用户名: 密码: 验证码:
实时控制系统协同设计方法及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实时控制系统(RTCS)通常是指在实时操作系统(RTOS)上执行多个控制任务,在有限处理器资源上实现竞争性使用。实时控制系统协同设计是将控制理论与调度策略相结合,在设计控制器同时考虑调度引起的固有抖动特性对性能指标的影响,保证控制对象允许运行的性能指标。另一方面,在调度算法的研究过程中,也应考虑控制器设计参数约束,在提高任务的可调度性同时提高控制系统性能。本文以提高有限资源下实时系统控制性能为目的,对实时控制系统协同设计方法及应用进行了深入的研究,论文主要工作及创新点有:
     1.分析研究实时控制系统中控制和调度之间的相互影响,为系统协同设计提供支持。控制对调度的影响主要是指不同的处理机负载或不同的控制性能要求都会影响实时系统中任务的可调度性能。反之,调度引起的采样抖动和输入输出时延抖动也会在不同程度上影响控制系统性能。
     2.针对控制任务的不确定性引起的实时系统负载变化,提出一种自适应反馈弹性周期模型处理实时系统超载,通过检测任务作业实际执行时间,计算处理机利用率预估值,在线自适应调节任务周期来适应动态变化的系统负载,提高实时控制系统的可调度性,保证控制对象性能。仿真实例表明,该协同设计模型有效实用,并能以更灵活的方式处理实时系统超载。
     3.为保证实时控制系统中关键任务的可调度性并提高控制系统性能,提出一种双参数模糊调度设计算法,基于时间触发采样的计算机控制系统,对任务的控制性能和空闲时间两个特征参数进行模糊调度设计,构造一个多准则优化调度方法,在正常负载下减少所有任务的截止期错失率,提高系统的可调度性能,在系统超载时保证重要任务稳定的控制性能。
     4.针对抖动有界离散控制系统,提出了一种基于补偿控制算法下的稳定性判据,采用区间代数方法构建嵌入式系统实时多任务调度中离散系统闭环区间状态矩阵,利用李雅普诺夫方程和矩阵的无穷范数,导出区间系统的鲁棒稳定充分条件,实例计算表明,该判据具有较小的计算量和保守性,使用简单灵活。
     5.针对网络控制系统中长延时(延时超过一个任务周期)问题,提出了一种预测补偿算法与网络调度协同设计方法。当输出信号在传输过程中延时或丢失时,预测补偿算法输出控制预测值到控制对象以维持信号更新,用预测控制补偿算法设计的闭环控制系统的稳定性判据无法保证时,通过网络调度改变任务采样速率,降低控制任务网络负载。仿真表明,该方法在网络延时有界条件下可以提高网络控制系统性能。
     6.以深海集矿机控制系统作为应用研究对象,对深海集矿机嵌入式多任务实时控制系统进行协同设计,基于自适应反馈弹性周期任务模型,通过在线自适应调节任务周期,提高集矿机嵌入式实时控制系统的可调度性和优化对象的控制性能。实例仿真说明如何将所提出算法用于解决实时工业控制问题,为实际控制系统协同设计提供指导。
Real-time control systems (RTCS) generally performs multiple parallel control tasks on a real-time operating systems (RTOS), where multiple tasks compete for limited processing resource. The co-design of the real-time control system integrates the control theory and scheduling strategies. In order to achieve the given performance metrics, it is necessary to consider the inherent jitters caused by the scheduling and their influence on the performance when the controller is designed. On the other hand, the controller attributes would be also taken into account in the study of scheduling policy, so that both scheduling flexibility and control performance would be improved. This dissertation studies collaborative method combining efficient scheduling and controller design, aiming at improving the performance of RTCS under the limited processing resource. The main content and innovative work of this dissertation are briefly described as follows:
     1. The mutual influence between the control and the scheduling in RTCS was analyzed, so as to provide the baseline support for the collaborative design. The impact from control to scheduling mainly indicates that the different processor load or the different control performance requirement brings different tasks'schedulability in control systems. Otherwise, the sampling jitters and input-output delay jitters caused by scheduling affect the control system performance in various degrees.
