用户名: 密码: 验证码:
基于Bmamy2基因的家蚕起源与分化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
家蚕的起源与分化不仅是基础科学问题,也是有关蚕业发生历史和产业发展的重大实践问题,其研究不仅具有重要的理论价值,而且对家蚕的品种鉴定、基因资源利用、杂种育种等产业实践具有重要指导意义。自印度昆虫学家霍顿提出家蚕的种源问题后,逐渐引起各国学者的注意。自1915年日本学者青木清首先用血清沉淀反应研究家蚕与野蚕的亲缘关系始,近一个世纪以来,中外学者,特别是中日学者从文献学、气候学、古生物学、生态地理学、考古学、遗传学、生理生化学、细胞学、分子标记(RAPD、AFLP、SSR等)、DNA序列分析等多角度、多层次进行了广泛、深入的探索,取得重要研究成果。首先明确并达成一致共识:家蚕来源于野桑蚕,中国野蚕是家蚕的直系祖先,日本野蚕与中国野蚕存在较大的遗传分化,对家蚕的起源没有直接贡献;家蚕最早起源于中国,野蚕在中国被驯化成家蚕后向世界各地传播,各地地理气候和人文社会环境不同,经过长期的生殖隔离、自然选择和人工定向选育,逐渐形成了不同的地理系统和生态类型。但是,在家蚕的起源地域和分化模式上,不同学者使用不同的技术手段、实验材料和分析方法,得出不同的结论,影响较大的主要有三种观点:一是以日本学者吉武成美教授为代表,基于家蚕地方品种多种酶系的同工酶多态性提出的“一化性一中心学说”;二是以我国学者蒋猷龙教授为代表的“多化性多中心学说”,其学术依据主要是古生物学、古气候学和考古学资料:三是西南大学鲁成教授依据现代分子标记研究提出的“混化性起源学说”。
     DNA是直接的遗传物质,所提供的遗传信息比其它形态标记、生化标记更加准确可靠。DNA序列分析通过测定核酸一级结构中核苷酸组成和排列顺序来比较同源分子之间的相关性,其揭示的遗传信息比其它分子标记更加丰富和详细,在生物的起源进化研究特别是短期驯化物种的起源进化研究上具有明显的优势,是目前分子进化及系统发育研究最有效、最可靠的方法。家蚕驯化时间短,且研究的是物种内不同类型间的亲缘关系,特别需要一个快速进化的基因作为检测标记。淀粉酶在猪、绵羊、家蚕及果蝇等多个物种中表现出较高的同工酶谱多样性及核苷酸多态性,广泛用于进化研究。本研究通过生物信息学分析、文献研究和序列测定确证Bmamy2是一个快速进化、多态性丰富的基因,且具有合适的基因结构,便于同时利用外显子和内含子携带的遗传信息进行综合分析,结论更加全面、可靠。实验以大量典型家蚕地方品种和有代表性的野蚕地理类型为材料,以Bmamy2基因为标记,通过DNA序列多态性探索家蚕的起源与分化模式,获得的主要结果如下:
     1.α-淀粉酶基因的生物信息学分析
     α-淀粉酶是一个与生命活动紧密相关的多基因家族,在不同物种中具有不同的基因结构和分布特点。在三刺鱼、非洲爪蟾、鸡以及人等脊椎动物中,物种间和物种内不同基因拷贝间具有保守的基因结构,分布在一条染色体上,存在较多的重叠基因;物种内不同基因拷贝间氨基酸序列相似性极高,物种间序列相似性低。而在果蝇、蚊子和家蚕等昆虫中,α-淀粉酶基因没有类似的保守结构和重叠基因,不同拷贝以串连形式分布在多条染色体上:物种内和物种间不同基因拷贝间序列相似性较低。在秀丽隐杆线虫等低等生物基因组中只有一个α-淀粉酶基因拷贝,在昆虫、哺乳动物等高等生物中发生了显著的基因扩增,基因数量明显增加。脊椎动物中各淀粉酶基因严格按物种聚类,物种间没有交叉,推测基因扩增发生在物种分化之后。昆虫中,α-淀粉酶基因起源进化关系复杂,蚊子和果蝇同属双翅目,但基因拷贝数相差很多,表明两物种分化形成后蚊子中发生了显著的基因扩增;嗜凤梨果蝇和黑腹果蝇同属果蝇科,亲缘关系很近,在两物种分化形成后,嗜凤梨果蝇又发生了基因扩增,形成相对较多的基因拷贝。蚊子和家蚕虽然分属不同的目,但两者的α-淀粉酶基因却表现出较为相似的分化模式;各物种中α-淀粉酶基因都聚类成彼此间遗传差异较大的两族,其中一族与细菌具有较近的遗传距离;物种分化形成后发生了基因扩增事件,形成较多的基因拷贝。家蚕Bmamy2、Bmamy3、Bmamy4三个基因在同一染色体上紧邻着串连排列,且具有及其相似的基因结构,可能通过基因重复而产生,但三个基因的核苷酸序列差异显著,推测三基因经受了不同的进化选择。
     2.家蚕Bmamy2基因的克隆、表达及序列分析
     克隆测序了家蚕Bmamy2基因编码区序列,是家蚕基因组中第一个有实验证据的淀粉酶基因序列。家蚕Bmamy2基因CDS全长1752bp,除起始密码子外,编码583个氨基酸,有8个内含子,其中第一、第六、第七和第八内含子较长,分别为393bp、505bp、647bp和1828bp,其余均在100bp左右;除第四外显子较长外(582bp),其余外显子均小于100bp;外显子/内含子边界符合GT-AG规则。芯片数据和RT-PCR检测一致表明Bmamy2在家蚕幼虫中肠和脂肪体中表达,且中肠中表达量极高,脂肪体中表达量较低,在头部、表皮、血液、丝腺、精巢和卵巢等组织中不表达。功能结构域预测发现催化中心的两个关键氨基酸发生突变(D258Y,D423P),该酶可能已失去催化水解碳水化合物的功能。Bmamy2基因在细菌等微生物中存在直系同源基因,碱基变异丰富,家蚕地方品种中碱基突变率5.6%,野蚕中碱基突变率8.3%,遗传多样性高,没有明显的碱基使用偏好和特别长的内含子间隔,是家蚕多样性检测较好的标志基因。
     3.家蚕的种群结构及遗传分化
     虽然按地理系统和生态类型取样,但系统发育分析并未检测到按系统或生态类型聚类的结果,分子方差分析也未检测到按系统或生态类型归类的组群结构。90个家蚕地方品种聚类成三大簇群,每一簇群均由来自不同系统和生态类型的品种构成,归属同一地理系统或生态类型的品种分布在不同的聚类枝上。三大簇群间存在较大的遗传距离,簇群内不同品种间遗传差异小。推测三大簇群分别来自三个独立的驯化起源。
     4.野蚕的多样性及地理种群结构
     野蚕是一个在东南亚地区尤其是中国广泛分布的物种,具有一化性、二化性及多化性等多种生态类型,在眠性上有三眠蚕、四眠蚕及少数的五眠蚕。野蚕的多样性在形态特征、生态类型、发育生理、食性、抗性及多种分子标记等各个方面和层次得到充分体现。基于Bmamy2基因部分区段的序列分析,不同个体间碱基突变率高达8.3%,内含子区域更高达10.8%,单倍型多样度h=0.987±0.023,核苷酸多样性π=0.02281±0.0034。野蚕的生态学特征之一是群体发育极不整齐,典型的现象是越年卵孵化的长期化和蛹期发育的多样化,发育早的已完成一个世代,而发育迟的尚未出壳,造成世代重叠。分子方差分析显示,野蚕没有形成稳定的地理组群结构,彼此间亲缘关系的疏密与空间距离的远近没有必然联系。聚类分析中,来自不同地区的野蚕同聚在相同的聚类枝上,表现较近的亲缘关系;而同一地区的个体却分布于不同聚类枝上,亲缘关系较远。各地野蚕是多种眠性和生态类型混栖的混杂群体。
     5.家蚕的起源与分化
     基于Bmamy2基因的序列多态性,应用系统发育分析、Network分析、AMOVA分析等多种分析方法,检测到一致的系统发育模式。90个家蚕和野蚕样本混合聚集成不同的聚类簇群,每一簇群都同时由家蚕和野蚕组成,家蚕来自不同的地理系统和生态类型;簇群间具有较大的遗传距离,簇群内的不同品种间遗传差异较小。不同系统或生态类型的家蚕品种具有相似的分化程度,与野蚕间具有相似的遗传距离,应当具有相似的驯化起源时间,经历了相似的分化历程,而各地野蚕又是多种类型的混杂群体,推测从野蚕到家蚕的驯化当是由多种类型的野蚕同时开始的。聚类簇群间较大的遗传距离表明不同簇群可能具有不同的起源背景和进化经历,来源于不同的地理区域。即,家蚕很可能是在几个不同地域由多种生态类型混杂的野蚕驯化而成的,起源之初就有多种化性的遗传背景,家蚕的起源为“混化性多地域”模式。多种化性的家蚕向世界各地传播,适应当地的自然气候和人工选择,逐渐分化形成不同的地理系统和生态类型。
