用户名: 密码: 验证码:
基于ANSYS的感应加热数值模拟分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
感应加热利用工件中涡流的焦耳效应将工件加热,该方法具有效率高、控制精确、污染少等特点,在工业生产中得到了广泛的应用。然而基于试验的传统设计方法却耗时费力,并且成本高,因此,数值模拟技术在感应加热中的应用具有重要意义。本文根据感应加热原理特点,研究并实现了感应加热过程的数值模拟计算,全文内容分为七章:
     第一章:简述了感应加热技术的发展及其在工业中的应用,详细介绍国内外学者在感应加热数值模拟方面所做的研究工作,最后给出本文的研究背景、意义和主要研究内容。
     第二章:介绍了感应加热的基本原理,推导了感应加热工件内电磁场与涡流分布的理论公式,对感应加热涡流场计算的一般问题、传统感应加热工程工程设计计算的不足以及电磁场数值计算方法作了介绍。
     第三章:介绍了ANSYS中引入复矢量磁位计算电磁场、涡流场的方法以及温度场求解的数学模型,简述了ANSYS软件中的电磁场、温度场以及耦合场分析。
     第四章:根据感应加热问题的特点,建立了计算模型,确定了模拟计算中边界条件、网格划分、材料温度依赖性等问题的处理方法。
    
     浙江工业大学硕十学位论文
    给出了感应加热数值模拟的基本过程以及电磁场温度场相互祸合的实
    现方法。
     第五章:用ANSYS软件对感应加热过程中工件内涡流场、温度场
    的一些基本问题进行模拟及分析,主要包括:加热过程中工件涡流功
    率密度及温度分布规律;频率与磁力线逸散对加热效果的影响;同时
    对感应淬火淬硬层深度进行了模拟预测。
     第六章:就感应加热在透热与淬火两大方面的实际应用工况进行
    模拟分析。结果表明,数值模拟结果与实际应用基本一致,证明了数
    值模拟方法的正确与实用性。
     第七章:对全文进行总结,同时提出有待进一步研究和解决的问
    题。
The induction heating generates heat by means of Joule effect resulting from an eddy current. It is widely used in industrial operations due to its high efficiency, precise control and low pollution properties. However, the design of an induction heating system based on experiments can be tedious, time-consuming and expensive. Therefore, numerical simulation is a wel-adapted tool for the design and the investigation of induction heating system. In this paper, on the basis of the characteristics of induction heating, the numerical simulation of induction heating is studied and realized. Seven chapters are included in this dissertation.
    In chapter 1, firstly, the history and applications of induction heating are introduced. Then, outlines the development and status about numerical simulation of induction heating. Finally, the backgrounds of this project and the main contents as well as the significance of this paper are mentioned.
    In chapter 2, gives a brief introduction to the basic theory of induction heating technique; a mathematical modal is developed to describe the distribution of electromagnetic field and eddy current density in the long solid cylinder billet of induction heating. The general question of eddy current field calculation and the weakness of design theories for induction-heating coils that has won great popularity in engineering are pointed out.
    In chapter 3, the mathematical modal of electromagnetic and temperature fields is presented by a complex magnetic vector potential, which is also applied to solve eddy current field in ANSYS software. Then, the electromagnetic field analysis, thermal analysis and coupled-field analysis in ANSYS are introduced.
    In chapter 4, the modeling of induction heating is expatiated. The methods that
    
    
    