     2. Focusing on the variation of workload caused by the uncertainty of control tasks in RTCS, the dissertation presents an adaptive feedback elastic period model to deal with the system overload. In this proposed model, CPU utilization is estimated by measuring the execution time of each task, and the system load is dynamically adjusted through self-adaptively modifying the task sample periods online. Thus the schedulability is improved as well as the control performance is guaranteed in RTCS. The simulation results show that this co-design model is effective and useful. It can handle overload situations in a flexible way.
     3. To guarantee the schedulability of the critical tasks and enhance the control performance, a FSD (fuzzy scheduling design) algorithm was proposed based on time-triggering sampling computer control systems. The FSD algorithm configures the control index and the idle time of the control tasks with fuzzy design, and deduces a multi-rules optimal scheduling method. In a normal workload, it efficiently decrease the deadline loss ratio and improve the system schedulability. In a overload situation, the performance of the critical task is guaranteed.
     4. Focused on the discrete state system whose jitters are not exactly known but within bounded intervals, a stability condition is proposed based on a compensated control algorithm. It represents the discrete system of the embedded real-time multi-tasks scheduling systems as a closed-loop interval matrix by the interval algebra method, and deduces a sufficient robust stability condition using Lyapunov theory and the infinite norm of the matrix. The simulation results show that the method is more computationally effective and less conservative compared to the conventional one.
     5. A co-design approach combining predictive control compensation and network scheduling is presented in network-based RTCS to overcome the negative influences of the network long latency, e.g. the latency is longer than a sampling period. When the control signal is lost due to a long time delay or packet losses, the control performance is improved by predicting the latest control value and applying it to the control objective. When the stability criteria under the predictive control compensation algorithm can not be guaranteed, the task period is adjusted through the network scheduling to decrease the network workload. The simulations show that the presented method can improve the performance of the network control systems with the bounded network time-delay.
     6. Taking the ocean mining vehicle real-time control system as a practical research example, a co-design method of the ocean mining vehicle real-time control system was presented. Based on the adaptive feedback elastic period model, the schedulability is improved and the plant control performance is optimized with automatically adapting their periods to the situation online. Simulations illustrate how the proposed algorithms apply to real-time industrial problems, which provides guidances for the co-design of the practical systems.
引文
[1]Murry R M. Control in an information rich world:Technical report, the Panel on Future Directions in Control, Dynamics, and Systems; 2002.
    [2]Buttazzo G C. Hard real-time computing systems:predictable scheduling algorithms and applications. Kluwer Academic Publishers; 1997.
    [3]Stankovic J A. Misconceptions about real-time computing: a serious problem for next-generation systems. Computer; 1988,21(10):10-19.
    [4]Stankovic J A,Rajkumar R. Real-time operating systems. Real-Time Systems; 2004,28(2/3):237-253.
    [5]Liu C L,Layland J W. Scheduling algorithms for multiprograming in a hard real-time environment. Journal of the Association for Computing Machinery; 1973,20(1):41-61.
    [6]Henriksson D. Flexible scheduling methods and tools for real-time control systems. Licentiate thesis ISRN LUTFD2/TFRT--3233--SE. Sweden: Department of Automatic Control, Lund University; 2003.
    [7]Arzen K-E, Cervin A,Henriksson D. Implementation-aware embedded control systems. Birkhauser:In William S. Levine, Dimitrios Hristu-Varsakelis (Eds.); 2005.
    [8]Marti P. Analysis and design of real-time control systems with varying control timing constraints. Phd Thesis. Dept. of Automatic Control, Technical University of Catalonia; 2002.
    [9]Cervin A, Henriksson D, Lincoln B, et al. How does control timing affect performance. IEEE Control Systems Magazine; 2003,23(3):16-30.
    [10]Laplante P A. Real time system design and analysis:an engineer's handbook. John Wiley & Sons Ltd,3rd edition; 2004.
    [11]Agrawal M, Cofer D,Samad T. Real-time adaptive resource management for advanced avionics. IEEE Control Systems Magazine; 2003,23(1):76-86.
    [12]Kim B K. Task scheduling with feedback latency for real-time control systems. Proceedings of 5th International Conference on Real-Time Computing Systems and Applicationns.1998,37-41.
    [13]Crespo A, Ripoll I,Albertos P. Reducing delays in RT control:the control action interval. IF AC World Congress.1999.
    [14]Balbastre P, Ripoll I,Crespo A. Schedulability analysis of window-constrained execution time tasks for real-time control. Proceedings of the 14th Euromicro Conference on Real-Time Systems.2002.
