用户名: 密码: 验证码:
复杂作业环境下的深海采矿机器人轨迹跟踪研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着陆地矿产资源的不断枯竭,深入开发各种海洋矿产资源受到世界各国的重视。在浩瀚的海底,富含一种结核状矿石,内有锰、钴、镍、铜、铅、锌、金、银、铝等金属元素,品位非常高。海底采矿机器人需要携带采矿头、动力站、电子设备、输矿软管和电缆等自主行走于稀软的海底,收集各种矿石。深海采矿机器人的作业环境很复杂,如:连接深海采矿机器人与中继矿仓的输矿软管长达数百米,在作业过程中,软管张紧度不断变化,引起软管张力动态变化,中继仓受海浪影响上下起伏,引起软管产生摆动。由于海底稀软,软管阻力将引起履带打滑率及其测量噪声的波动,产生一个复杂动态干扰,作用在深海采矿机器人组合定位系统与轨迹跟踪控制系统,影响到深海采矿效率与深海采矿系统安全。
     论文针对复杂作业环境下的深海采矿机器人轨迹跟踪所做的主要研究工作和贡献总结如下:
     1)鉴于海上实验的困难,为了降低系统开发的风险,针对采矿机器人在稀软海底行驶时打滑严重,打滑率难以准确测量等问题,基于悬链线法,通过对超越方程组数值求解,实时计算软管阻力,建立了新的深海采矿机器人动力学模型与履带打滑率计算模型,为组合定位与轨迹跟踪控制系统分析模型的建立奠定了基础。
     2)针对长基线声学定位受工作噪声干扰以及航位推算精度受打滑干扰等问题,采用附加打滑参数的履带机器人运动学模型,根据湖试数据对定位系统过程噪声与测量噪声进行了描述,利用新息序列实现噪声统计特性自适应,然后考虑测量数据时延带来的影响,通过卡尔曼滤波器将长基线定位信息与航位推算信息进行融合,得到采矿机器人的位置估计。研究结果证实,该自适应卡尔曼滤波器能有效地适应过程噪声与测量噪声统计特性的变化,比常规卡尔曼滤波器具有更好的深海采矿机器人定位效果。
     3)针对扩展卡尔曼滤波(EKF)在海底采矿机器人组合定位系统中应用时存在着计算复杂、线性化误差大等问题,将无色卡尔曼滤波(UKF)用于基于长基线(LBL)与航位推算(DR)的深海采矿机器人组合定位系统中。考虑测量数据时延的影响,组合定位系统融合LBL与DR信息,得到海底采矿机器人的位置估计。研究结果表明UKF方法能够明显减少组合定位系统的线性化误差,提高海底采矿机器人定位系统的精度与稳定性。
     4)针对组合定位系统存在的非线性、打滑噪声变化大、声纳检测信息延迟等导致的滤波器性能下降问题,采用了一种新的过程噪声方差自适应调整方法,并将其与UKF相结合,形成自适应无迹卡尔曼滤波(AUKF)。研究结果表明:该方法可以实时调整过程噪声方差,有效地避免由于过程噪声统计特性不准确所带来的滤波性能下降的问题,其深海采矿机器人位置估计效果明显优于常规UKF方法。
     5)基于视线导航方法,得到期望的深海采矿机器人速度与航向角。考虑履带打滑的影响,并加入一个与航向角误差成正比的分量,建立两侧液压马达期望角速度的计算模型,实现深海采矿机器人的航向角控制。针对液压系统的非线性和不确定性,建立了液压马达角速度控制系统分析模型,提出了参数自整定模糊PID控制方法与在线自学习并积模糊控制方法。研究结果表明:期望马达角速度计算时,履带打滑率补偿精度越高,深海采矿机器人越能够准确地跟踪预定的采矿路径。
Among deep-sea mineral resources, manganese nodules (include useful metals such as manganese, copper and nickel) have been the most important targets of ocean exploration because of increasingly shortage of mineral resources and huge commercial benefits. In the deep ocean mining system, a tracked vehicle is normally used to collect manganese nodules on the seabed. The vehicle is equipped with a pickup unit, crusher, hydraulic system, electronic box, flexible pipe, etc. It is designed to move on deep seabed autonomously, with high localization precision, so as to ensure high efficiency operation.