With important theory value and practice guidance to variety identification,resource using and hybrid vigour application,it is an important basic science subject about the sericulture history and sericultural industry production to study the origin and differentiation of silkworm,Bombyx mori.A lot of researchers from many countries have been attracted by the subject of the origin of silkworm since Indian entomologist,Hutton,pointed out it.1915,Japanese scholar,Qing mu qing,studied the relationship between B.mori.and Bombyx mandarina with blood serum-sediment reaction method, after that in about a centry,many researchers from internal and foreign,especially from China and Japan had made many efforts and obtained a lot of results by using various methods,such as bibliography,climatology,palaeobiology,bioecology,geography,archaeology,genetics,physiology, biochemics,cytology,molecular markers(RAPD,AFLP,SSR,etc),DNA sequence analysis,etc. They made a general approval that B.mori originated from Chinese Bombyx mandarina and were bred into different geography systems and ecological types by nature and artificial selection in the other world after spread from China,but there has long been dispute about where and how B.mori originated at the first time.There are three main hypotheses.The first is "univoltine and one centre" hypothesis pointed out by Jiwu based on the isoenzyme polymorphism of several enzymes.The second is the "multi-voltine and multi-centre" theory pointed out by Prof.Jiang based on the information of palaeobiology,climatology,and archaeology.The third is the "mix-voltine" theory pointed out by Prof.Lu based on the research using molecule markers.
     DNA is true genetic material which can provide more accurate genetic information than morphological and biochemical markers.Molecular phylogenetic analysis based on DNA sequences is the best effective and reliable method for systematics of organisms especially for those domesticated species.However,to investigate phylogenetic relationships among closely related species,it is necessary to look for a rapidly evolved gene.In this study,I sequencedα-amylase gene of different silkworm strains and different B.mandarina populations to study the origin and differentiation of domesticated silkworm,B.mori.The major results are as follows
     1.The bioinformatics analysis of theα-amylase gene
     α-amylase gene is a multi-gene family with improtant function for animals.Different species have differentα-amylase gene structures and corresponding distribution patterns in respective genomes.In some vertebrate,such as Gasterosteus aculeatus,Xenopus tropicalis,Gallus gallus and Homo sapiens,there are many overlapping genes and the a-amylase genes from different species have conservative structure,the different gene copies intra-species resemble in amino acid sequence extremely.But in some insects,such as Drosophilidae,Culicidae and B.mori,there is no overlapping gene and the genes have no conservative structure,the different gene copies within-species differ in amino acid sequence greatly.Theα-amylase genes differentiate extremely and display rich polymorphism in Culicidae and B.mori.There is only one copy ofα-amylase gene in C.elegans genome,while the gene family enlarged greatly in higher animal such as insect and mammal.The different gene copies intra-spesies cluster together respectively suggesting the gene copied after the species split in vertebrate,but in insect the clusters consist of gene copies from different species suggesting the gene copied before the species split.Further,theα-amylase gene families enlarged greatly after species split in Culicidae and B.mori.The gene copise from Culicidae and B.mori cluster into two clustes,one of which keeps close relationship with bacteria.Three of B.moriα-amylase genes with similar gene structure distribute in the same chromosome implying the copy relation.
     2.The cloning,expression pattern and sequence analysis of Bmamy2 gene in silkwom,B.mori.
