用户名: 密码: 验证码:
基于自治与协商机制的柔性制造车间智能调度技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柔性制造环境下车间生产调度问题具有复杂性、不确定性、多目标、多约束、多资源相互协调等特点。鉴于其重要的理论和实际意义,一直以来是生产管理和组合优化领域的重点和难点课题。本论文在充分吸收近十余年间基于Agent或Holon的非集中式生产调度最新研究成果基础上,以具有生产加工柔性的、多单元、离散作业型(Job Shop)制造车间为研究对象,围绕基于Holon的协商与自治调度关键技术(实体封装、控制体系结构、协商机制和核心算法)展开研究,提出了基于Holon概念模型的、集成强化学习机制的合同网协议和改进过滤定向搜索算法的自治与协商智能调度技术,以提供实用有效的求解方法、改善柔性制造车间适应内部动态环境和外部市场快速变化的能力。
     具体地,本文的主要内容可概括为:
     1.首先从基于Agent或Holon的自治与协商调度的关键技术(实体封装、控制体系结构、协商机制和核心算法)角度详细综述了近些年间基于Agent或Holon的自治与协商生产调度、核心技术的研究现状和存在问题,引出本文研究的出发点和意义;
     2.针对可靠性、可扩展性和适应性等要求,提出了基于Holon的柔性制造车间控制体系结构,描述了组件Holon的结构模型、数据和功能关系、信息传递模型和通信语言基本规范,并从软件体系结构的观点出发,运用π演算对其进行了形式化描述和分析,为基于Holon的体系结构设计和分析奠定基础;
     3.针对传统制造合同网协议缺乏优化和动态学习能力这一问题,将强化学习工具之一的Q-学习算法与制造合同网协议集成,形成CNP-QL(Contract Net Protocol-Q Leaning)协商机制,以提高Holon适应动态环境的实时协调调度能力。详细定义了CNP-QL机制的消息描述、策略决策过程、学习迭代过程和CNP-QL机制中Q-学习算法的各个要素(包括状态确定准则、状态空间划分、奖惩函数设计和搜索策略定义等)。最后,单元Holon和产品Holon之间通过CNP-QL机制协商,用于解决具有柔性工艺路径的多单元间的任务动态协调分配问题,并通过仿真实例与纯CNP机制进行了比较分析,验证了该机制的有效性;
     4.调度算法是单元自治决策的引擎。在单元Holon任务协调分配后,提出了基于改进过滤定向搜索启发式算法HFBS(Heuristic based on Filtered-Beam-Search)的单元自治调度机制。构建了基于HFBS的单元自治调度决策模型。针对任务协调分配后形成的柔性Job Shop调度问题(Flexible Job-shop Scheduling Problem,FJSP),建立了面向多目标FJSP问题的数学规划模型并对模型进行分析讨论。为了有效解决FJSP问题,详细定义了HFBS四个搜索策略因素:(1)解空间的搜索树表述;(2)分枝策略;(3)定向搜索宽度和定向过滤宽度的确定;(4)评价函数的构造。最后,在分析策略因素对算法性能影响的基础上,就FJSP领域的标杆数据(Benchmark)和大量随机仿真数据,分别与现有的其它基于人工智能的启发式算法和调度规则进行了分析比较,说明了算法的有效性;
     5.为了使单元自治调度实现持续优化,提高自治调度对不可预见或随机的内外扰动事件(如机床故障、新订单进入等)的实时适应能力,在系统化阐述动态重调度整体理论框架体系(包括重调度环境、策略、方法和技术)的基础上,提出柔性制造车间单元内的动态重调度决策过程,对基于过滤定向搜索的启发式核心算法进行局部/全局评价函数和分枝策略两方面的扩展以更好地集成作业交货期和优先权重,并从动态重调度对算法响应能力方面考虑,分析了算法的时间复杂性。最后,通过一系列实例仿真说明了基于过滤定向搜索算法能实现面向典型扰动的动态重调度并确保调度性能和反应效率。
     6.最后,在JADE平台上,设计和开发了综合的原型仿真系统。以JADE Agent表述和实现了所定义的Holon之间交互和内部自治算法的控制技术,为将来基于自治与协商机制生产调度的工业化应用尝试可行的设计实现。
     本文的研究成果在一定程度上推进和丰富了基于Holon的协商与自治调度方法关键技术的研究,有利于改善企业的科学生产管理和控制水平,对提高生产绩效和综合市场竞争能力具有一定的指导作用。同时,在改进和深化的基础上,本文研究思路和成果对于其它组合优化问题和复杂调度问题具有良好的求解潜力和应用前景。
     本文在研究过程中得到了国家863项目(No.2003AA414120)、柔性制造系统技术国家重点实验室项目(No.51458060104JW0316)、2006教育部新世纪人才项目的大力支持和资助,在此表示衷心的感谢。
Scheduling problems in flexible manufacturing environment possess features of high complexity, uncertainty, multi-objects, coordination of multi-constraints and multi-resources, etc. Due to their important significances in theory and industrial practice, scheduling problems in flexible manufacturing environment have been extensively studied over the last five decades, and continue to attract the interests of researchers both in academia and industry.