     This thesis describes the development of a mining vehicle model and the associated navigation system for a skid-steered tracked vehicle that is expected to operate on the deepsea floor. The system is to navigate accurately and reliably in an unstrucutered environment, which is a difficult task and requires accurate localisation and robust trajectory control. The thesis made five main contributions towards accurate and reliable navigation and control of tracked mining vehicles as follows:
     1) The thesis presents a novel approach to soil-track interaction modelling by incorporating track slips, the robot slip angle and track forces. The equations developed characterise the relationship between the forces acting on the vehicle, the robot parameters and key soil properties. The soil-track interaction equations are then used to develop a comprehensive motion model of a tracked robot. Incorporating kinematic and dynamic equations of robot motion with the soil equations allows robust and reliable estimation of the robot's position using an extended Kalman filter.
     2) Since the long base line (LBL) based sonar localization system of seabed mining vehicles is seriously affected by the noise in a working environment, and the accuracy of dead reckoning (DR) is seriously affected by vehicle slippage, the thesis introduces a kinematic model of a tracked mining vehicle in presence of sliding parameters, and describes its process and measurement noises based on experiment data collected from a lake. The innovation sequence is deployed to achieve the adaptive statistics features of both process and measurement noises. Taking into account the influence of measurement data delay, the Kalman filter fuses LBL and DR data to obtain the localization estimate of the seabed mining vehicle. Simulation results prove that the adaptive Kalman filter can deal with the changing statistics features of process and measurement noise very well, and has better localization estimation of the seabed mining vehicle than a normal Kalman filter.
     3) Since there are some defects when the extended Kalman filter (EKF) is applied in the nonlinear state estimation, unscented Kalman filter (UKF) is introduced in an integrated navigation system (LBL/DR) for the localization of a deep-sea mining vehicle. Compared with the EKF, the UKF not only improves the location accuracy, but also avoids the calculation burden of Jacobian matrices. This data fusion algorithm is easy to implement, and meets the requirements of low cost and high precision. The simulation result shows that the UKF method is more accurate and reliable than the EKF method for deep-sea mining vehicle navigation.
     4) This thesis introduces a kinematic model of a deep-sea mining vehicle in presence of sliding parameters. The model describes both the noise features of sliding parameters and the deep-sea condition features. To handle sliding parameters noises, a recursive algorithm is adopted to minimize difference between the filter-computed and the actual innovation covariance, which is a novel integrated navigation method based on unscented Kalman filters (UKF). Taking into account the influence of measurement data delay, UKF fuses the data from both LBL sonar localization and DR to perform the state estimation. Simulation results show that the adaptive UKF has better localization performance than a normal UKF for a deep-sea tracked vehicle (DTV).
     5) Based on the line of sight navigation method, the desired speed and heading angle of the mine collection vehicle are obtained. Considering the influence of track sliding, a sub-factor that is proportional to the heading error is added, a desired angular velocity model of left and right hydraulic motors set up, the heading angle control of the mine collection vehicle is achieved. Considering the non-liner and uncertain features of a hydraulic system, the analysis model of the angular velocity control system of a hydraulic motor is built and a fuzzy-PID control algorithm is proposed. The simulation results show that:the proposed system can effectively compensate track slip, resist the effect of various disturb factors, and track a desired mining path accurately.
引文
[1]朱洪前,桂卫华,王随平,et al.深海多金属结核开采技术研究[J].金属矿山,2005,(s1):197-198.
    [2]Chung JS. Deep-ocean mining:technologies for manganese nodules and crusts[J]. International Journal of Offshore and Polar Engineering,1996,6 (4): 244-254.
    [3]朱洪前,桂卫华,王随平,et al.深海采矿车控制技术研究[J].金属矿山,2005,(09):11-13.
    [4]李力,邹兴龙.海底机器人自动跟踪预定开采路径控制[J].机械工程学报,2007,(01):152-157.
    [5]Park J-Y, Cho B-H, Lee J-K. Trajectory-tracking control of underwater inspection robot for nuclear reactor internals using Time Delay Control [J]. Nuclear Engineering and Design,2009,239 (11):2543-2550.
    [6]Chung JS. Deep-ocean mining technology:Development Ⅱ[C]. Changsha, Hunan, China:International Society of Offshore and Polar Engineers,2005: 1-6.
    [7]Chung JS, Tsurusaki K. Advance in deep-ocean mining systems research[C]. Osaka, Jpn:Publ by Int Soc of Offshore and Polar Engineerns (ISOPE),1994: 18-31.
    [8]Kuriyagawa M. NIRE's research in ocean mining[C]. Tsukuba, Jpn:Int Soc of Offshore and Polar Engineerns (ISOPE),1995:31-37.
    [9]Masuda Y. Crust mining plans of the Japan Resources Association[J]. Marine mining,1991,10(1):95-101.