    realized the boundary conditions, mesh of modal and dependence of the physical properties on the temperature are given. Moreover, a method for iterating thermal and magnetic analysis is put forward.
    In chapter 5, the distributed characteristics of eddy and temperature fields in induction heating process are simulation by FEM respectively, including the distributions of eddy and temperature fields during the whole induction heating process, the influence of frequency and magnetic disperse, and the prediction of hardened depth.
    In chapter 6, the calculation results are validated by comparison with the practical producing results. It is approved the validity and feasibility of the method used in this paper.
    Some results of this dissertation are concluded in the last chapter. Besides the future tasks on this project are pointed out.
引文
[1]约翰.戴维斯[英]著.感应加热手册[M].张淑芳译.北京:国防工业出版社,1985
    [2]中国热处理行业协会,机械工业技术交易中心编.当代热处理技术与工艺装备精品集[M].北京:机械工业出版社,2002
    [3]Jeske U. Eddy current calculation in 3-D using the finite element method[J]. IEEE Transactions on Magnetics, 1982,18(2):426-430
    [4]Chaei M, Konrad A. Finite element computation of 3-D electrostatic and magnetostatic field problems[J]. IEEE Transactions on Magnetics, 1983,19(6):2321-2324
    [5]Hyun-Kyo, Gi-shik Lee, Song-yop Hahn. 3-D magnetic field computations using finite-element approach with localized functional[J]. IEEE Transactions on Magnetics, 1985,21 (6):2129-2198
    [6]美国ANSYS公司.ANSYS耦合场分析指南.1998
    [7]金晓昌.感应加热技术中的趋肤效应[J].武汉化工学院学报,1995,17(4):65—68
    [8]刘白.双频感应淬火的计算与应用[J].贵州工业大学学报(自然科学版),2001,30(4)
    [9]金晓昌.感应线圈中电磁场分析[J].武汉化工学院学报,1996,18(2)
    [10]肖新棉.感应加热线圈中的电磁场[J].武汉水利电力大学学报,1996,29(6)
    [11]肖春国.圆管感应加热工件内电参数计算[J].工业加热,1993,(4):19-26
    [12]杭国平.感应加热问题的有限元分析[硕士论文].上海:上海大学.1991
    [13]干肇智.感应加热的数值计算[J].电炉.1985,(5):1-12
    [14]王璋奇,范孝良,张文建.管道感应加热过程的计算机模拟[J].华北电力大学学报,1999,26(4)
    [15]姜建华.厚壁筒形工件连续感应加热处理有限元模拟[J].材料热处理学报,2002,23(2):43-48.
    [16]戴挺,吴炳尧.半固态坯料感应二次加热的模拟分析(1)[J].中国压铸、挤压铸造、半固态加工学术年会论文集,2001
    
    
    [17] 李海江,夏巨谌,闫洪等.半固态触变成形坯料感应加热的数值模拟[J].金属成型工艺,2003,21(1)
    [18] 徐霖,张恒华,邵光杰.半固态铝合金感应加热工艺参数的模拟研究[J].上海金属,2002,24(6):
    [19] 张恒华,许珞萍,邵光杰.A356铝合金半固态重熔温度场的有限元模拟[J].材料热处理学报,2002,23(2)
    [20] 张恒华,许珞萍,邵光杰.铝合金半固态感应加热的计算机模拟[J].中国有色金属学报,2001,11(s2):
    [21] 郭景杰,王同敏,苏彦庆.钛的水冷铜坩埚感应熔炼温度场数值模拟[J].铸造.1997,(9):1-4
    [22] 鄢波,程先华,赵萍.减振器连杆高频感应淬火工艺的温度场有限元模拟[J].上海交通大学学报,2003,37(1):
    [23] 徐东辉,匡震邦,骆竞希.抽油杆表面感应淬火引起的残余应力[J].应用力学学报.1995.(3).26—32
    [24] Fireteanu V, Tudorache T. Electromagntic forces in transverse flux induction heating[J].IEEE Transactions on Magnetics.2000, 36(4): 1792-1795
    [25] Kawase Y, Miyatake T.Thermal analysis of steel blade quenching by induction heating[J].IEEE Transactions onMagnetics.2000, 36(4): 1788-1791
    [26] Tjermberg A.Comparision of methods for determining residual stresses in induction-hardened transmission sharfts[J].IEEE Transactions on Magnetics.1997, 25(1): 282-290
    [27] Fuhrmann J, Homberg D.Numerical simulation of induction hardening of steel[J].International Journal for Computation and Mathematics in Electrical and Electronic Engineering.1999, 18(3): 482-493
    [28] Fuhrmann J, Homberg D.Numerical simulation of the surface hardening of steel[J].International Journal for Computation and Mathematics in Electrical and Electronic Engineering. 1999, 9(5-6): 705-724
    [29] Dughiero F, Battistetti M.Optimization procedures in the design of continuous induction hardening and tempering installations for magnetic steel bars[J].IEEE Transactions on Magnetics.1998, 34(5): 2865-2868
    