     Bmamy2 CDS is 1752bp long and codes for 583 amino acids.There are 8 introns following the "GT-AG" rule in Bmamy2 gene and the first intron is 393bp long,the sixth 505 bp,the seventh 647bp,the eighth 1828bp,the others about 100bp;and the fourth exon is the longest,582bp,the others are short than 100bp.The Bmamy2 gene is expressed highly in midgut,lowly in fat body while not in head,epidermis,hemolymph,silk gland,testes,ovary inspecting by RT-PCR and microarray.It may lose the function to catalyze hydrolysis carbohydrate caused by the two key amino acid mutations in the catalysis centre(D258Y,D423P).The Bmamy2,which has orthologous gene in bacterium,is a fine marker to investigate polymorphism in silkworm.Our results suggested that nucleotide mutation rate is 5.6%in B.mori and 8.3%in B.mandarina.
     3.The population structure and genetic differentiation in B.mori.
     Although we initially sampled the silkworm according to ecological type classification,we failed to identify ecological type-specific clades in the study.Three clades were identified in 72 local strains,each of which consists of strains from different ecological types while the same ecology type strains distribute in different clades.There is great genetic diversity among clades and small diversity within clade among strains.It is presumed that several domestication events took place at different sites independently to make mix-voltine B.mandarina into mix-voltine B.mori.
     4.The geographic population structure and polymorphism in B.mandarina
     The B.mandarina is whidespread in Southeast Asia especially in China with multiple voltine of univoltine,divoltine and multi-voltine,and multiple molts of three molts,four molts and fewer five molts.B.mandarina has big polymorphism in morphological and ecological traits,development, food habit,resistance and molecular marker.Based on partial sequence of Bmamy2 gene,the nucleotide mutation rate is 8.3%in entire sequence and 10.8%in intron sequence,the haplotype diversity is 0.987±0.023,the nucleotide diversity is 0.02281±0.0034.Overlapping generation is one of the most popular ecology characteristic to B.mandarina for eggs hatching chronically and pupa development diversify,some have completed a generation while some did not hatch.It is a method to survive hard condition and keep up hybrid vigour avoiding sib mating.AMOVA indicates that being of mix-populiation of several ecological types and molts;there is no geographic population structure in B.mandarina anywhere.The genetic distance is not correlated with space distance.On the phylogenetics tree,the individuals from different regions clustered in the same clade,while the individuals from the same region distribute in different clades.
     5.The origin and differentiation of silkworm,B.mori.
     The same phylogenetic pattern is revealed by several inspections such as phylogenetics analysis, network analysis,AVOVA analysis,based on the nucleotide sequence polymorphism of Bmamy2 gene.90 samples of B.mori and B.mandarina clustered into four clades,each of which consists of B. mori from different ecological types and B.mandarina from different regions,with great genetic diversity between clades and small diversity between strains within clades.The domestication should start at multi-type B.mandarina because the B.mandarina are mix-typed populations anywhere and the silkworm strains in different ecological types might experience the same evolutionary process.The great genetic diversity between clades reveals the different geographic origin of silkworm in different clades.In summary,our results suggest that the silkworms originated from mix-typed B.mandarina in several different regions.
引文
[1]孙承铣.关于家蚕远祖的研究.广东蚕丝通讯.1961,3(3):35-39
    [2]四川省蚕业制种公司主编.蚕种繁育技术手册.成都:四川科学技术出版社,1993:32-34
    [3]中国农科院蚕业研究所.中国家蚕品种志.北京:中国农业出版社,1987:1-3
    [4]向仲怀.蚕丝生物学.北京:中国林业出版社,2005:1-2
    [5]杨瑞生,于威,秦利,张涛,石生林,李群.沈阳地区野桑蚕生物学特性的研究.中国蚕业.2006,27(4):20-22
    [6]彭云武,楚渠,胡必利,郝利军.秦巴山区野桑蚕的生物学特性研究.陕西农业科学.2006,1:17;20
    [7]王长青,吉志新.野桑蚕生物学特性及防治的研究.沈阳农业大学学报.1996,27(2):178-179
    [8]沈荣武,尹益寿,吴德龙,魏洪义,占根祥.野桑蚕年发生代数及各虫态历期的观察.蚕桑茶叶通讯.1996,3:5-8