    [10]Yamazaki T. Status of development for deep-sea mineral resources[J]. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy,2009,88 (7): 569-576.
    [11]Inokuma A. Current status of deep-sea mineral resources development in Japan[C]. Tsukuba, Jpn:Int Soc of Offshore and Polar Engineerns (ISOPE), 1995:9-13.
    [12]Malahoff A. New horizons for deep ocean minerals[J]. Sea Technology,1983, 24 (7):19-20.
    [13]陈峰,桂卫华,王随平,et al.深海底采矿机器车的研究现状[J].矿山机械,2005,(09):6-10.
    [14]陈新明.中国深海采矿技术的发展[J].矿业研究与开发,2006,(S1):40-48.
    [15]王明和,简曲,陈新明.自行式海底作业车的研究[J].海洋技术,1997,(4):46-51.
    [16]Yamada H, Yamazaki T. Japan's ocean test of the nodule mining system[C]. Montreal, Can:ISOPE,1998:13-19.
    [17]Matsui T, Okubo S, Kuboki E. Summary of the Japanese Environmental Study for Direct Impact Experiment on Seamount (DIETS)[C]. Szczecin, Poland: International Society of Offshore and Polar Engineers,2001:31-37.
    [18]郑文元.系统虚拟技术在深海采矿系统开发中的应用[J].冶金设备,2001,(06):29-32.
    [19]吴鸿云,陈新明,高宇清,et al.履带式集矿机的拉格朗日运动方程[J].矿业研究与开发,2004,(03):47-48+59.
    [20]王震宇,刘少军,李力.深海采矿履带式集矿机行走可行性仿真研究(英文)[J].系统仿真学报,2004,(04):644-646.
    [21]陈峰,桂卫华,王随平,et al.深海底履带机器车建模及仿真研究[J].机器人,2004,(06):31-35.
    [22]王爱武.深海采矿集矿装置的倾角监控[J].矿业研究与开发,1998,(02):32-36.
    [23]Gonzalez de Santos P, Cobano JA, Garcia E, et al. A six-legged robot-based system for humanitarian demining missions [J]. Mechatronics,2007,17 (8): 417-430.
    [24]Bellotto N, Hu H. Multisensor-based human detection and tracking for mobile service robots [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,2009,39 (1):167-181.
    [25]Hu H, Gu D. Reactive behaviours and agent architecture for Sony legged robots to play football[J]. Industrial Robot,2001,28 (1):45-53.
    [26]王志文,郭戈.移动机器人导航技术现状与展望[J].机器人,2003,(05):470-474.
    [27]刘长生,赵青,朱洪前.林用履带机器人自动跟踪预定行走路径控制[J].制造业自动化,2009,(08):93-94+168.
    [28]Bailey T, Durrant-Whyte H. Simultaneous localization and mapping (SLAM): part II[J]. IEEE Robotics & Automation Magazine,2006,13 (3):108-117.
    [29]Durrant-Whyte H, Bailey T. Simultaneous localization and mapping:Part Ⅰ[J]. IEEE Robotics and Automation Magazine,2006,13 (2):99-108.
    [30]Ryde J, Hu H. Mobile robot 3D perception and mapping without odometry using multi-resolution occupancy lists[C]. Harbin, China:Inst. of Elec. and Elec. Eng. Computer Society,2007:331-336.
    [31]Liu J, Hu H. Mimicry of sharp turning behaviours in a robotic fish[C]. Barcelona, Spain:Institute of Electrical and Electronics Engineers Inc.,2005: 3318-3323.
    [32]Zhang Y, Hu H, Zhou H. Study on adaptive Kalman filtering algorithms in human movement tracking[C]. Hong Kong, China:Inst. of Elec. and Elec. Eng. Computer Society,2005:11-15.
    [33]Golubovic D, Hu H. Parameter optimisation of an evolutionary algorithm for on-line gait generation of quadruped robots[C]. Maribor, Slovenia:Institute of Electrical and Electronics Engineers Inc.,2003:221-226.
    [34]Yang E, Gu D, Hu H. Improving the formation-keeping performance of multiple autonomous underwater robotic vehicles [C]. Niagara Falls, ON, Canada:Institute of Electrical and Electronics Engineers Computer Society, 2005:1890-1895.
    [35]Hu H, Gu D, Brady M. Navigation and guidance of an intelligent mobile robot[C]. Brescia, Italy:IEEE Comp Soc,1997:104-111.
    [36]欧青立,何克忠.室外智能移动机器人的发展及其关键技术研究[J].机器人,2000,(06):519-526.