    [15]Albertos P, Crespo A, Ripoll I, et al. RT control scheduling to reduce control performance degrading. Proceedings of the IEEE Conference on Decision and Control.2000,4889-4894.
    [16]Tian Y-C, Han Q-L, Levy D, et al. Reducing control latency and jitter in real-time control. Asian Journal of Control; 2006,8(1):72-75.
    [17]Baruah S, Buttazzo G, Gorinsky S, et al. Scheduling periodic task systems to minimize output jitter. Proceedings of the 6th International Conference on Real-Time Computing Systems and Applications.1999.
    [18]Kim T, Shin H,Chang N. Deadline assignment to reduce output jitter of real-time tasks. Proceedings of the 16th IF AC Workshop on Distributed Computer Control Systems.2000.
    [19]Cervin A. Integrated control and real-time scheduling. PhD thesis. Sweden: Lund Institute of Technology; 2003.
    [20]Cervin A,Eker J. The control server:a computational model for real-time control tasks. Proceedings of the Euromicro Conference on Real-Time Systems.2003.
    [21]Balbastre P, Ripoll I, Vidal J, et al. A task model to reduce control delays. Real-Time Systems; 2004,27(3):215-236.
    [22]Abeni L,Buttazzo G. Integrating multimedia applications in hard realtime systems. Proceedings of the 19th IEEE RealTime Systems Symposium; Madrid, Spain.1998.
    [23]Stankovic J A. Real-time computing systems:the next generation. Tutorial: hard real-time systems:IEEE Computer Society Press; 1989. p 14-37.
    [24]Fohler G,Buttazzo G C. Guest editorial:Introduction to the special issue on flexible scheduling. Real-Time Systems; 2002,22(1-2):5-7.
    [25]Stankovic J,Ramamritham K. The spring kernel:a new paradigm for real-time systems. IEEE Software; May 1991,8(3):62-72.
    [26]Haritsa J R, Livny M,Carey M J. Earliest deadline scheduling for real-time database systems. Proceedings of the 12th IEEE Real-Time Systems Symposium; Los Alamitos.1991,232-243.
    [27]Liu Y S, He X G, Tang C J, et al. Special type database technology. Beijing: Science Press; 2000
    [28]Buttazzo G, Spuri M,Sensini F. Value vs. deadline scheduling in overload conditions. Procceddings of the 19th IEEE Real-Time Systems Symposium; Pisa.1995,90-99.
    [29]Caccamo M, Buttazzo G,Sha L. Handling execution overruns in hard real-time control systems. IEEE Trans. on Computers; 2002,51(7):835-849.
    [30]王永炎,王强,王宏安.基于优先级表的实时调度算法及其实现.软件学报;2004,15(3):360-370.
    [31]Marti P, Fuertes J M,Fohler G. Sampling jitter compensation in real-time control systems. Proceedings of the Euromicro Conference on Real-Time Systems.2001.
    [32]Marti P, Fohler G,Ramamritham K. Jitter compensation for real-time control systems. Proceedings of the 22nd IEEE Real-Time Systems Symposium; London, UK.2001,39-48.
    [33]雷飞,崔刚,邹益仁.一种基于PID的实时控制与调度协同设计方法.信息与控制;2004(5):541-544.
    [34]Lincoln B. Jitter compensation in digital control systems. Proceedings of the American Control Conference; Anchorage, AK, United States.2002, 2985-2990.
    [35]Nilsson J. Real-time control systems with delays. Phd Thesis. Lund, Sweden: Dept. Automatic Control. Lund Institute of Technology; 1998.
    [36]Yue D,Han Q L. Delayed feedback control of uncertain systems with time-varying input delay. Automatica; 2005,41(2):233-240.
    [37]Seto D, Lehoczky J P, Sha L, et al. On task schedulability in real-time control system. Proceedings of the IEEE Real-Time Systems Symposium.1996.
    [38]Kuo T-W,Mok A K. Load adjustment in adaptive real-time systems. Proceedings of the 12th IEEE Real-Time Systems Symposium. December 1991.
    [39]Buttazzo G,Abeni L. Adaptive workload management through elastic scheduling. Real-Time Systems; 2002,23(1/2):7-24.