     To provide effective and efficient solutions to the scheduling problems in discrete job shop with multiple cells each having flexible process routings, this dissertation presents a Holon-based autonomic and coordinated intelligent scheduling technique, which is integrated with reinforcement-learning-based contract net protocol (CNP) and modified filtered-beam-search (FBS) algorithms, based on the recent researches in Agent or Holon-based decentrated production scheduling. The proposed intelligent scheduling technique is studied based on the key techniques of Agent or Holon-based autonomic and coordinated scheduling, i.e., encapsulation of entities, the control architectures, coordinated mechanism and core autonomic algorithms.
     The main contributions of the dissertation are described as follows:
     1. Firstly, the state-of-the-art of Agent or Holon-based autonomic and coordinated scheduling and the key techniques (i.e., encapsulation of entities, the control architectures, coordinated mechanism, core autonomic algorithms, as well as learning mechanism) are reviewed, and the existing problems in these fields are discussed, which leads to the driving force and significances of this research;
     2. To fulfill the requirements of reliability, extensibility and adaptability, this dissertation proposes a Holon-based control architecture for flexible manufacturing shop floor using a bottom-up design approach. The inner structure of component Holon (mainly Cell Holon), the relationships of data and functions among Holons, the model of message transfer and the basic specification of communication language are described in detail. Then, from the aspect of software architecture, a formal description and analysis of the proposed architecture is conducted by First-order Polyadic pi-Calculus. This lays the foundation for the next Holon-based autonomic and coordinated scheduling.
     3. Since it only defines the basic process of interactions among Agents or Holons, the basic contract net protocol for manufacturing scheduling is lack of the capability of optimization and dynamic learning. To overcome this issue and to improve its real-time adaptive capability for dynamic environment, a coordinated mechanism named after CNP-QL(Contract Net Protocol-Q Leaning)is proposed, which results from the integration of basic CNP for manufacturing scheduling and Q-leaning algorithm. To implement the CNP-QL mechanism, the main elements of the mechanism are defined and described, including the message description, the decision process, the interaction process for learning and key elements of Q-learning algorithm (e.g., the criterion of state determination, state space division, the reward function and the definition of search strategy, etc.). Then, to testify the effectiveness of the CNP-QL, the CNP-QL is used to solve the dynamic coordination problem of tasks among multiple cells with flexible process routings. And the effectiveness of the CNP-QL is demonstrated through simulations with comparison of the basic CNP.
     4. Since the scheduling algorithm is the engine for the autonomic decision of a cell, this dissertation proposes a mechanism for autonomic scheduling of a cell, in which a heuristic based on Filtered-Beam-Search algorithm (HFBS) is as the core. To solve the Flexible Job-shop Scheduling problem after the task coordination among alternative cells, a mathematic model with multiple objectives is built and the analysis of the model complexity is discussed. Then, four key elements of the HFBS, namely, the solution space for the problem, the selection of beamwidth and filterwidth, the generation procedure of branches and selection of evaluation functions are illustrated in detail. Finally, based on the performance analysis of key elements of HFBS, the performance of HFBS are evaluated and compared with those of other AI-based heuristics and dispatching rules via benchmarks and simulation examples. The results demonstrate the effectiveness of HFBS.
     5. To realize the continuous optimization of cell autonomic scheduling and to improve its real-time adaptive capability for unanticipated or stochastic internal and/or external disturbances (e.g., machine breakdown, new job arrival, etc.), a dynamic rescheduling decision process is proposed based on the description of theory of dynamic rescheduling (including rescheduling environment, strategy, approaches and techniques). Meanwhile, a FBS-based heuristic algorithm is proposed, which makes improvement of FBS algorithm in the generation procedure of branches and the local/global evaluation functions. Thus, it can easily consider and incorporate the due dates and priority weights of jobs and machine workload balance during the process of assignment jobs to machines. Then, the worst-case time complexity is analyzed. Finally, with respect to a due date-based objective, (weighted quadratic tardiness), computational experiments are conducted to evaluate the performance of the proposed algorithm in comparison with those of other popular methods. The results show that the proposed FBS-based algorithm performs very well for dynamic rescheduling in terms of computational efficiency and solution quality.