    [37]闫清东,魏丕勇,马越.小型无人地面武器机动平台发展现状和趋势[J].机器人,2004,(04):373-379.
    [38]陈勇,桂卫华,王随平,et al.深海履带式集矿机的动力学模型仿真研究(英文)[J].系统仿真学报,2008,(21):5957-5962.
    [39]吕东,何将三,刘少军.深海资源开采技术的研究现状[J].矿山机械,2004,(09):6-9.
    [40]魏炜,王随平.深海采矿机器人自定位过程中数据融合研究[J].自动化与仪表,2007,(02):22-25.
    [41]陈勇,桂卫华,阳春华,et al.深海采矿移动机器人的定位方法研究[J].系统仿真学报,2008,(23):6486-6489.
    [42]李俊,徐德民,宋保维,et al.自主式水下潜器导航技术发展现状与展望[J].中国造船,2004,(03):70-77.
    [43]Marani G, Choi SK, Yuh J. Underwater autonomous manipulation for intervention missions AUVs[J]. Ocean Engineering,2009,36 (1):15-23.
    [44]Willumsen AB, Hallingstad O, Jalving B. Integration of range, bearing and doppler measurements from transponders into underwater vehicle navigation systems[C]. Boston, MA, United states:Inst. of Elec. and Elec. Eng. Computer Society,2006:1-6.
    [45]Larsen MB. Synthetic long baseline navigation of underwater vehicles[C]. Providence, RI, USA:IEEE,2000:2043-2050.
    [46]Forrest AL, Bohm H, Laval. B, et al. Investigation of under-ice thermal structure:Small AUV deployment in Pavilion Lake, BC, Canada[C]. Vancouver, BC, Canada:Institute of Electrical and Electronics Engineers Inc.,2007: 485-493.
    [47]Marthiniussen R, Faugstadmo JE, Jakobsen HP. HAIN an integrated acoustic positioning and inertial navigation system[C]. Kobe, Japan:Marine Technology Society Inc.,2004:1620-1628.
    [48]邢志伟,张禹,封锡盛.基于超短基线/多普勒的水下机器人位置估计[J].机器人,2003,(03):231-234+263.
    [49]Williams SB, Newman P, Rosenblatt J, et al. Autonomous underwater navigation and control[J]. Robotica,2001,19 (5):481-496.
    [50]Lucido L, Pesquet-Popescu B, Opderbecke J, et al. Segmentation of bathymetric profiles and terrain matching for underwater vehicle navigation[J]. International Journal of Systems Science,1998,29 (10):1157-1176.
    [51]Lucido L, Opderbecke J, Rigaud V, et al. A terrain referenced underwater positioning using sonar bathymetric profiles and multiscale analysis[C]. New York, NY, USA:IEEE,1996:417-421.
    [52]Lucido L, Opderbecke J, Rigaud V, et al. An integrated multiscale approach for terrain referenced underwater navigation[C]. New York, NY, USA:IEEE,1996: 633-636.
    [53]Sistiaga M, Opderbecke J, Aldon MJ, et al. Map based underwater navigation using a multibeam echosounder[C]. New York, NY, USA:IEEE,1998: 747-751.
    [54]Quine BM. A derivative-free implementation of the extended Kalman filter[J]. Automatica,2006,42 (11):1927-1934.
    [55]李昊,阳春华,王随平.集成神经网络在深海集矿机故障诊断中的应用[J]. 计算技术与自动化,2004,(03):319-323.
    [56]Loebis D, Sutton R, Chudley J, et al. Adaptive tuning of a Kalman filter via fuzzy logic for an intelligent AUV navigation system[J]. Control Engineering Practice,2004,12 (12):1531-1539.
    [57]宋连清.大洋多金属结核矿区沉积物土工性质[J].海洋学报(中文版),1999,(06):47-54.
    [58]倪建宇,周怀阳,彭晓彤,et al.中国多金属结核开辟区的深海环境[J].海洋地质与第四纪地质,2002,(01):43-47.
    [59]Duckett T, Nehmzow U. Mobile robot self-localisation using occupancy histograms and a mixture of Gaussian location hypotheses [J]. Robotics and Autonomous Systems,2001,34 (2-3):117-129.
    [60]Whitcomb L, Yoerger D, Singh H, et al. Towards precision robotic maneuvering, survey, and manipulation in unstructured undersea environments[C]. London, UK:Springer-Verlag London,1998:45-54.
    [61]Caccia M, Veruggio G. Guidance and control of a reconfigurable unmanned underwater vehicle[J]. Control Engineering Practice,2000,8 (1):21-37.