    [40]Buttazzo G, Lipari G, Caccamo M, et al. Elastic scheduling for flexible workload management. IEEE Trans. on Computers; 2002,51(3):289-302.
    [41]Buttazzo G C, Lipari G,Abeni L. Elastic task model for adaptive rate control. Proceedings of The 19th IEEE of Real-Time Systems Symposium.1998, 286-295.
    [42]Abeni L, Palopoli L, Lipari G, et al. Analysis of a reservation-based feedback scheduler. Proceedings of the IEEE Real-Time Systems Symp.2002.
    [43]Abeni L, Cucinotta T, Lipari G, et al. QoS management through adaptive reservations. Real-Time Systems; 2005,29(2/3):131-155.
    [44]Beccari G, Caselli S, Reggiani M, et al. Rate modulation of soft real-time tasks in autonomous robot control systems. Proceedings of the 11th Euromicro Conference on Real-Time Systems; York, UK.1999.
    [45]Lee C, Rajkumar R,Mercer C. Experiences with processor reservation and dynamic QoS in real-time mach. Proceedings of Multimedia Japan. April 1996.
    [46]Eker J, Hagander P,Arzen K E. A feedback scheduler for real-time control tasks. Control Engineering Practice; 2000,8(12):1369-1378.
    [47]Buttazzo G,Abeni L. Smooth rate adaptation through impedance control. Proceedings of the 14th Euromicro Conference on Real-Time Systems.2002.
    [48]Buttazzo G, Velasco M, Marti P, et al. Managing quality-of-control performance under overload conditions. Proceedings of the Euromicro Conference on Real-Time Systems; Catania, Italy.2004,53-60.
    [49]Seto D, Lehoczky J P, Sha L, et al. Trade-off analysis of real-time control performance and schedulability. Real-Time Systems; 2001,21(3):199-127.
    [50]Cervin A, Eker J,Bernhardsson B. Feedback-feedforward scheduling of control tasks. Real-Time Systems; 2002,23(1/2):25-53.
    [51]Cervin A,Eker J. Feedback scheduling of control tasks. Proceedings of the IEEE Conference on Decision and Control.2000.
    [52]Henriksson D,Cervin A. Optimal on-line sampling period assignment for real-time control tasks based on plant state information. Proceedings of the 44th IEEE Conference on Decision and Control and European Control Conference; Seville, Spain.2005.
    [53]Lin C, Marti P, Brandt S A, et al. Improving control performance using discrete quality of service levels in a real-time system. Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium; Toronto, Canada.2004.
    [54]Arzen K E, Cervin A, Eker J, et al. An introduction to control and scheduling co-design. Proceedings of the IEEE Conference on Decision and Control. 2000.
    [55]Marti P, Fuertes J M, Villa R, et al. On real-time control tasks schedulability. Porto.2001,2227-2232.
    [56]Yuan P, Moallem M,Patel R V. A feedback scheduling algorithm for real time control systems. Proceedings of the IEEE International Conference on Control Applications; Toronto, ON, Canada.2005,873-878.
    [57]Song I, Kim S,Karray F. A real-time scheduler design for a class of embedded systems. IEEE/ASME Transactions on Mechatronics; 2008,13(1):36-45.
    [58]Wu M, He Y, She J H, et al. Delay-dependent criteria for robust stability of time-varying delay systems. Automatica; 2004,40(8):1435-1439.
    [59]Kao C-Y,Lincoln B. Simple stability criteria for systems with time-varying delays. Automatica; 2004,40(8):1429-1434.
    [60]Cervin A. Improved scheduling of control tasks. Proceedings of the 11th Euromicro Conference on Real-Time Systems; York.1999,4-10.
    [61]Marti P, Villa R, Fuertes J M, et al. Stability of on-line compensated real-time scheduled control tasks. IFAC Conference on New Technologies for Computer Control.2001.
    [62]Dogruel M,Ozguner. U. Stability of a set of matrices:a control theoretic approach. Proceedings of the 34th IEEE Conference on Decision and Control; New Orleans, LA.1995,1324-1329.
    [63]Velasco M, Marti P,Villa R. A probabilistic approach to the stability analysis of real-time oontrol systems. Proceedings of 16th IFAC World Congress; Prague.2005.
    [64]Chan H,Ozguner U. Closed-loop control of systems over a communications network with queues. International Journal of Control; 1995,62(3):493-510.