     6.Finally, based on the JADE platform, a preliminary prototype is designed and developed, in which JADE Agent is used to represent Holons mentioned above. The main functions of negotiation between Holons and their autonomous scheduling decisions are shown in this prototype. This in turn will lay the foundation for the future practical implementation of Holon-based scheduling and rescheduling in shop floor.
     The research makes some contributions in key techniques of Agent or Holon-based autonomic and coordinated scheduling approach. It can be used to improve the production management and control, and it can give some guidelines to enhance production performance and to improve the competitive capability in complex market. In addition, if modified and further studied in this direction, the thought and the results of this research is promising for solving other combinatorial optimization problems and complex scheduling problems, and it is also promising for practical potential implementation.
     Acknowledgement This dissertation is supported by the National High Technology Research and Development Program of China under grant 2003AA414120, the National Key Lab. Program under grant 51458060104JW0316 and the Trans-Century Training Programme Foundation for the Talents by the State Education Commission 2006.
引文
[1].路甬祥.奋力创新,建设制造强国. 2002年中国机械工程学会年会报告.
    [2].中国制造业信息化[EB/OL]. http://articles.e-works.net.cn/Articles/523/Article39095.htm
    [3].解放日报.确立上海先进制造业的高端优势[EB/OL]. http://www.people.com.cn/GB/lilun/40551/3053531.html.
    [4].杨红红.遗传算法在制造系统计划与调度优化中的应用.上海交通大学博士学位论文, 2002.
    [5].王东.适应敏捷制造的单元管理与控制系统的研究.上海交通大学博士学位论文. 2000.
    [6]. Bi Z.M., Lang S.Y.T., Shen W. and Wang L. Reconfigurable manufacturing systems: the state of the art. International Journal of Production Research, 2006, online.
    [7]. Okino, N. A prototyping of bionic manufacturing system. In proceedings of the International Conference on Object-oriented Manufacturing Systems, Calgary, Alberta, 1992: 297-302.
    [8]. Masahiko, O. and Kazuaki, I. Development of a virtual manufacturing system by integrating product models and factory models. CIRP Annals, 1993, 42(1): 475-478.
    [9]. Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritchow, G., Brussel, H. Van Brussel, Ulsoy, A.J. Reconfigurable Manufacturing Systems. CIRP Annals, 1999,48(2):.527-540
    [10]. Ryu, K., Son, Y. and Jung, M. Modeling and specifications of dynamic Agents in fractal manufacturing systems. Computers in Industry, 2003, 52: 161-182.
    [11]. Shen W.M., Norrie D.H. and Barthes J.P. Multi-Agent systems for concurrent intelligent design and manufacturing. Tayloar & Francis, London and New York, 2001.
    [12].张洁,高亮,李培根.多Agent技术在先进制造中的应用.北京:科学出版社, 2004.
    [13]. Valckenaers P, Brussel H.V, Wyns J., Bongaerts L., Peeters P. Designing holonic manufacturing systems. Robotics and Computer-Integrated Manufacturing, 1998, 14: 455-464.
    [14].袁红兵. Holonic制造系统模型及控制技术研究.南京理工大学博士论文, 2002.
    [15].熊锐,吴澄.车间生产调度问题的技术现状与发展趋势.清华大学学报. 1998, 38(10): 55-60.
    [16].徐俊刚,戴国忠,王宏安.生产调度理论和方法研究综述.计算机研究与发展, 2004, 41(2): 257-267.
    [17]. Wang Y.C. and Usher J.H. Application of reinforcement learning for agent-based production scheduling. Engineering Applications of Artificial Intelligence, 2005, 18: 73-82.
    [18]. Rossi, A. and Dini, G. Dynamic scheduling of FMS using a real-time genetic algorithm. International Journal of Production Research, 2000, 38(1): 1-20.
    [19]. Leitao, P., Colombo, A.W., Restivo, F.J. ADACOR: A Collaborative Production Automation and Control Architecture. IEEE Intelligent Systems, 2005, 20(1): 58– 66.
    [20]. Chen.D. Enterprise-control system integration-an international standard. International Journal of Production Research, 2005, 43(20): 4335-4357.
    [21].国内外数控技术发展趋势报告[EB/OL]. http://invest.jrj.com.cn/news/2007-01-11/000001912774.html
    [22].孙永军.敏捷供应链协同生产管理理论与方法研究.浙江大学博士学位论文. 2003
    [23]. Wang, L. Wong B., Shen W., Lang S. Java3D enabled cyber workspace, Communications of the ACM, 2002, 45(11): 45-49.
    [24]. Wang, L., Shen W., Lang S. Wise-ShopFloor: a web-based and sensor-driven e-shop floor. Journal of Computing and Information Science in Engineering, 2004, 4: 56-60.