    [62]Caccia M, Casalino G, Cristi R, et al. Acoustic motion estimation and control for an unmanned underwater vehicle in a structured environment[J]. Control Engineering Practice,1998,6 (5):661-670.
    [63]Auran PG, Silven O. Underwater sonar range sensing and 3d image formation[J]. Control Engineering Practice,1996,4 (3):393-400.
    [64]Li J-H, Jun B-H, Lee P-M, et al. A hierarchical real-time control architecture for a semi-autonomous underwater vehicle[J]. Ocean Engineering,2005,32 (13):1631-1641.
    [65]Trimble GM, Markett RE. Distribution of guidance, navigation, and control functionality in the explosive ordnance disposal autonomous underwater vehicle robotic work packages program[C]. Cambridge, MA, USA:IEEE,1994: 1-6.
    [66]Adams ME. Autonomous navigation:Achievements in complex environments[C]. Kunming, China:Inst. of Elec. and Elec. Eng. Computer Society,2006:IEEE Robotics and Automation Society (RAS); Robotics Society of Japan (RSJ); Japanese Society of Mechanical Engineers (JSME); Peking University; Beijing Institute of Technology; Yunnan University.
    [67]Yushan S, Lei W, Xiao L, et al. Design of the embedded navigation system of autonomous underwater vehicle based on the VxWorks[C]. Piscataway, NJ, USA:IEEE,2007:2919-2924.
    [68]陈峰,韩晓英,桂卫华.基于FSUKF的全液压履带机器车打滑率估计及应用[J].中山大学学报(自然科学版),2007,(S2):199-203.
    [69]杨放琼,彭高明,谭青.深海自行式集矿机的定位与综合导航[J].中山大学学报(自然科学版),2006,(3):39-42.
    [70]Won M-C, Cha H-S, Shin S-C, et al. Development of an extended Kalman filter algorithm for the localization of underwater mining vehicles[C]. Changsha, Hunan, China:International Society of Offshore and Polar Engineers,2005: 175-180.
    [71]李一平,燕奎臣.自治水下机器人在深海采矿系统湖试中的应用[J].海洋工程,2006,(02):67-71.
    [72]李双艳,郑哲文,朱洪前.非线性随机干扰系统轨迹跟踪预测自适应控制[J].中南林业科技大学学报,2007,(02):109-112.
    [73]Fang H, Fan R, Thuilot B, et al. Trajectory tracking control of farm vehicles in presence of sliding[J]. Robotics and Autonomous Systems,2006,54 (10): 828-839.
    [74]Tran DT, O'Brien J, Muro T. An optimal method for the design of a robotic tracked vehicle to operate over fresh concrete under steering motion[J]. Journal of Terramechanics,2002,39 (1):1-22.
    [75]Ahmad M, Polotski V, Hurteau R. Path tracking control of tracked vehicles[C]. Piscataway, NJ, USA:IEEE,2000:2938-2943.
    [76]Zibin S, Zweiri YH, Seneviratne LD, et al. Non-linear observer for slip estimation of skid-steering vehicles[C]. Orlando, FL, United states:Institute of Electrical and Electronics Engineers Inc.,2006:1499-1504.
    [77]Fujii K, Fujimoto H. Traction control based on slip ratio estimation without detecting vehicle speed for electric vehicle[C]. Nagoya, Japan:Inst. of Elec. and Elec. Eng. Computer Society,2007:688-693.
    [78]方志强,王红岩,贺小军,et al.一种测定履带车辆行驶地面性质参数的新方法[J].兵工学报,2007,(04):391-395.
    [79]郑太雄,李锐,李银国,et al.载重汽车ABS路面辨识算法研究[J].中国机械工程,2007,(03):374-377.
    [80]李岩,杨向东,陈恳.履带式移动机器人动力学模型及其反馈控制[J].清华大学学报(自然科学版),2006,(08):1377-1380.
    [81]Shiller Z, Serate W, Hua M. Trajectory planning of tracked vehicles[C]. Atlanta, GA, USA:Publ by IEEE,1993:796-801.
    [82]Le AT, Rye DC, Durrant-Whyte HF. Estimation of track-soil interactions for autonomous tracked vehicles[C]. Albuquerque, NM, USA:IEEE,1997: 1388-1393.
    [83]Wong JY, Chiang CF. A general theory for skid steering of tracked vehicles on firm ground[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,2001,215 (3):343-355.
    [84]Wang W, Du Z, Sun L. Dynamic load effect on tracked robot obstacle performance[C]. Kumamoto, Japan:Inst. of Elec. and Elec. Eng. Computer Society,2007:1-6.