    [9]三卫民,张巧妹,顾菊根,张秋侠,堵鹤鸣.野桑蚕的发生特点和防治.江苏蚕业.1997,3:14-16
    [10]于继彬,季平,沈卫德.野桑蚕的遗传多样性及其研究进展.中国蚕业.2001,22(4):51-52
    [11]段佑云.家蚕起源于黄河中游中华民族发祥地.蚕业科学.1983,(1):50-56
    [12]纪大椿.清末南疆的蚕桑业.新疆大学学报(哲学人文社会科学版).1980,3:99-102
    [13]张小忠.山西阳城地区野桑蚕的生活习性与防治.北方蚕业.1999,(20)3:25;31
    [14]王高顺.蚕的发生与滞育生理.广西蚕业.1978,4:12-20
    [15]李兵,于继彬,耿世勇,查新民,季平,沈卫德.太湖流域野桑蚕的生态学研究.蚕业科学.2003,29(1):78-82
    [16]黄尔田.野桑蚕越冬卵的孵化和年发生代数的研究.蚕业科学.1985,11(4):194-200
    [17]孟智启.家蚕、野桑蚕染色体结构变异的细胞生物学研究.博士学位论文.杭州:浙江大学,2000
    [18]殷如龙,沈智蓉,浦冠勤.野桑蚕的研究现状与进展.江苏蚕业.2007,3:1-3
    [19]沈卫德,卫正国,张雨青,胡雨亭,浜野国胜.中日野桑蚕蛹期发育的多样性.蚕业科学.2001.27(4):277-282
    [20]Lees A D.The physiology of diapause in arthropods.London:Cambridge university press,1955:253
    [21]Kobayashi J.Effect of photoperiod on the duration pupal stage of the wild silkworm Bombyx mandarina moore.wildsilkworm.1991,90:57-64
    [22]潘学燕,孙日彦,樊孔彰,等.剑蚕草养蚕试验简报.陕西蚕业,1991(4):39-40
    [23]孙守琢.高产优质的青饲料—剑蚕草.饲料博览.1996,8(4):24-25
    [24]中国农业科学院蚕业研究所.中国家蚕品种志.北京:农业出版社,1987:1-16
    [25]李竞,房守敏,刘文明,李斌,苗雪霞,黄勇平,鲁成.SSR标记在中国野桑蚕和家蚕的遗传多态性分析中的应用.蚕业科学.2005,31(3):251-256
    [26]余红仕,鲁成,周泽扬,向仲怀.中国野桑蚕DNA多态性研究初报.蚕业科学.2000,26(2):94-98
    [27]鲁成,余红仕,向仲怀.中国野桑蚕和家蚕的分子系统学研究.中国农业科学.2002,35(1):94-101
    [28]鲁成,余红仕,向仲怀.基于RAPD分析的中国野桑蚕和家蚕遗传多样性和系统发育关系研究.昆虫学报,2002,45(2):198-203
    [29]鲁成,程道军,向仲怀,伴野丰,藤井博.中国野桑蚕和日本野桑蚕的RAPD研究.蚕业科学.2002,28(1):17-21
    [30]鲁成,赵爱春,向仲怀,万春玲冲国野桑蚕遗传多样性的AFLP分析.动物学研究.2002,23(2):166-172
    [31]卫正国.野桑蚕抗性的研究.硕士学位论文.苏州:苏州大学2004
    [32]蒋献龙.家蚕的起源和分化.南京:江苏科学技术出版社,1982
    [33]吉武成美,蒋猷龙.家蚕的起源和分化研究.农业考古.1987,(2):316-324;1988,(1):268-279
    [34]宋方洲,向仲怀.绢丝昆虫染色体研究进展(续).蚕学通讯.1996,16(3):28-35
    [35]Arunkumar K P,Muralidhar M,Nagaraju J.Molecular phylogeny of silkmoths reveals the origin of domesticated silkmoth,Bombyx mori from Chinese Bombyx mandarina and paternal inheritance of Antheraea proylei mitochondrial DNA.Molecular Phylogenetics and Evolution.2006,40:419-427
    [36]谷津直透.家蚕和野蚕的染色体.蚕丝学报.1913,(22):259
    [37]曾锦标.家蚕与野蚕的杂交及其染色体的初步观察.蚕桑通报.1978,??
    [38]杨希哲,蒋同庆,傅锡山,等.家蚕与桑蚕(野)一些数量性状的比较研究.蚕学通讯.1984(2):42-60
    [39]吉武成美,秋山昌子.家蚕幼虫血液酸性磷酸酶型的品种间差异.日蚕杂,1965,34(2):99-103
    [40]蒋同庆,向仲怀,王枫,等.家蚕血液脂酶的生化遗传学研究.蚕学通讯.1986(4):19-23
    [41]吉武成美.从各种酶型看家蚕和野桑蚕的血缘关系.Jap J Genet.1966,259-267
    [42]何家禄.家蚕血液脂酶同工酶.蚕业科学.1981,7(1):65-67
    [43]何家禄,易文仲.家蚕不同品种血液脂酶图谱的研究.蚕业科学.1983,9(2):103-106
    [44]松村季美.家蚕日本种、中国种、热带种及欧洲种的淀粉酶型的分布.蚕丝实验场报告.1951(13):521-533
    [45]蒲生卓磨,大家雍雄.基于血液蛋白质类型的蚕品种的系统发生学研究.蚕丝实验场报告.1980,28(1):15-50
    [46]藤本直正,林屋庆三.关于茧色素的研究.日蚕杂.1960,28(1):30-32;28(2):84-87
    [47]藤本直正,林屋庆三.关于茧色素的研究.日蚕杂,1960,29(5):420-424;29(6):495-500
    [48]向仲怀.家蚕、野蚕与桑蛾卵壳表面构造的观察比较.蚕业科学.1988,14(4):215-21
    [49]岛田透.基因变化与生物进化.蚕丝科学与技术.1995,34(4):40-41
    [50]桂慕燕,左正宏,陈元霖.五种绢丝昆虫随机扩增多态性DNA分析.遗传.2001,23(1):25-28
    [51]鲁成,赵爱春,周泽扬,等.中国野桑蚕和家蚕的AFLP分析.蚕业科学.2001,27(4):243-252
    [52]Yamauchi Y,Charles H,Alvin Y,et al.cDNA and deduced amino acid sequences of apolipophorin-iiis from Bombyx mori and Bombyx mandarina.Archives of Insect biochemistry Physiology.2000,43:16-21
    [53]吉武成美.家蚕日本种起源的考察.日蚕杂.1968,37(2):83-87
    [54]夏庆友,周泽扬,鲁成,向仲怀.家蚕不同地理品种分子系统学研究.昆虫学报.1998,41(1):32-40
    [55]Muwang L,Li S,Anying X,Xuexia M,Chengxiang H,Pingjiang S,Yuehua Z,Yongping H.Genetic diversity among silkworm(Bornbyx mori L,Lep.,Bornbycidae) germplasms revealed by microsatellites.Genome.2005,48:802-810
    [56]房守敏.基于GeneScan技术的家蚕起源与进化研究.硕士学位论文.重庆:西南大学,2005
    [57]刘志.家蚕系统进化的SSR-GeneScan分析.硕士学位论文.重庆:西南大学,2007
    [58]蒋猷龙.家蚕的起源和分化研究进展.农牧情报研究.1989,(7):43-47
    [59]段佑云.家蚕起源于黄河中游中华民族发祥地.蚕业科学.1983,(1):50-56
    [60]尹良莹.中国蚕丝业发明与传播之研究.文艺复兴月刊.1976,(72):1-17
    [61]邹景衡.中国蚕业起源之初步探讨.台湾教育.1981,(363):13-22
    [62]蒋猷龙.数千年来我国桑蚕在家养下的变化.昆虫学报.1977,20(3):345-351
    [63]石声汉.中国农业遗产要略.北京:农业出版社,1980
    [64]杨宗万.从乡贡“八蚕之绵”探索我国南方蚕业的起源.农史研究.1982(2),96-104
    [65]周晦若,陈健.蚕丝溯源.成都:四川省纺织工程学会,1980
    [66]李济.西阴村史前遗存.北京:清华研究院丛书,1927
    [67]高汉玉.从出土文物追溯蚕丝业的起源.蚕桑通报.1981(1):17-24
    [68]周匡明.养蚕起源问题的研究.农业考古.1982,(1):133-138
    [69]蒋同庆等.家蚕与桑蚕一些数量形质的比较与进化.蚕学通讯.1984(2)42-60
    [70]魏东.略论中国养蚕业起源于长江三角洲.中国农史.1983(1):72-78
    [71]魏东.先秦时期中国养蚕业中心地区的变迁.丝绸史研究.1984(1):21-27
    [72]川口荣作.家蚕和野蚕杂交后代的细胞学研究.动物学杂志.1923,35:427-429