    [25]. Shen W., Lang S., Wang L. iShopFloor: an internet-enabled Agent-based intelligent shop floor. IEEE Transactions on System, Man and Cybernetics-Part C: Applications and Reviews, 2005, 35(3): 371-381.
    [26]. Lin G., Solberg, J.J. Integrated shop floor control using autonomous Agents. IIE transactions, 1992, 24(3): 57-71.
    [27]. Shen W. Distributed manufacturing scheduling using intelligent Agents. IEEE Intelligent Systems, 2002, 88-94.
    [28]. Balasubramanian, S., Brennan R.W. and Norrie, D.H. An architecture for metamorphic control of holonic manufacturing systems. Computers in Industry, 2001, 46: 13-31.manufacturing planning and control (EtoPlan). Robotics and Computer Integrated Manufacturing, 2002, 18(3-4): 313-318.
    [80]. Chan F. T. S. and Zhang J. A Multi-Agent-Based Agile Shop Floor Control System. International Journal of Advanced Manufacturing Technology, 2002, 19:764–774.
    [81]. Lunder, A., Peschke, J., Sauter, T., Deter, S. and Diep, D. Distributed intelligence for plant automation based on multi-Agent systems: the PABADIS approach. Production Planning & Control, 2004, 15(2): 201-212.
    [82]. Lunder, A., Klostermeyer, A., Peschke, J., Bratoukhine, A. and Sauter, T. Distributed automation: PABADIS versus HMS. IEEE Transactions on Industrial Informatics, 2005, 1(1): 31-38.
    [83]. Leitao, P. and Restivo, F. ADACOR: a holonic architecture for agile and adaptive manufacturing control. Computers in Industry. 2006, 57: 121-130
    [84]. Brennan R.W. Performance comparison and analysis of reactive and planning-based control architectures for manufacturing. Robotics and Computer Integrated Manufacturing, 2000, 16: 191-200
    [85]. Brennan R.W., Norrie, D.H.. Metrics for evaluating distributed manufacturing control systems. Computers in Industry, 2003,51: 225–235.
    [86]. Brennan R.W. and William, O. Performance analysis of a multi-Agent scheduling and control system under manufacturing disturbances. Production Planning & Control. 2004, 15(2), 225-235.
    [87]. Cavalieri, S., Garetti M, Macchi, M. and Taisch, M. An experimental benchmarking of two multi-Agent architectures for production scheduling and control. Computers in Industry, 2000, 43: 139-152.
    [88]. Smith, R.G. The contract net protocol: high-level communication and control in distributed problem solver. IEEE Transaction on Computers, 1980, 29, 1104-1113.
    [89]. Smith R. G. and Davis R. Frameworks for cooperation in distributed problem solving. IEEE Transactions on Systems, Man and Cybernetics, 1981, SMC-11: 61–70.
    [90]. Davis R. and Smith R. G. Negotiation as a metaphor for distributed problem solving. Artificial Intelligence, 1983, 20: 63–109.
    [91]. Tharumarajah A, Bemelman R Approaches and issues in scheduling a distributed shopfloor environment. Computers in Industry, 1997, 34(1): 95–109.
    [92]. Jennings, N.R., Faratin, P., Johnson, M.J., Norman, T.J., Obrien, P. and Wiegand, M.E. Agent-based Business Processing. International Journal of Cooperative Information Systems, 1996, 5(2-3): 105-130.
    [93]. FIPA Iterated Contract Net Interaction Protocol Specification.[EB/OL] http://www.fipa.org/specs/fipa00030/SC00030H.pdf
    [94]. Shin M. and Jung M.. MANPro: mobile Agent-based negotiation process for distributed intelligent manufacturing. International Journal of Production Research, 2004, 42(2): 303-320.
    [95]. FIPA000031, FIPA000032. http://www.fipa.org/repository/ips.php3.
    [96]. Sandholm T and Suri S. CABOB: A fast optimal algorithm for combinational auction. In International Joint Conference on Artificial Intelligence (IJCAI), Seattle, WA, 2001
    [97]. Zhang, Z., Cheng, T., Wu B. and Yang S. Price-based negotiation for task assignment in a distributed Network manufacturing mode environment. International Journal of Advanced Manufacturing Technology, 2003, 21(2):145-156.
    [98]. Theraulaz G and Bonabeau E. A brief history of stigmergy. Artificial Life archive, 1999, 5(2):97–116.
    [99].郜庆路,罗欣,杨叔子.基于蚂蚁算法的混流车间动态调度研究.计算机集成制造系统2003, 9(6): 456-459.
    [100]. Gao,Q., Luo, X., Yang, S. Stigmergic cooperation mechanism for shop floor control system. International Journal of Advanced Manufacturing Technology, 2004, 25:743-753.