    [85]陈勇,桂卫华,阳春华.深海采矿机器人的行走鲁棒控制[J].控制与决策,2009,(05):794-796+800.
    [86]陈勇,桂卫华,王随平.深海采矿机器人控制体系结构研究[J].控制工程,2009,(04):488-490+497.
    [87]Tae-Kyeong Y, Soung-Jea P, Sup H, et al. Path tracking using vector pursuit algorithm for tracked vehicles driving on the soft cohesive soil[C]. Piscataway, NJ, USA:IEEE,2007:6 pp.
    [88]Hong S, Choi J-S, Kim H-W, et al. A path tracking control algorithm for underwater mining vehicles[J]. Journal of Mechanical Science and Technology, 2009,23 (8):2030-2037.
    [89]Herzog K, Schulte E, Atmanand MA, et al. Slip control system for a deep-sea mining machine[J]. IEEE Transactions on Automation Science and Engineering, 2007,4 (2):282-286.
    [90]Helmick DM, Roumeliotis SI, Cheng Y, et al. Slip-compensated path following for planetary exploration rovers[C]. P.O.Box 9000, Leiden,2300 PA, Netherlands:VSP BV,2006:1257-1280.
    [91]Fossen T, Perez T. Kalman filtering for positioning and heading control of ships and offshore rigs[J]. IEEE Control Systems Magazine,2009,29 (6):33-46.
    [92]Bekker MG. Theory of land locomotion[M]. Ann Arbor, Michigan:The Univ. of Michigan press,1956.
    [93]Bekker MG. Off-road locomotion:research and development in terramechanics[M]. Ann Arbor, Michigan:The Univ. of Michigan press,1960.
    [94]Bekker MG.地面—车辆系统导论[M].北京:机械工业出版社,1978.
    [95]邹猛,彭剑波.月面探测车辆驱动轮牵引性能研究[D].吉林:吉林大学,2008.
    [96]Wong JY.地面车辆原理[M].北京:机械工业出版社,1985.
    [97]陈峰.深海底采矿机器车运动建模与控制研究[D].长沙:中南大学,2005.
    [98]韩冷飞.深海作业型机器人防滑控制研究[D].长沙:中南大学,2008.
    [99]陈勇.深海采矿移动机器人的鲁棒控制研究[D].长沙:中南大学,2009.
    [100]陈淑艳.移动机器人履带行走装置的构型与机动性能研究[D].扬州:扬州大学,2008.
    [101]谢龙水.深海履带式集矿机设计的研究[J].有色矿山,1995,(06):8-15.
    [102]赵松年,刘峰.德国深海采矿技术的研究[J].金属矿山,1995,(06):14-17.
    [103]丁六怀,高宇清.深海采矿集矿机的研究与开发[J].矿业研究与开发,2006,(S1):52-56.
    [104]简曲,王明和.深海采矿集矿机的设计[J].矿业研究与开发,1998,(01):37-40.
    [105]谢龙水.中国深海采矿[J].中国矿山工程,1993,(05):17-20.
    [106]夏剑锋,王贵满.深海采矿水力式集矿模型机[J].矿冶工程,1996,(04):18-21.
    [107]谢龙水.我国深海采矿技术研究的阶段性成果及今后工作方向[J].湖南有色金属,1999,(01):1-5+29.
    [108]陶德宁.中国的深海采矿[J].铀矿冶,2000,(01):50.
    [109]周知进,王贵满.海底沉积物剪切强度的试验研究[J].湖南科技大学学报(自然科学版),2005,(02):15-18.
    [110]Yamazaki T, Komine T, Kawakami T. Geotechnical properties of deep-sea sediments and the in-situ measurement techniques[C]. Changsha, Hunan, China: International Society of Offshore and Polar Engineers,2005:48-55.
    [111]Meunier J, Sultan N, Jegou P, et al. First tests of penfeld:A new seabed penetrometer[C]. Toulon, France:International Society of Offshore and Polar Engineers,2004:338-345.
    [112]Wang S, Gui W, Zhang T, et al. Fuzzy and predictive control on the deep-sea vehicle[C]. Changsha, Hunan, China:International Society of Offshore and Polar Engineers,2005:181-186.
    [113]汤亚锋.履带式移动机器人与地面相互作用特性研究[D].长沙:国防科学技术大学,2006.
    [114]徐海良,龙国键.采矿车运动对深海采矿软管输送系统的影响分析[J].海 洋工程,2006,(01):132-138.