    [65]Raji R S,Davis T. Smart networks for control. IEEE Spectrum; 1994,31(6):49-55.
    [66]Tipsuwan Y,Chow M Y. Control methodologies in networked control systems. Control Engineering Practice; 2003,11(10):1099-1111.
    [67]Zhang W, Branicky M S,Phillips S M. Stability of networked control systems. IEEE Control System Magazine; 2001,21(1):84-99.
    [68]黎善斌.网络控制系统的鲁棒控制算法研究.博士学位论文.浙江大学;2005.
    [69]Ling Q,LEMMON M D. Soft real-time scheduling of networked control systems with dropouts governed by Markov chain. Proceedings of the American Control Confrence; New York.2003,4845-4850.
    [70]Walsh G C, Ye H,Bushnell L G. Stability analysis of networked control systems. IEEE Transactions on Control Systems Technology; 2002,10(3):438-446.
    [71]王艳,陈庆伟,樊卫华,et al.网络控制系统控制与调度协同设计的研究进展.兵工学报;2007,28(1):101-106.
    [72]王艳.网络控制系统的控制与调度研究.博士学位论文.南京理工大学;2006.
    [73]Lian F L, Moyne J,Tilbury D. Optimal controller design and evaluation for a class of networked control systems with distributed constant delays. Proceedings of the American Control Conference; Anchorage, AK, United States.2002,3009-3014.
    [74]Montestruque L A,Antsaklis P J. On the model-based control of networked systems. Automatica; 2003,39(10):1837-1843.
    [75]Nilsson J, Bernhardsson B,Wittenmark B. Stochastic analysis and control of real-time systems with random time delays. Automatica; 1998,34(1):57-64.
    [76]Hu S S,Zhu Q X. Stochastic optimal control and analysis of stability of networked control systems with long delay. Automatica; 2003,39(11):1877-1884.
    [77]Lincoln B,Bernhardsson B. Optimal control over networks with long random delays. Proceedings of the International Symposium on Mathematical Theory of Networks and Systems.2000.
    [78]Chan H,Ozguner U. Optimal control of systems over a communication network with queues via a jump system approach. IEEE Conference on Control Applications; Albany, NY, USA.1995,1148-1153.
    [79]Krtolica R, Ozguner U, Chan H, et al. Stability of linear feedback systems with random communication delays. International Journal of Control; Oct.1994,59(4):925-953.
    [80]Xiao L, Hassibi A,How J P. Control with random communication delays via a discrete-time jump system approach. Proceedings of the American Control Conference; Chicago, IL, USA.2000,2199-2204.
    [81]Wang C, Wang Y,Ma G. Compensation time-varying delays in networked control systems via jump linear system approach. Proceedings of the World Congress on Intelligent Control and Automation Hangzhou, China.2004, 1343-1347.
    [82]Kim W-J, Ji K,Ambike A. Networked real-time control strategies dealing with stochastic time delays and packet losses. Proceedings of the American Control Conference; Portland, OR, United States.2005,621-626.
    [83]Branicky M S, Phillips S M,Zhang W. Stability of networked control systems: explicit analysis of delay. Proceedings of the American Control Conference; Chicago, IL, USA.2000,2352-2357.
    [84]Zhang W. Stability analysis of networked control system. PhD Thesis. Case Western Reserve University; 2002.
    [85]Ling Q,Lemmon M D. Robust performance of soft real-time networked control systems with data dropouts. Proceedings of the IEEE Conference on Decision and Control; Las Vegas, NV, United States.2002,1225-1230.
    [86]Yue D, Han Q L,Peng C. State feedback controller design of networked control systems. IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs; 2004,51(11):640-644.
    [87]李祖欣,王万良,雷必成,et al.网络控制系统中的调度问题.计算机工程与应用;2007,43(16):241-245.
    [88]沈钢.网络控制系统实时介质访问控制的研究.博士学位论文.上海交通大学;2002.
    [89]Sha L, Rajkumar R,Lehoczky J P. Priority inheritance protocols:an approach to real-time synchronization. IEEE Transactions on Computers; 1990,39(9):1175-1185.
    [90]Wei L F,Yu H B. Research on a soft real-time scheduling algorithm based on hybrid adaptive control architecture. Proceedings of the American Control Conference.2003.