    [73]Nakamura T,Banno Y,Nakada T,et al.Geographic dirnorphism of the wild silkworm,Bombyx mandarina,in the chromosome number and the occurrence of a retroposon like insertion in the arylphorin gene.Genome.1999,42(6):1117-1120
    [74]Yutaka B,Yutaka K.Postreductional meiosis revealed in males of the mutant with chromosomal aberration“T(23;25)Nd”of the silkworm.Seric.Sci.Jap.1995,(5)
    [75]孟智启,徐俊良.中国野蚕染色体结构及其变异的研究.蚕业科学.2000,26(1):5-10
    [76]吉武成美.蚕品种的分化.蚕丝科学技术.1966(8):68-71;(9):53-57;(10):36-39
    [77]唐维六,毛秋霞.家蚕同工酶与起源分化的研究.广东蚕业.1988,(4):49-60
    [78]毛秋霞,唐维六.家蚕与野蚕同工酶比较初探.广东蚕业.1990,(3):28-31
    [79]黄原.分子系统学—原理、方法及应用.北京:中国农业出版社,1998
    [80]Amold M L.Natural hybridizaiion as an evolutionary process.Annu Rev Ecol Syst,1992,23:237-261
    [81]张会,杜桂森.苔醉植物分子系统学研究进展.首都师范大学学报(自然科学版).2002,23(2):57-60
    [82]成新跃,周红章,张广学.分子生物学技术在昆虫系统学研究中的应用.动物分类学报.2000,25(2):121-133
    [83]黄原,袁锋,周尧.昆虫核酸分子系统学研究进展.昆虫分类学报.1995,17(3):180-184
    [84]卜云,郑哲民.COⅡ基因在昆虫分子系统学研究中的作用和地位.昆虫知识.2005,42(1):18-22
    [85]Berg O G,Kurland C G.Why mitoehondrial genes are most often in nuclei.Mol Biol Evol.2000,17(6):951-961
    [86]Wilson A C,Cann R L,Carr S M.Mitochondrial DNA and two perspective on evolutionary genetics.Biol J Linn Soc.1985,26:375-400
    [87]Avise J C,Arnokl J,Ball R M.Intraspecific phylogeography:the mitochondrial DNA brige between population genetics and systematics.Annu Rev Ecol Syst,1987,18:489-522
    [88]张亚平,施立明.动物线粒体DNA多态性的研究概况.动物学研究.1992,13(3):289-298
    [89]魏彩虹.动物mtDNA遗传研究进展及在育种上的应用.甘肃畜牧兽医.1997,27(1):23-26
    [90]陈智毅,辜祥荣.桑蚕(Bombyx mori)卵线粒体DNA限制性内切酶图谱.生物化学与生物物理学报.1991,23(3):265-268
    [91]黄勇富,张亚平,邱祥聘,曾凡同,肖永祚.猪线粒体DNA多态性与中国地方猪种起源分化的关系.遗传学报.1998,25(4):322-329
    [92]Dubuy H G,Riley F L.Hybridization between the nuclear and kinetoplast DNA S of Leishmania enriettii and between nuclear and mitochondrial DNA'S of mouse liver.Proe Natl Acad Sci U S A,1967,(57):790-797
    [93]Lopez J V.Numt,a recent transfer and tandem amplification of mitoehondrial DNA to the nuclear genome of the domestic cat.J Mol Evol.1994,39:174-190
    [94]Bensasson D,Zhang D X.Mitochondrial pseudogenes:evolution's misplaced witnesses.Trends in Ecology and Evolution.2001,16(6):314-322
    [95]Allende L M,Rubio L.The old world sparrows(Genus Passer)phylogeography and their ralative abundance of nuclear mtDNA pseudogenes.J Mol Evol.2001,53:144-154
    [96]Sheldon F H.Relative patterns and Rates of Evolution in Heron Nuclear and Mitochondrial DNA.Mol Biol Evol.2000,17(3):437-450
    [97]Arctander P.Comparison of a Mitochondrial Gene and a corresponding Nuclear Pseudogene.Proceedings Biological Sciences.1995,262:13-19
    [98]Sorenson M D,Quinn T W.Numt:A challenge for avian systematics and population biology.The Auk.1998,115(1):214-221
    [99]Davis R E.Mutations in mitochondrial cytochrome f oxidase genes segregate with late-onset Ahheimer disease.Proc Natl Acad Sci USA.1997,94:4526-4531
    [100]刘泽,邹本玲,李庆伟.线粒体假基因-核基因组中的分子化石.辽宁师范大学学报(自然科学版).2005,28(2):233-235
    [101]Beja-Pereira A,England P R,Ferrand N,Jordan S,Bakhiet A O,Abdalla M A,Mashkou M,Jordana J,Taberlet P,Luikart G.African.origins of the domestic donkey.science,2004,jun 18,304(5678):1781
    [102]Manjunath B J,Pramod K R,Ajoy K M,Chris T S,Lalji S,Kumarasamy T.Phylogeography and origin of indian domestic goats.Mol.Biol.Evol.2004.21(3):454-462
    [103]赵凯,李军样,张亚平,罗静,李太平,吴华,田海宁.青海湖裸鲤mtDNA遗传多样性的初步研究.遗传.2001,23(5):445-448
    [104]王成辉,李思发,邹曙明.中国红鲤四群体线粒体DNA遗传多样性、起源及分化.水产学报.2004,28(6):641-644
    [105]俞民澍,邱信芳,薛京伦,刘祖洞,谈家桢,李厚军,刘德祥,李力,余伍忠,唐仙珍,周美蓉等.中国汉族、维吾尔族、哈萨克族和回族群体线粒体DNA多态性的研究.中国科学(B).1988,(1):60-70
    [106]Cann R L.DNA and human origins.Ann.Rev.Anthropol.1988,17(1):127-143
    [107]兰宏,王文,旋立明.西南地区家猪和野猪mtDNA遗传多样性研究.遗传学报.1995,22(1):28-33
    [108]Liu H,Beckenbach A T.Evolution of the mitochondrial cytochrome oxidase Ⅱ gene among 10orders of insects.Molecular Phylogenetics and Evolution.1992,1(1):41-52
    [109]Liu Y P,Wu G S,Yao Y G,Miao Y W,Luikart G,Baig M,Beja-Pereira A,Ding Z L,Palanichamy M G,Zhang Y P.Multiple maternal origins of chickens:Out of the Asian jungles.Molecular Phylogenetics and Evolution.2006,38(1):12-19
    [110]陈元霖,杜慕燕,凌建华.绢丝昆虫线粒体DNA多态性研究.遗传.1997,(增刊):43-45