    [115]徐海良,何清华.深海采矿输送软管几何非线性静力分析[J].机械设计与研究,2005,(03):71-74+82.
    [116]徐海良,龙国键,诸福磊.深海采矿矿石输送软管有限元动力分析[J].矿山机械,2005,(09):10-13.
    [117]简曲,何永森,王明和,et al.大洋采矿输送软管动力特性的数值研究[J].海洋工程,2001,(01).
    [118]郭小刚,张立人,金星,et al.深海采矿流-固耦合软管系统的非线性动力学模型[J].工程力学,2000,(03):93-104.
    [119]徐海良,龙国键.在海水阻力作用下的深海采矿系统力学参数分析[J].机械科学与技术,2006,(08):917-921.
    [120]单圣涤.工程索道[M].北京:中国林业出版社,2000.
    [121]朱洪前,单圣涤,陈洁余.索道设计系统研究[J].矿山机械,2005,(09):59-61+55.
    [122]吴国锐.深海履带式钴结壳采矿车工作稳定性仿真研究[D].长沙:中南大学,2007.
    [123]于楠.深海采矿系统中输运软管的参数优化[D].大连:大连理工大学,2000.
    [124]朱洪前,单圣涤,陈洁余.索道设计系统研究[J].矿山机械,2005,(09):59-61.
    [125]Le AT. Modelling and control of tracked vehicles[D]. Sydney:The University of Sydney,1999.
    [126]Zavlangas PG, Tzafestas SG. Industrial robot navigation and obstacle avoidance employing fuzzy logic[J]. Journal of Intelligent and Robotic Systems:Theory and Applications,2000,27 (1-2):85-97.
    [127]程杨,杨涤,崔祜涛.向小天体着陆的自主导航研究[J].高技术通讯,2002,(08):42-46.
    [128]黄晓瑞,崔平远,崔祜涛.多传感器信息融合技术及其在组合导航系统中的应用[J].高技术通讯,2002,(02):107-110.
    [129]Yaqin T, Huosheng H. A novel sensing and data fusion system for 3-D arm motion tracking in telerehabilitation[J]. IEEE Transactions on Instrumentation and Measurement,2008,57 (5):1029-1040.
    [130]Ryde J, Hu H.3D laser range scanner with hemispherical field of view for robot navigation[C]. Xi'an, China:Institute of Electrical and Electronics Engineers Inc.,2008:891-896.
    [131]田坦.水下定位与导航技术[M].北京:国防工业出版社,2007.
    [132]王燕,梁国龙.一种适用于长基线水声定位系统的声线修正方法[J].哈尔滨工程大学学报,2002,(05):32-34.
    [133]刘海滢.深海多金属结核集矿机水下定位与路径规划算法研究[D].长沙:中南大学,2004.
    [134]常青.车辆导航定位方法及应用[M].北京:机械工业出版社,2005.
    [135]Hu H, Gan JQ. Sensors and Data Fusion Algorithms in Mobile Robotics[M]. Colchester:Department of Computer Science University of Essex,2005.
    [136]黄智.车载导航系统组合定位技术研究[D].长沙:湖南大学,2006.
    [137]邓正隆.惯性技术[M].哈尔滨:哈尔滨工业大学出版社,2006.
    [138]Siegwart R, Nourbakhsh IR. Introduction to Autonomous Mobile Robots [M]. Massachusetts:Massachusetts Institute of Technology,2004.
    [139]Qing-Hao M, Yi-Cai S, Zuo-Liang C. Adaptive extended Kalman filter (AEKF)-based mobile robot localization using sonar[J]. Robotica,2000,18: 459-473.
    [140]王耀南,邓霞,赵伟.基于权值矩阵的模糊自适应卡尔曼滤波在组合导航中的应用[J].中国惯性技术学报,2008,(03):334-338.
    [141]王和平,王爱武.深海采矿集矿机定位系统的研究[J].矿业研究与开发,2003,(02):32-34.
    [142]杨放琼,谭青,彭高明.基于长基线系统深海采矿ROV精确定位[J].海洋工程,2006,(03):95-99.
    [143]王随平,魏炜,陈勇.基于多传感器数据融合的深海集矿机导航与定位[J].计算机测量与控制,2007,(08):1003-1005.
    [144]卜英勇,贺茂坤,鲁志佩.基于最优切削深度的深海采矿车定位研究[J].海洋通报,2008,(04):88-92.
    [145]唐磊,赵春霞,唐振民,et al.基于模糊自适应Kalman滤波的GPS/DR数据融合[J].控制理论与应用,2007,(06):891-894.