    [101]. Di Caro G, Dorigo M. AntNet: distributed stigmergic control for communications networks. Journal of Artificial Intelligence Research, 1998, 9:317–365.
    [102]. Krieger MJB, Billeter J, Keller L. Ant-like task allocation and recruitment in cooperative robots. Nature 2000, 406:39–42.
    [103]. Hadeli, K., Valckenaers, P., Kollingbaum, M., Brussel H.V. Multi-Agent coordination and control using stigmergy. Computers in industry, 2004, 53, 75-96.
    [104]. Valckenaers, P., Brussel, H.V., Kollingbaum, M. and Bochmann, O. Multi-Agent Coordination and Control Using Stigmergy Applied to Manufacturing Control. Lecture Notes in Computer Science, 2001, 2086, pp.317-334
    [105]. Durfee, E.H. and Lesser, V.R. Partial Global Planning: A coordination framework for distributed hypothesis formation, IEEE Transaction on Systems, Man and Cybernetics. 1991, 21(5): 1167-1183
    [106]. Decker, K. and Lesser, V. Designing a family of coordination algorithms. In Proceedings of the 1st International Conference on Multi-Agent Systems (ICMAS-95), 1995, pp.73-80, San Francisco, CA.
    [107]. Decker, K. TAEMS: A framework for environment centered analysis and design of coordination algorithms. In Foundations of Distributed Artificial Intelligence, 1996, pp.429-447.
    [108].曾波,杨建军. Agent协同机制在基于MAS调度系统中的研究.北京航空航天大学学报, 2002, 28(4): 405-408.
    [109].翟文彬,张洁,严隽琪,马登哲.基于AOCPN的半导体生产线多代理交互协议建模技术.上海交通大学学报, 2005, 39(7): 1150-1154.
    [110]. Konig R. State-based modeling method for multi-Agent conversation protocols and decision activities. Proceedings of Agent Technologies, Infrastructures, Tools, and Applications for E-Services. Erfurt: Springer - Verlag ,Lecture Notes in Artificial Intelligence, 2003, 2592:151 -166.
    [111]. Nowostawski M, Purvis M, Cranefield S. Modeling and visualizing Agent conversations. Proceedings of the 5th International Conference on Autonomous Agents. Montreal, Canada : ACM Press, 2001. 163– 1701
    [112]. Odell J., Parunak HVD, Bauer B. Representing Agent interaction protocols in UML. Proceedings of the 1st International Workshop on Agent Oriented Software Engineering. Berlin, Germany: Springer - Verlag, 2001. 121–1401
    [113].焦文品,史忠植.形式化多主体系统中的交互及交互协议.软件学报, 2001, 12 (8) :1177– 11821.
    [114]. Costr S., Chen Y, et al. Using colored Petri nets for conversation modeling. http://www. csee.umbc. edu/~jklabrou/ publications, 2004-05-201.
    [115].郑大钟,赵千川.离散事件动态系统.北京:清华大学出版社, 2001.
    [116].李敏强,寇纪淞,林丹等著.遗传算法的基本理论与应用.北京:科学出版社, 2002.
    [117]. Wolpert, D.H. and Macready, W. G. No free lunch theorems for optimization. IEEE Transaction on Evolutionary Computation, 1997, 1(1): 67-82
    [118]. Sabuncuoglu I. and Bayiz M. Job shop scheduling with beam search. European Journal of Operational Research, 1999, 118: 390-412.
    [119]. Chang, Y., Matsuo, H. and Sullivan, R. S. A bottleneck-based beam search for job scheduling in a flexible manufacturing system. International Journal of Production Research, 1989, 27(11): 1949-1961.
    [120]. De, S. and Lee, A. Flexible manufacturing system (FMS) scheduling using filtered beam search. Journal of Intelligent Manufacturing, 1990, 1: 165-183.
    [121]. Sabuncuoglu, I. and Karabuk, S. A beam search algorithm and evaluation of scheduling approaches for FMSs. IIE Trasactions, 1998, 30(2): 179-191.
    [122]. Sabuncuoglu, I. and Karabuk, S. Rescheduling frequency in an FMS with uncertain processing times and unreliable machine. Journal of Manufacturing Systems, 1999, 18(4): 268-283.
    [123]. Sabuncuoglu I. and Kizilisik, O.B. Reactive scheduling in a dynamic and stochastic FMS environment. International Journal of Production Research, 2003, 41(17): 4211-4231.
    [124]. Erel, E., Sabuncuoglu, I. and Sekerci, H. Stochastic assembly line balancing using beam search. International Journal of Production Research, 2005, 43(7): 1141-1426.