    [111]廖顺尧,刘运强,鲁成,等.家蚕线粒体DNA限制性内切酶长度多态性研究.西南农业大学学 报.2001,23(1):29-32
    [112]何泽,陈淼,郑小坚,曹广力,薛仁宇,贡成良.中国野桑蚕mtDNA COⅡ-ATPase 6基因区域的序列测定及分析.苏州大学学报(工科版).2005,25(1):1-7
    [113]李爱玲,徐安英,沈兴家,唐顺明,张志芳,潘沈元.家蚕、野桑蚕线粒体Cytb基因片段序列分析及分子进化研究.蚕业科学.2004,30(1):84-84
    [114]陈丽媛,赵巧玲,沈兴家,张志芳,唐顺明,徐安英,张国政,郭锡杰.家蚕地方品种线粒体基因组A+T丰富区的序列及分子进化分析.蚕业科学.2007,33(1):5-13
    [115]郑小坚,沈卫德.蚕类昆虫线粒体DNA研究进展.中国蚕业.2003,(2):11-15
    [116]武伟.动物线粒体基因组组成与进化的生物信息学研究.博士学位论文.重庆:西南大学,2006:52
    [117]Lin C P,Bryan N D.How do insect nuclear and mitochondrial gene substitution patterns differ?Insights from Bayesiananalyses of combined datasets.Molecular Phylogenetics and Evolution,2004,30(3):686-702
    [118]Bourgoin T,Steffen-Campbell J D,Campbell B C.Molecular phylogeny of fulgoromorpha (Insecta,Hemiptera,Archaeorrhyncha).The enigmatic Tettigomet ridae:evolutionary affiliations and historical biogeography.Cladistics,1997,13(3):207-224
    [119]Mukha D,Wiegmann B M,Schal C.Evolution and phylogenetic information content of the ribosomal DNA repeat unit in the Blattodea(Insecta).Insect Biochemistry and Molecular Biology,2002,32(9):951-960
    [120]Muccio T D,Marinucci M,Frusteri L,Maroli M,Pesson B,Gramiccia M.Phylogenetic analysis of Phlebotomus species belonging to the subgenus Larroussius(Diptera,Psychodidae)by ITS2 rDNA sequences.Insect Biochemistry and Molecular Biology,2000,30(5):387-393
    [121]Regier J C,Fang Q Q,Mitter C,Peigler,R S,Friedlander T P,Solis,M A.Evolution and phylogenetic utility of the period gene in Lepidoptera.Mol.Biol.Evol.1998,15(9):1172-1182
    [122]Davie J R.Covalent modifications of histones:expression from chromatin templates.Current Opinion in Genetics & Development,1998,8(2):173-178
    [123]Baldo A M,Les D H,St rausbaugh L D.Potentials and limitations of histone repeat sequences for phylogenetic reconst ruction of sophophora.Mol.Biol.Evol.1999,16(11):1511-1520
    [124]Fang Q Q,Cho S,Regier J C,Mitter C,Matthews M,Poole R W,Friedlander T P,Zhao S.A new nuclear gene for insect phylogenetics:dopa decarboxylase is informative of relationships within Heliothinae(Lepidoptera:Noctuidae).Systematic Biology,1997,46(2):269-283
    [125]Brower A V Z.Phylogenetic relationships among the Nymphalidae(Lepidoptera) inferred f rom partial sequences of the wingless gene.Proc.R.Soc.Lond.B,2000,267(1449):1201-1211
    [126]Besansky N J,Fahey G T.Utility of the white gene in estimating phylogenetic relationships among mosquitoes(Diptera:Culicidae).Mol.Biol.Evol.1997,14(4):442-454
    [127]Mitchell A,Cho S,Regier J C,Mitter C,Poole R W,Matthews M.Phylogenetic Utility of Elongation Factor- I a in Noctuoidea(Insecta:Lepidoptera):The Limits of Synonymous Substitution.Mol.Biol.Evol.1997,14(4):381-390
    [128]Friedlander T P,Regier J C,Mtter C,Wagner D L.A nuclear gene for higher level phylogenetics:phosphoenolpyruvate carboxykinase tracks Mesozoic-Age divergences within Lepidoptera (Insecta).Mol.Biol.Evol.,1996,13(4):594-604
    [129]Hickey D A.The geographical pattern of an enzyme polymorphism in D.melanogaster.Genetica.1979,51:1-4
    [130]李相运,黄汉军,张才欧,等.我国及周边国家地方猪群体的淀粉酶多态性.西北农林科技大学学报(自然科学版).2001,29(5):19-22
    [131]张才骏.青海绵羊血清淀粉酶同工酶多态性的研究.青海大学学报(自然科学版).2002,20(2):1-4,10
    [132]Nobuyuki I,Tsuneyuki Y.Nucleotide Variation of the Duplicated Amylase Genes in Drosophila kikkawai.Mol.Biol.Evol.2002,19(5):678-688
    [133]Jean-Luc D L,Maurice W,Marie-Louise C.Distribution and Evolution of Introns inDrosophila Amylase Genes.J Mol Evol.1996,43:334-347
    [134]Liu Q X,Ueda H,Hirose S.Comparison of sequences of a transcriptional coactivator MBF2from three Lepidopteran species Bombyx mori,Bombyx mandarina and Samia Cynthia.Gene.1998,220(1-2):55-59
    [135]Yamauchi Y,Charles H,Alvin Y,et al.cDNA and deduced amino acid sequences of apolipophorin-iiis from Bombyx mori and Bombyx mandarina.Archives of Insect biochemistry Physiology.2000,43:16-21
    [136]Inomata N.Yamazaki T.Evolution of nuclcotide substitutions and gene regulation in the amylase multigenes in Drosophila kikkawai and its sibling species.Mol.Biol.Evol.2000,17:601-615