    [91]Walsh G C,Ye H. Scheduling of networked control systems. IEEE Control Systems Magazine; 2001,21(1):57-65.
    [92]李祖欣,王万良,雷必成,et al.网络控制系统中基于模糊反馈的消息调度.自动化学报;2007,33(11):1229-1232.
    [93]Marti P, Lin C, Brandt S A, et al. Optimal state feedback based resource allocation for resource-constrained control tasks. Proceedings of the 25th IEEE Real-Time Systems Symposium.2004,161-172.
    [94]Marti P, Yepez J, Velasco M, et al. Managing quality-of-control in network-based control systems by controller and message scheduling co-design. IEEE Transactions on Industrial Electronics; 2004,51 (6):1159-1167.
    [95]Xia F, Dai X, Wang Z, et al. Feedback based network scheduling of networked control systems. Proceedings of the 5th International Conference on Control and Automation; Budapest, Hungary.2005,1231-1236.
    [96]Park H S, Kim Y H, Kim D-S, et al. A scheduling method for network-based control systems. IEEE Transactions on Control Systems Technology; 2002,10(3):318-330.
    [97]Kim D S, Lee Y S, Kwon W H, et al. Maximum allowable delay bounds of networked control systems. Control Engineering Practice; 2003,11(11):1301-1313.
    [98]白涛.网络控制系统的性能分析与调度优化.博士学位论文.上海:上海交通大学;2005.
    [99]何坚强,张唤春.基于遗传算法的网络控制系统调度优化研究.工业仪表与自动化装置;2004(4):37-42.
    [100]Stankovic J A,Ramamritham K. Tutorial on hard real-time systems. IEEE Computer Society Press; 1988.
    [101]Stankovic J A,Ramamritham K. what is predictability for real-time systems? Real-Time Systems; 1990,2(4):247-254.
    [102]Ramamritham K. Allocation and scheduling of complex periodic tasks. Proceedings of the International Conference on Distributed Computing Systems; Paris, Fr.1990,108-115.
    [103]Ramamritham K. Where do time constraints come from and where do they go? International Journal of Database Management; 1996,7(2):4-10.
    [104]Dobrin R, Fohler G,Puschner P. Translating off-line schedules into task attributes for fixed priority scheduling. Proceedings of the Real-Time Systems Symposium; London.2001,225-234.
    [105]Fohler G. Flexibility in statically scheduled real-time systems. Phd Thesis. Austria:Technisch-Naturwissenschaftliche Fakultaet,Technische Universitaet Wien; 1994.
    [106]Factor M. Real-time data fusion in the intensive care unit. IEEE Computer; 1991,24(11):45-54.
    [107]Lu C, Stankovic J A, EAbdelzaher T, et al. Performance specifications and metrics for adaptive real-time systems. Proceedings of the IEEE Real-Time Systems Symposium; Orlando, FL.2000.
    [108]王志平,熊光泽.实时调度算法研究.电子科技大学学报;2000,29(2).
    [109]邹勇.开放式实时系统的调度方法研究.博士学位论文.北京:中国科学院软件研究所;2003.
    [110]Nissanke N. Realtime systems. Upper Saddle River:Prentice Hall; 1997.
    [111]Stankovic J A, Spuri M, Ramamritham K, et al. Deadline scheduling for real-time systems:EDF and related algorithms. Boston:Kluwer Academic Publishers; 1998.
    [112]Doerr B S, Venturella T, Jha R, et al. Adaptive scheduling for real-time, embedded information systems. Proceedings of AIAA/IEEE Digital Avionics Systems Conference; 1999,1:2-5.
    [113]卢光辉,孙世新.分布存储系统上一种新的并行调度算法.计算机研究与发展;2001,28(2):223-227.
    [114]Altenbernd P,Hansson H. The slack method:a new method for static allocation of hard real-time tasks. Real-Time Systems; 1998,15(2):103-130.
    [115]Lipari G,Baruah S K. Efficient scheduling of real-time multi-task applications in dynamic systems. Proceedings of the Real-Time Technology and Applications Washington, DC, USA.2000,166-175.
    [116]Manimaran G,Murthy C S R. An efficient dynamic scheduling algorithm for multiprocessor real-time systems. IEEE Transactions on Parallel and Distributed Systems; 1998,9(3):312-319.