    
    [30] Pokrovskii AM, Leshkovtsev VG.Computational determination of the structure and hardness of rolls after induction hardening[J].Metal Science and Heat Treatment.1997, 39(9-10): 396-400
    [31] Di Barba P, Dughiero F, Trevisan F.Optimal design of windings for the continuous induction hardening process of steel bars[J].International Journal of Applied Electronmagnetics and Mechanics. 1998, 9(1): 53-63
    [32] Krahenbuhl L, Fabregue O, Wanser S.BIEM and FEM coupled with ID non linear solutions to solve 3D high frequency eddy current problems[J].IEEE Transactions on Magnetics.1997, 33(2): 1167-1172
    [33] Xu DH, Kuang ZB.A study on the distribution of residual stress due to surface induction hardening[J]. Journal of Engineering Materials and Technology-Transactions of the ASME.1996, 118(4): 571-575.
    [34] Wang KF, Chandrasekar S, Yang HTY. Finite-element simulation of induction heat-treatment[J]. Journal of Materials Engineering and Performance.1996, 118(4): 571-575.
    [35] Adam Bokota, Slawomir Iskierka. Numerical analysis of phase transformations and residual stresses in steel cone-shaped elements hardened by induction and flame meshods[J].Int.J.Mesh. 1998 (40): 617-629
    [36] Wang KF, Chandrasekar S, Yang HTY. Finite-element simulation of moving induction heat treatment[J]. Journal of Materials Engineering and Performance. 1995, 4(4): 460-473
    [37] Chaboudez C, Clain S, Glardon R, Rappaz J, Swierkosz M. Numerical modeling of induction heating for axisymmetric geometries[J]. IEEE Transactions on Magnetics. 1997 33(1): 739-745
    [38] Bukanin V, Dughiero F. 3D-FEM simulation of transverse-flux induction heaters[J]. IEEE Transactions on Magnetics, 1995,31 (3 pt 1):2174-2177
    [39] Karol A, Adam S. A New Concept for Finite Element Simulation of Induction Heating of Steel Cylinders[J]. IEEE transactions on industry applications, 1997,33 (4):893-897
    [40] Wang Z, Huang, W, ect. 3D multifields FEM computation of transverse flux
    
    induction heating for moving-strips[J]. IEEE Transactions on Magnetics, 1999,35(3):1642-1645.
    [41] 孙大涌.热处理行业可持续发展的思考[J].金属热处理,2001,26(9)
    [42] 张智娟.IGBT超音频感应加热电源的研究[硕士论文].河北保定:华北电力大学,2001:1-2
    [43] 曲利岩.电磁场有限元分析技术的研究和实现[硕士论文].浙江杭州:浙江大学,2002
    [44] 林信智,杨连第著.汽车零部件感应热处理工艺与设备[M].北京:北京理工大学出版社,1998
    [45] 刘颖.圆柱函数[M].北京:国防工业出版社,1983
    [46] Wter Maten E J, Melissen J B M.Simulation of inductive heating[l]. IEEE Transactions on Magnetics. 1992 (28): 1287-1290
    [47] Liu Yongchun.The numerical analysis of the coupled eddy current and temperature filds in induction heating equipment.Proc. of ICEF92, Hangzhou(China), international Academic Publishers, 1992:149-152
    [48] Mesquita R C, Bastos J P A.3D finite element solution of induction heating problems with efficient time-stepping[J]. IEEE Transactions on Magnetics. 1991 (27):4056-4068
    [49] 章家岩.感应加热涡流场及工程设计问题的讨论[J].工业加热.1995,128(6):28-30
    [50] 严登俊.基于电磁场数值计算的电机性能分析方法研究[博士论文].南京:东南大学,2001
    [51] 雷银照.时谐电磁场解析方法[M].北京:科学出版社,2000
    [52] Guru BS,Hiziroglu HR[美]著.电磁场与电磁波[M].周克定等译.北京:机械工业出版社,2000
    [53] 孔祥谦.有限单元法在传热学中的应用[M].北京:科学出版社,1986
    [54] 沈庆通.感应热处理问答[M].北京:机械工业版社,1990
    [55] Harvey PD. Engineering Properties of Steel[M]. ASM. Materials Park. 1992
    [56] 徐祖耀.相变原理[M].北京:机械工业出版社,1998
    [57] 梁克中.金相原理与应用[M].北京:机械工业出版社,1983
    
    
    [58]刘志儒.金属感应热处理[M].北京:机械工业出版社,1985
    [59]基金[俄]著.钢的感应热处理工艺特点[M].李文卿译.北京:中国工业出版社,1962:6-7
    [60]方华.曲轴淬火强化的数值模拟研究[硕士论文].吉林:吉林大学.2003:31
    [61]李德龙.我国汽车工业锻造技术的发展[J].锻压机械,1995,(4)
    [62]俞永祥,李胜川,赵荣祥.现代锻造与电感应加热炉——智能化电感应加热成套系统[J].锻压技术.2000(6)
    [63]汤琦.用于锻造加热的各类中频感应加热机(装备)及发展[J].杭州机械,2000,(3-4),7-12
    [64]庄司秀夫.锻造技术在汽车工业中的发展趋势[J].汽车工艺与材料.1997(2)
    [65]张智娟.IGBT超音频感应加热电源的研究[硕士论文].河北保定:华北电力大学,2001:1~2
    [66]谢懿.实用锻压技术手册[M].北京:机械工业出版社,2003:276-292
    [67]沈庆通,张宗杰.强力感应器与导磁体的发展.金属热处理.2001,26(8):47-49.
    [68]马仙.淬火过程数值模拟研究进展[J].兵器材料科学工程.1999,22(4)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700