    [125]. McMullen, P.R. and Tarasewich, P. A beam search heuristic method for mixed-model scheduling with setups. International Journal of Production Economics, 2005, 96: 273-283.
    [126]. De S. and Lee A. Towards a knowledge-based scheduling system for semiconductor testing. International Journal of Production Research, 1998, 36(4): 1045-1073.
    [127]. Christian B. Beam-ACO-hybridizing ant colony optimization with beam search: an application to open shop scheduling. Computers & Operations Research, 2005, 32: 1565-1591.
    [128]. Ow, P.S. and Morton T.E. Filtered beam search in scheduling. International Journal of Production Research, 1988, 93(2): 288-299.
    [129]. Della Croce, F., T'kindt, V. A recovering beam search algorithm for the one-machine dynamic total completion time scheduling problem. Journal of the Operational Research Society 2002, 53 (11), pp. 1275-1280.
    [130]. Esteve, B., Aubijoux, C., Chartier, A. and Tkindt, V. A recovering beam search algorithm for the single machine Just-in-Time scheduling problem. European Journal of Operational Research. 2006, 172: 798-813.
    [131]. Ghirardi, M. and Potts C.N. Makespan minimization for scheduling unrelated parallel machines: a recovering beam search approach. European Journal of Operational Research, 2005, 165: 457-467
    [132]. Lowerre, B.T. The HARPY speech recognition system. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA, 1976.
    [133]. Jorge M.S. Valente and Rui A.F.S. Filtered and recovering beam search algorithms for the early/tardy scheduling problem with no idle time. Computers & Industrial Engineering, 2005, 48: 363-375.
    [134].刘民,孙元凯,吴澄. TS+BS混合算法及在Job Shop调度问题上的应用.清华大学学报, 2002, 42(3): 424-426.
    [135]. Jiming Liu. Autonomous Agents and Multi-Agent Systems: Explorations in Learning, Self-organization and Adaptive Computation [M], Singapore: World Scientific, 2001.
    [136].李冬梅,陈卫东,席裕庚.基于强化学习的多机器人合作行为获取.上海交通大学学报. 2005, 39(8): 1332-1335.
    [137].范波,潘泉,张洪才.一种基于分布式强化学习的多智能体协调方法.计算机仿真, 2005, 22(6): 115-117+151.
    [138]. Abul O., Polat F and Alhajj R. Multiagent reinforcement learning using function approximation. IEEE Transactions on Systems, Man and Cybernetics-Part C: Application and Reviews, 2000, 30(4): 485-497.
    [139]. Watkins C.J.C.H. and Dayan, P. Q-learning. Machine Learning, 1992, 8: 279-292.
    [140]. Rummery G. and Niranjan M. On-line Q-learning using connectionist systems. Technical Report CUED/F-INFENG/TR 166, Cambridge University Engineering Department, 1994.
    [141]. Abul, O., Polat, F. and Alhajj, R. Multiagent reinforcement learning using function approximation. IEEE Transactions on Systems, Man and Cybernetics-Part C: application and reviews, 2000, 30(4): 485-497
    [142].高阳,陈世福,陆鑫.强化学习研究综述.自动化学报, 2004, 30(1): 86-100.
    [143].张汝波,顾国昌,刘照德,王醒策.强化学习理论、算法及应用.控制理论与应用. 2000, 17(5): 637-642.
    [144]. Zhang, W. and Dietterich, T.G. A reinforcement learning approach to job-shop scheduling. Proceedings of the 14the International Joint Conference on Artificial Intelligence, 1995, 1114-1120.
    [145]. Aydin, M.E., Oztemel, E. Dynamic job-shop scheduling using reinforcement learning agents. Robotics and Autonomous Systems, 2000, 33: 169-178.
    [146]. Wang Yi-Chi. Application of reinforcement learning to multi-agent production scheduling. Mississippi State University,博士学位论文, 2003.
    [147].魏英姿.制造系统生产调度和机器人学习智能研究,中科院沈阳自动化研究所,博士学位论文,2004.
    [148]. Csaji,B.C., Monostori, L. and Kadar, B. Reinforcement learning in a distributed market-based production control system. Advanced Engineering Informatics, 2006, 20: 279-288.
    [149]. Siwamogsatham, T. and Saygin C. Auction-based distributed scheduling and control scheme for flexible manufacturing systems. International Journal of Production Research, 2004, 42(3): 547-572.
    [150]. Kumar V., Kumar S., Tiwari M. K. and Chan F.T.S. Auction-based approach to resolve the scheduling problem in the steel making process. International Journal of Production Research. 2006, 44(8): 1503-1522.