    [146]戴路,金光,陈涛.自适应扩展卡尔曼滤波在卫星姿态确定系统中的应用[J].吉林大学学报(工学版),2008,(02):466-470.
    [147]唐康华,吴美平,胡小平.基于自适应滤波器的MIMU/GPS组合系统的研究[J].压电与声光,2007,(04):398-401.
    [148]Villani L, Lippiello V, Siciliano B. Adaptive extended Kalman filtering for visual motion estimation of 3D objects[J]. Control Engineering Practice,2007, 15(1):123-134.
    [149]Bian H, Jin Z, Tian W. IAE-adaptive Kalman filter for INS/GPS integrated navigation system[J]. Journal of Systems Engineering and Electronics,2006,17 (3):502-508.
    [150]朱洪前,胡豁生,桂卫华.软海底强干扰环境下的集矿车自适应定位[J].高技术通讯,2009,19(11):1159-1163.
    [151]葛哲学,杨拥民,温熙森.强跟踪UKF方法及其在故障辨识中的应用[J].仪器仪表学报,2008,(08):1670-1674.
    [152]高为广,何海波,陈金平.自适应UKF算法及其在GPS/INS组合导航中的应用[J].北京理工大学学报,2008,(06):505-509.
    [153]周战馨,余志勇.一种快速GPS/DR组合导航系统状态估计算法研究(英文)[J].仪器仪表学报,2006,(S1):623-625.
    [154]Julier SJ, Uhlmann JK. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE,2004,92 (3):401-422.
    [155]周桃庚,郝群,沙定国.U-卡尔曼滤波在状态估计中的应用[J].仪器仪表学报,2003,(s1):410-412.
    [156]Yan P, Jianda H. Tracking control of unmanned trimaran surface vehicle:using adaptive unscented Kalman filter to estimate the uncertain parameters[C]. Piscataway, NJ, USA:IEEE,2008:901-906.
    [157]Zhe J, Qi S, Yuqing H, et al. A novel adaptive unscented Kalman filter for nonlinear estimation[C]. Piscataway, NJ, USA:IEEE,2008:4293-4298.
    [158]Yan P, Jianda H, Qi S. Tracking control of underactuated surface ships:Using unscented Kalman filter to estimate the uncertain parameters[C]. Harbin, China: Inst. of Elec. and Elec. Eng. Computer Society,2007:1884-1889.
    [159]Qi S, Juntong Q, Jianda H. An adaptive UKF algorithm and its application in mobile robot control[C]. Piscataway, NJ, USA:IEEE,2006:1117-1122.
    [160]朱洪前,胡豁生,桂卫华.基于UKF的海底集矿车组合导航研究[J].中国矿业大学学报,2010,39 (2):238-243.
    [161]ZHU HQ, HU HS, GUI WH. Adaptive Unscented Kalman Filter for Deep-sea Tracked Vehicle Localization[C]. Zhuhai, Guangdong, China,2009: 1056-1061.
    [162]邹兴龙,李力.基于ADAMS的海底机器人行走液压系统仿真研究[J].机械工程与自动化,2006,(05):10-12+15.
    [163]姚怀新.工程车辆液压动力学与控制原理[M].北京::人民交通出版社, 2006.
    [164]王占林.近代电气液压伺服控制[M].北京:北京航空航天大学出版社,2005.
    [165]朱洪前,桂卫华.大洋集矿机轨迹跟踪自适应PID控制[J].机床与液压,2007,(12):87-89.
    [166]金立生,赵丁选,丁德胜,et al.液压挖掘机节能参数自适应模糊PID控制器研究[J].农业工程学报,2003,(06):87-90.
    [167]桂卫华,冯磊华,王随平.深海集矿机模型车行走驱动系统[J].中南大学学报(自然科学版),2005,(03):470-474.
    [168]陈峰,王随平,韩晓英.深海集矿机器人的自修正专家模糊控制[J].中南大学学报(自然科学版),2005,(06):1059-1063.
    [169]陈峰,桂卫华,王随平,et al.一种新的履带机器车轨迹跟踪控制[J].计算机工程与应用,2005,(29):187-189+207.
    [170]王随平,熊光辉.深海履带机器车的实时导航和避障[J].中南大学学报(自然科学版),2007,(01):128-132.
    [171]朱洪前,桂卫华,唐斌,et al.深海采矿机器人行走系统模糊控制研究[J].矿业研究与开发,2008,(03):38-39+45.
    [172]龚德文.深海集矿机测控系统的研究开发[J].矿冶工程,2004,(03):8-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700