    [137]Popadic A,Anderson W W.Evidence for gene conversion in the amylase multigene family of Drosophila pseudoobscura.Mol.Biol.Evol.1995,12:564-572
    [138]刘娣,祖延涛,宋跃芬,等.鸡品种淀粉酶多态性研究.东北农业大学学报.2000,31(2):166-168
    [139]向仲怀.家蚕遗传育种学.北京:农业出版社,1994:73-77
    [140]黄健华,贾世海,张勇,李木旺,刘文彬,苗雪霞,黄勇平.家蚕α-淀粉酶基因的多态性研究.中 国农业科学.2006,39(11):2390-239
    [141]Vihinen M,Mantsala P.Microbial amolytic enzymes.Crit.Rev.[J]Biochem Mol Biol,1989,24:329-418
    [142]Perry G H,Dominy N J,Claw K G,Lee A S,Fiegler H,et al.Diet and the evolution of human amylase gene copy number variation.Nat Genet.2007,39(10):1256-1260
    [143]Stefan S,Klaus M,Michael B,et al.Crystal Structure of Yellow Meal Worm a-Amylase at1.64A Resolution[J]Mol Biol,1998,278:617-628
    [144]Strobl S,Gomis-Ru th F X,Maskos K,Frank G,Huber R,Glockshuber R.The a-amylase from the yellow meal worm:complete primary structure,crystallization and preliminary X-ray analysis.FEBS Letters,1997,(409):109-114
    [145]Qian M,Haser R,Payan E Structure and molecular model refinement of pig pancreatic a-amylase at 2.1 A(?) resolution.J.Mol.Biol.1993,(231):785-799
    [146]Brady L,Brzozowski A M,Derewenda Z,Dodson E J,Dodson G G.Solution of the structure of Aspergillus niger acid a-amylase by combined molecular replacement and multiple isomorphous replacement methods.Acta Crystallog.sect.B,1991(47):527-535
    [147]Machius M,Wiegand G,Huber R.Crystal structure of calcium-depleted Bacillus licheniformis a-amylase at 2.2 A(?) resolution.J.Mol.Biol.1995(246):545-559
    [148]刘恩岐,仓林让.模型动物—秀丽隐杆线虫研究进展.动物科学与动物医学,2003,20(10):23-25
    [149]Altschul S F,Madden T L,Schaffer AA,et al.Gapped BLAST and PSI-BLAST:a new generation of protein database search programs.Nucleic Acids Res.1997,25(17):3389-3402
    [150]Wang J,Xia Q Y,He X M,et al.SilkDB:a knowledgebase for silkworm biology and genomics.Nucleic Acids Res.2005,33:399-402
    [151]Thompson J D,Gibson T J,Plewniak F,et al.The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools.Nucleic Acids Res.1997,25(24):4876-4882
    [152]Tamura K,Dudley J,Nei M,et al.MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.Mol Biol Evol.2007,24(8):1596-1599
    [153]Saitou N,Nei M.The neighbour-joining method:a new method for constructing phylogenetic trees.Mol Biol Evol.1987,4:406-425
    [154]Swofford D L.PAUP*:Phylogenetic Analysis Using Parsimony(* and other methods),Version 4.0.Sinauer Associates,Sunderland,Massachusetts.2002
    [155]吴乃虎,基因工程原理。北京:科学出版社,1998,(第二版),1-51
    [156]John M,Logsdon J R.Worm genomes hold the smoking guns of intron gain.PNAS,2004,101(31):11195-11196
    [157]金珊,胡广安,张菁,曾庆韬.双翅目昆虫(黑腹果蝇和冈比亚按蚊)内含子丢失的比较分析.昆虫学报,2006,49(3):373-380
    [158]Ze Z,Nobuyuki I,Tsuneyuki Y,Hirohisa k.Evolutionary history and mode of the amylase mutigene family in Drosophila.J Mol Evol,2003,(57):702-709
    [159]Clark A G,Eisen M B,Smith D R,Bergman C M,Oliver B.et al.Evolution of genes and genomes on the Drosophila phylogeny.Nature,2007 Nov 8,450(7167):203-18
    [160]Zimin A V,Smith D R,Sutton G,Yorke J A.Assembly reconciliation.Bioinformatics,2008,24(1):42-45
    [161]Vihinen M,Mantsala P.Microbial amolytic enzymes.Crit.Rev.Biochem Mol Biol,1989,24:329-418
    [162]姜德富,刘佩锋,王连珍,等.柞蚕不同品种中肠淀粉酶活性及蚕粪糖量测定.蚕业科学,1999,25(3):198-200
    [163]Chatterjee S N,Rao C G P,Chatterjee G K,et al.Genetic variability of amylase activity in the mulberry silkworm Bombyx mori.and its significance Sericologia.1992,32:671-683
    [164]Matsumara S.On the functional difference of digetive amylase of different strains of the silkworm,Bombyx mori L.Bull Seric Exp Stn Jpn,1951,13:513-519
    [165]Hirata Y,Takuma G.Different amylase activity in larval digestive juice among silkworm strains.seric.Sci.Jpn,1969,38:401-405
    [166]Hirata Y.Relationship between amylase of digestive juice and economical characters in the silkworm Bombyx mori.Seric.Sci.Jpn,1971,40:151-156
    [167]Abraham E G,Nagaraju J,Datta R K Biochemical studies of amylases in the silkworm Bombyx mori.Comparative analysis in diapausing and non-diapausing strains.Insect Biochem Mol Bio,1992,22:867-873
    [168]Benkel B F,Nguyen T,Ahluwalia N,et al.Cloning and expression of a chicken alpha-amylase gene.Gene,1997,192:261-270.