    [151]. Wong, T.N., Leung, C.W., Mak, K.L. and Fung, R.Y.K. An agent-based negotiation approach to integrate process planning and scheduling. International Journal of production research,2006, 44(7): 1331-1351.
    [152]. Shen W. Genetic algorithms in agent-based manufacturing scheduling systems. Integr. Comput.-Aided Eng., 2002, 9(3): 207-218.
    [153]. Aydin, M.E., Fogarty, T.C. A simulated annealing algorithm for multi-agents systems: A job shop scheduling application. Journal of Intelligent Manufacturing, 2004, 15(6), 805-814.
    [154]. Heikkila T., Kollingbaum M., Valckenaers P., Bluemink G.J. An agent architecture for manufacturing control: manAge. Computers in Industry, 2001, 46, 315-331.
    [155]. Dilts, D.M., Boyd, N.P, Whorms, H.H. The evolution of control architectures for automated manufacturing systems. Journal of Manufacturing Systems, 1991, 10(1), 79-93.
    [156].王操,严隽琪.制造系统的控制结构及其发展趋势.上海交通大学学报,1998,32(5):128-132.
    [157]. Shijin Wang, Lifeng Xi and Binghai Zhou. FBS-enhanced agent-based dynamic scheduling in FMS. Engineering Application of Artificial Intelligence, 2008, 21(4): 644-657.
    [158].王世进,周炳海,陶丽华,奚立峰. Agent通信语言综述.计算机工程与应用, 2005, 21期
    [159]. FIPA00061(2002) FIPA ACL消息结构规范
    [160].郑红.分布式系统形式化建模技术研究.中科院博士学位论文,2003.
    [161]. Dumond, Y. and Roche C. Formal specification of a multi-agent system architecture for manufacturing: the contribution of theπ-calculus. Journal of Materials Processing Technology, 2000, 17: 209-215.
    [162].焦文品,史忠植.构造MAS的动态体系结构的模型.计算机学报, 2000, 23(7): 732-737
    [163]. Fenglei, Liu, Zhenhua Yu and Yuanli Cai. Modeling and analysis of multi-agent systems based onπ-calculus. Y.Hao et al (Eds): CIS 2005, Part I, LNAI 3801, 2005, 410-415.
    [164]. Milner, R. The polyadicπ-calculus: a tutorial. In Bauer, F.L., Brauer, W. and Schwichtenberg, H. (Eds.), Logic and Algebra of Specification, Springer, Berlin, 1993.
    [165]. Rahimi S. API-calculus for intelligent-agent formal modeling and its application in distributed geospatial data conflation. Ph.D Dissertation, University of Southern Mississippi, 2002.
    [166].任洪敏.基于π演算的软件体系结构形式化研究.复旦大学博士学位论文,2003.
    [167].廖军,谭浩,刘锦德.基于Pi-演算的Web服务组合的描述和验证.计算机学报, 2005, 28(4): 635-643
    [168]. Deshpande, U., Gupta, A. and Basu, A. Performance enhancement of a contract net protocol based system through instance-based learning. IEEE Transactions on System, Man, and Cybernetics-Part B: Cybernetics, 2005, 35(2): 345-358
    [169]. Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press, London, 1999.
    [170]. Kaelbling, L.P, Littman M.L. and Moore A.W. Reinforcement Learning: a survey. Journal of Artificial Intelligence Research, 1996, 4: 237-285.
    [171]. Baker A.D. 1998. Survey of factory control algorithms that can be implemented in a multi-agent heterarchy: dispatching, scheduling and pull. Journal of Manufacturing Systems 17(4), 297-320.
    [172]. Okane, J.F., Harrison, D.K., Baines, T.S. Intelligent decision-making for reactive scheduling in FMS, Simulation '98. International Conference on, York , UK, 1998, No. 457, p.187-194.
    [173]. Alvarez, E. and Diaz, F. An application of a real-time scheduling system for turbulent manufacturing environments. Robotics and Computer-Integrated Manufacturing, 2004, 20:485-494.
    [174]. Blazewicz, J., Pesch, E. and Sterna, M. The disjunctive graph machine representation of the job shop scheduling problem. European Journal of Operational Research, 2000, 127: 317-331.
    [175]. Kim Y.K., Park P. and Ko, J. A symbiotic evolutionary algorithm for the integration of process planning and job shop scheduling. Computers & Operations Research, 2003, 30: 1151-1171.
    [176]. Kacem, I., Hammadi, S. and Borne, P., Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 2002a, 32(1), 1-13.
    [177]. Kacem, I., Hammadi, S. and Borne, P., Pareto-optimality approach for flexible job-shop scheduling problems: Hybridization of evolutionary algorithms and fuzzy logic.Mathematics and Computers in Simulation, 2002b, 60(3-5), 245–276.
