterization of a single-photon source. New J. Phys.,2004, Vol.6,85
    [20]X. Michalet, and S. Weiss. Single-molecule spectroscopy and microscopy. C. R. Physique,2002, Vol.3,619-644
    [21]W. E. Moerner. Examining nanoenvironments in solids on the scale of a single isolated impurity molecule. Science,1994, Vol.265,46-53
    [22]M. Bohmer, and J. Enderlein. Fluorescence spectroscopy of single molecules under ambient conditions:methodology and technology. Chem. Phys. Chem.,2003, Vol. 48.,793-808
    [23]G. F. Zhang, L. T. Xiao, R. Y. Chen, Y. Gao, X. B. Wang and S. T. Jia, Single molecule interfacial electron transfer dynamics manipulated by an external electric current. Phys.Chem. Chem. Phys.,2011, Vol.13,13815-13820
    [24]J. L Skinner, and W. E. Moerner. Structure and dynamics in solids as probed by optical spectroscopy. J. Phys. Chem.,1996, Vol.100,13251-13262
    [25]E. Geva, and J. L.Skinner Theory of single-molecule optical lineshape distributions in low-temperature glasses. J. Phys. Chem. B,1997, Vol.101,8920-8932
    [26]D. Toptygin, R. S. Savtchenko, N. D. Meadow, S. Roseman, and L. Brand. Effect of the solvent refractive index on the excited-state lifetime of a single tryptophan residue in a protein. J. Phys. Chem. B,2002, Vol.106,3724-3734
    [27]L. A. Deschenes,and D. A. Vanden Bout. Single molecule photobleaching:increasing photon yield and survival time through suppression of two-step photolysis. Chem. Phys. Lett.,2002, Vol.365,387-395
    [28]B. R. Hanbury, and R. Q. Twiss. Correlation between photons in two coherent beams of light. Nature,1956, Vol.177,27-32
    [29]P. Zhang, and W. H. Tan, Direct observation of single-molecule generation at a solid liquid interface. Chem-Eur J,2000, Vol.6(6),1087-1092
    [30]L. Cail, N. Friedman and X. S. Xie, Stochastic Protein Expression in Individual Cells at the Single Molecule Level. Nature,2006, Vol.440,358.
    [31]W. Xu, J. S. Kong, Y.-T. E. Yeh and P. Chen, Single-Molecule Nanocatalysis Reveals Heterogeneous Reaction Pathways and Catalytic Dyna. Nat. Mater.,2008, Vol.7,992-996.
    [32]Y. Nosaka, T. Daimon, A. Y. Nosaka and Y. Murakami, Singlet oxygen formation in photocatalytic TiO2 aqueous suspension, Phys. Chem. Chem. Phys.,2004, Vol.6, 2917
    [33]G. F. Zhang, F. Zhang, X. B. Wang, R.Y. Chen, L. T. Xiao, and S.T. Jia. A new method to analyze orientation hopping of single molecules on polymer films. J. Phys. Soc. Jpn.,2010, Vol.79,064605

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700