    [169]Nakamura Y,Ogama M,Nishida T,et al.Sequence of cDNAs for human salivary and pancreatic a-amylases.Gene,1984,28:263-270
    [170]Alain V,Wormhoudt A,Sellos D.Cloning and sequencing analysis of three amylase cDNAs in the shrimp Penaeus vannamei(Crustacea decapoda):evolutionary aspects.Mol.Evol,1996,42:543-551
    [171]Yoko F,Takanori W,Masaru T.comparative study of overlapping genes in the genomes of Mycoplasma genitalium and Mycoplasma pneumoniae.Nucleic Acids Research,1999,27(8):1847-1853
    [172]George H P,Nathaniel J D,Katrina G C,Arthur S L,Heike F et al.,Diet and the evolution of human amylase gene copy number variation.Nat Genet.2007,39(10):1256-1260
    [173]陈善元,张亚平.家养动物起源研究的遗传学方法及其应用.科学通报,2006,(51)21:2465-2479
    [174]Tajima F.Statistical method for testing the neutral mutation hypothesis by DNA polymorphism.Genetics,1989,123:585-595
    [175]Fu Y X,Li WH.Statistical tests of neutrality of mutations.Genetics,1993,133:693-709
    [176]Fu Y X.Statistical tests of neutrality of mutations against population growth,hitchhiking and background selection.Genetics,1997,147:915-925
    [177]Thompson J D,Gibson T J,Plewniak F,Jeanmougin F,Higgins D G.The CLUSTAL-X windows interface:Flexiblestrategies for multiple sequence alignment aided by quality analysis tools.Nucleic Acids Res 1997,25:4876-4882
    [178]Rozas J,Sanchez-DelBarrio J C,Messeguer X,Roza R.DnaSP,DNA polymorphism analyses by the coalescent and other methods.Bioinformatics,2003,19:2496-2497
    [179]Tamura K,Dudley J,Nei M,Kumar S.MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.Molecular Biology and Evolution 2007,10.1093/molbev/msm092
    [180]Swofford D L.PAUP,Phylogenetic Analysis Using Parsimony.Version 410b10,2002,Sunderland,MA:Sinauer Associates
    [181]Bandelt H J,Forster P,R(?)hl A.Median-joining networks for inferring intraspecific phylogenies.Mol Biol Biol,1999,16:37-48
    [182]Excoffier L,Smouse P E,Quattor J M.Analysis of molecular variance inferred from metric distances among DNA haplotypes:Application to human mitochondrial DNA restriction data.Genetics,2000,136:343-359
    [183]武伟.动物线粒体基因组组成与进化的生物信息学研究.博士学位论文.重庆:西南大学,2006:52
    [184]赵凯,段子渊,杨公社,彭作刚,何舜平,陈宜瑜.青海湖裸鲤的起源和花斑裸鲤的种群演化.自然科学进展,2007,17(3):320-328
    [185]吴阶平,季羡林,石元春.20世纪中国学术大典/农业科学.福州:福建教育出版社,2002:428-434
    [186]Iriondo M,Barbero M C,Manzano C.DNA polymorphisms detect ancient barriers to gene flow in Basques.Am J Phys Anthropol,2003,122(1):73-84
    [187]薛雅丽,包维东,傅松滨,Tatiana Z,朱苏玲,徐玖瑾,杜若甫,张贵寅,李璞,Chris T s.MYS2多态位点在中国26个人群中分布的研究.人类学学报,2003,22(1):63-68
    [188]卫斯.我国近代考古学史上的标志碑—西阴遗址首次考占发掘的经过与意义.中国考古网,2005-12-01,http://www.kaogu.cn/cn/detail.asp?ProductID=7970
    [189]卫斯.我国栽桑育蚕起始时代初探.见《农史研究》第六辑.北京:农业出版社,1985
    [190]周匡明.钱山漾残绢片出土的启示.见周匡明著,蚕业史论文选.北京:中国文史出版社,2006:41-46
    [191]上海纺织科学院,上海丝绸公司.考古学报,1974,1:175-186
    [192]Avise J C.Molecular Markers,Natural History and Evolution.New York:Chapman & Hall,1994:1-9
    [193]Avise J C,Walker D.Pleistocene phylogeographic effects on avian population and the speciation process.Proceedings of the Royal Society London B,1998(265):457 -463
    [194]J.萨姆布鲁克,D.W拉塞尔著;黄培堂等译.分子克隆实验指南。北京:科学出版社,2002:96-99
    [195]Tamura K,Nei M,Kumar S.Prospects for inferring very large phylogenies by using the neighbor-joining method.PNAS,2004(101):11030-11035
    [196]向仲怀.21世纪的丝绸之路.蚕学通讯,2004,(1):34-35
    [197]Lovette I J,Bermingham E.c-mos variation in songbirds:molecular evolution,phylogenetic implications and comparisons with mitochondrial differentiation.Mol Biol Evol,2000,17(10):1569-1577
    [198]ZHU Li-Feng,CHANG Qing,ZHANG Bao-Wei,JIN Hong,ZHOU Kai-Ya.The early history of modern birds and the phylogenetic study of buttonquails inferred from DNA sequences of c-mos and 12S rRNA genes.Acta Zootaxonomica Sinica,2004,29(2):181-187
    [199]Ericson P G P,Johansson U S,Parsons T J.Major divisions in oscines revealed by insertions in the nuclear gene c-myc:a novel gene in avian phylogenetics.Auk,2000117(4):1069-1078
    [200]马玉堃,牛黎明,国会艳.DNA在鸟类分子系统发育研究中的应用.遗传,2006,28(1):97-104
    [201]王鸽桢,刘本铭.地史学教程.北京:地质出版社,1980
    [202]蒋猷龙.数千年来我国桑蚕在家养下的演变.昆虫学报,1977,20(3):345-351
    [203]Shan-Yun Chen,Yan-Hua Su,Shi-Fang Wu,Tao Sha,Ya-Ping Zhang.Mitochondrial diversity and phylogeographic structure of Chinese domestic goats.Molecular phylogenetic and evolution,2005(37):804-814
    [204]刘文娟,刘迺发.基于线粒体Cytb基因的雉鸡甘肃亚种的种群遗传结构.动物学报,2008,54(2):225-232

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700