    [117]张拥军,张怡,彭宇行,et al.一种基于多处理机的容错实时任务调度算法.计算机研究与发展;2000,37(4):425-429.
    [118]Horn W A. Some simple scheduling algorithms. Naval Research Logistics Quarterly; 1974,21(1):177-185.
    [119]阳春华,计莉,沈德耀,et al.实时多处理机系统BEST-FIT启发式容错调度.计算机工程与科学;2003,25(5):61-65.
    [120]Lauzac S, Melhem R,Mosse D. An improved rate-monotonic admission control and its applications. Transactions on Computers; March 2003,52(3):337-350.
    [121]Burchard A, Liebeherr J, Oh Y, et al. New strategies for assigning real-time tasks to multiprocessor systems. Transactions on Computers; 1995,44(12):1429-1442.
    [122]Lehoczky J P. Fixed priority scheduling of periodic task sets with arbitrary deadlines. Proceedings of the Real-Time Systems Symposium; Lake Buena Vista, FL, USA.1991,201-209.
    [123]Harbour M G, Klein M H,Lehoczky J P. Fixed priority scheduling of periodic tasks with varying execution priority. IEEE Real-Time Systems Symposium; Oakland.1991,116-128.
    [124]Burns A,Wellings A J. Dual priority assignment:a practical method for increasing processor utilization. Proceedings of the 5th Euromicro Workshop on Real-Time Systems.1993,48-53.
    [125]何军.实时调度算法研究.博士学位论文.北京:中国科学院软件研究所;1997.
    [126]金宏.基于动态抢占阈值的实时调度.计算机研究与发展;2004,41(3).
    [127]Spuri M,Buttazzo G. Scheduling aperiodic tasks in dynamic priority systems. Real-Time Systems; 1996,10(2):179-210.
    [128]Sprunt B, Lehoczky J P,Sha L. Exploiting unused periodic time for aperiodic service using extended priority exchange algorithm. IEEE 9th Real-Time Systems Symposium.1988,251-258.
    [129]Lehoczky J P, Sha L,Strosnider J K. Enhanced aperiodic responsiveness in hard real-time environments. Proceedings of The 8th IEEE Real-Time Systems Symposium.1987,261-270.
    [130]Sprunt B, Sha L,Lehoczky J. Aperiodic task scheduling for hard-real-time systems. Real-Time Systems; 1989,1(1):27-60.
    [131]Sprunt B. Aperiodic task scheduling for real-time systems. Phd Thesis. Carnegie Mellon University; 1990.
    [132]Lehoczky J P,Ramos-Thuel S. An optimal algorithm for scheduling soft-aperiodic tasks in fixed-priority preemptive systems. Real-Time Systems Symposium.1992,110-123.
    [133]Lu C. Feedback control real-time scheduling. PhD Thesis. University of Virginia; 2001.
    [134]Stankovic J A,Ramamritham K. The design of the spring kernel. Proceedings of the 8th. Real-Time Systems Symposium.1987,146-157.
    [135]Richardson P,Sarkar S. Adaptive scheduling:overload scheduling for mission critical systems. Proceedings of the 5th IEEE Real-Time Technology and Applications; Vancouver, BC, Canada.1999,14-23.
    [136]Stankovic J A, He T, Abdelzaher T, et al. Feedback control scheduling in distributed real-time systems. Proceedings of the Real-Time Systems Symposium; London.2001,59-70.
    [137]Lu C, Stankovic J A, Tao G, et al. Design and evaluation of a feedback control EDF scheduling algorithm. Proceedings of the Real-Time Systems Symposium; Phoenix, AZ, USA.1999,56-67.
    [138]Saini G. Application of fuzzy logic to real-time scheduling. Real Time Conference; India.2005.
    [139]金宏,王宏安,傅勇,et al.模糊反馈控制实时调度算法.软件学报;2004,15(6):791-798.
    [140]金宏,王宏安,王强,et al.模糊动态抢占调度算法.计算机学报;2004,27(6):812-818.
    [141]Muhuri P K,Shukla K K. Real-time task scheduling with fuzzy uncertainty in processing times and deadlines. Journal of Applied Soft Computing; 2006.
    [142]Huai X Y, Zou Y,Li M S. Adaptive fuzzy control scheduling of hybrid real-time system. Proceedings of 2002 International Conference on Machine Learning and Cybernetics.2002,810-815.
    [143]Zhang J,Zou Y R. Predictive control for performance guarantees in soft real-time scheduling systems. Proceedings of the 6th World Congress on Intelligent Control and Automation; Dalian, China. June 21-23,2006, 6944-6948.
    [144]淮晓永.一种开放混合实时系统的开放自适应调度算法.软件学报;2004,15(4):486-496.
    [145]Henriksson D, Redell O, EI-Khoury J, et al. Tools for real-time control systems co-design. Lund Institute of Technology; 2005.
    [146]Eker J,Cervin A. A matlab toolbox for real-time and control systems co-design. Proceedings of the Intl. Conference on Real-Time Computing Systems and Applications.1999.
    [147]Henriksson D, Cervin A,Arzen K E. TrueTime:simulation of control loops under shared computer resources. IF AC World Congress on Automatic Control.2002.
    [148]Lincoln B,Cervin A. Jitterbug:a tool for analysis of real-time control performance. Proceedings of the IEEE Conference on Decision and Control. 2002.
    [149]Palopoli L, Lipari G, Lamastra G, et al. An object-oriented tool for simulating distributed real-time control systems. Software-Practice and Experience; 2002,32(9):907-932.
    [150]Ohlin M, Henriksson D,Cervin A. Truetime 1.5-reference manual. Lund Institute of Technology; 2007.
    [151]刘怀,费树岷.控制系统中实时任务的动态优化调度算法.控制与决策;2005,20(3):246-250.
    [152]Richalet J. Industrial applications of model based predictive control. Automatica;1993,29(5):1251-1274.
    [153]Qin S J,Badgwell T A. A survey of industrial model predictive control technology. Control Engineering Practice; 2003,11(7):733-764.
    [154]Mayne D Q, Rawlings J B, Rao C V, et al. Constrained model predictive control:stability and optimality. Automatica; 2000,36(6):789-814.
    [155]金宏,王宏安,唐雪梅,et al.计算机控制中的模糊调度设计.计算机学报;2006,29(3):414-422.
    [156]Sabeghi M, Naghibzadeh M,Taghavi T. Scheduling non-preemptive periodic tasks in soft real-time systems using fuzzy inference. Proceedings of 9th IEEE International Symposium on Object-Oriented Real-Time Distributed Computing; Gyeongju, South Korea.2006,27-32.
    [157]Velasco M, Marti P,Villa R. Stability of networked control systems with bounded sampling rates and time delays. Proceedings of the 31th Annual Conference of the IEEE Industrial Electronics Society; Raleigh, USA.2005, 2417-2422.
    [158]Alefeld G,Herzberger J. Introduction to interval computations. Academic Press; 1983.
    [159]Schwartz D I. Deterministic interval uncertainty methods for structural analysis. Phd Thesis. State University of New York; 1999.
    [160]Astrom K J,Wittenmark B. Computer controlled systems. Third edition. Prentice Hall; 1997.
    [161]Gahinet P, Nemirovski A, Laub A J, et al. LMI control toolbox. The MathWOrks Inc; 1995.
    [162]肖扬.多维系统的稳定性分析.上海:上海科技出版发行有限公司;2003.
    [163]Rump S M. Intelab-interval laboratory. Hamburg:Institute for Reliable Computing; 2005.
    [164]Shin K G,Xianzhong C. Computing time delay and its effects on real-time control systems. Control Systems Technology, IEEE Transactions on; 1995,3(2):218-224.
    [165]李祖欣,王万良,雷必成,et al.网络控制系统中的调度问题.计算机工程与应用;2007,43(16):241-246.
    [166]Liu G P, Xia Y,Rees D. Predictive control of networked systems with random delays. Proceedings of the 16th IF AC World Congress.2005.
    [167]Liu G P, Xia Y Q, Chen J, et al. Networked predictive control of systems with random network delays in both forward and feedback channels. Industrial Electronics, IEEE Transactions on; 2007,54(3):1282-1297.
    [168]陈峰.深海底采矿机器车运动建模与控制研究.博士学位论文.中南大学;2005.
    [169]王随平,余梦迪,王和平.深海中试控制系统监控、动力配置技术设计.九五国家长远发展计划项目;2001.
    [170]余梦迪,龚德文,黄传义,et al.自行式海底作业车监控系统研究开发.中国技术专家网;2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700