    [178]. Dauzere-Peres, S. and Paulli, J., An integrated approach for modeling and solving the general multiprocessor job-shop. Annals of Operations Research, 1997, 70, 281-306.
    [179]. http://www.idsia.ch/~monaldo/fjsp.html
    [180].夏蔚军,吴智铭.基于混合微粒群优化的多目标柔性Job-shop调度.控制与决策, 2005, 20: 137-141
    [181]. Wu, Z.B. and Weng, M.X., Multiagent scheduling method with earliness and tardiness objectives in flexible job shops. IEEE Transactions on systems, man and cybernetics-part B: cybernetics, 2005, 35(2), 293-301.
    [182]. Brandimarte, P., Routing and scheduling in a flexible job shop by tabu search. Annals of Operations Research, 1993, 41(1-4), 157-183.
    [183]. Scrith, C.R., Armentano, V.A. and Laguna M., Tardiness minimization in a flexible job shop: a tabu search approach. Journal of Intelligent Manufacturing, 2004, 15, 103-115.
    [184].吴秀丽,孙树栋,余建军,张红芳.多目标柔性作业车间调度优化研究.计算机集成制造系统, 2006, 12(5): 731-736.
    [185].崔逊学.多目标进化算法及其应用。北京:国防工业出版社,2006.
    [186]. Marler R.T. and Arora, J.S. Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization, 2004, 26(6): 369-395.
    [187].胡运权,郭耀煌.运筹学教程.北京:清华大学出版社,1998
    [188]. Liu J. and MacCarthy B.L. The classification of FMS scheduling problems. International Journal of Production Research, 1996, 34(3): 647-656.
    [189]. Neammanee, P. and Randhawa, S.U. Integrated methodology for board assignment and component allocation in printed circuit board assembly. International Journal of Production Research, 2003, 41(5): 919-937.
    [190]. Scrith, C.R., Armentano, V.A. and Laguna M. Tardiness minimization in a flexible job shop: a tabu search approach. Journal of Intelligent Manufacturing, 2004, 15, 103-115.
    [191]. Balogun, O.O., Popplewell, K. Towards the integration of flexible manufacturing system scheduling. International Journal of Production Research, 1999; (37) 15: 3399-3428.
    [192]. Xia, W.J. and Wu, Z.M., An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems. Computers & Industrial Engineering, 2005, 48(2), 409-425.
    [193]. Brizuela, C.A. and Aceves, R., Experimental genetic operators analysis for the multi-objective permutation flowshop. Fonseca, C.M. et al (Eds.): EMO 2003, LNCS 2632, 2003, pp. 578-592.
    [194]. Armentano, V.A. and Scrich, C.R. Tabu search for minimizing total tardiness in a job shop. International Journal of Production Economics, 2000; (63): 131-140.
    [195]. Mastrolilli, M. and Gambardella, L.M., Effective neighbourhood functions for flexible job shop problem. Journal of Scheduling, 2000, 3(1), 3-20.
    [196]. Baykasoglu, A., Ozbakir, L. and Sonmez, A, Using multiple objective tabu search and grammars to model and solve multi-objective flexible job shop scheduling problems. Journal of Intelligent Manufacturing, 2004, 15(6), 777-785.
    [197]. Tai, T. and Boucher, T.O., An architecture for scheduling and control in flexible manufacturing systems using distributed objects. IEEE Transactions on Robotics and Automation, 2002, 18(4), 452-462.
    [198]. Aytug H., Lawley M.A., McKay K, Mohan S. and Uzsoy R. Executing production schedules in the face of uncertainties: a review and some future directions. European Journal of Operational Research, 2005, 161: 86-110.
    [199].潘全科,朱剑英.作业车间动态调度研究.南京航空航天大学学报, 2005, 37(2): 262-268
    [200]. Abumaizar, R. J. and Svestka, J.A. Rescheduling job shops under random disruptions. International Journal of Production Research, 1997, 35(7): 2065-2082
    [201]. Vieira, G.E., Herrmann, J.W. and Lin, E. Rescheduling manufacturing systems: a framework of strategies, polices and methods. Journal of Scheduling, 2003, 6: 39-62.
    [202]. Shafaei, R. and Brunn P. Workshop scheduling using practical (inaccurate) data part I: The performance of heuristic scheduling rules in a dynamic job shop environment using a rolling time horizon approach. International Journal of Production Research, 1999, 37: 3913-3925
    [203]. Subramaniam, V. and Raheja, A.S. MAOR: a heuristic-based repair mechanism for job shop schedules. International Journal of Advanced Manufacturing Technology, 2003, 22: 669-680
    [204]. Sun. Y. L., Chang, T.M. and Yih, Y. Learning-based adaptive controller for dynamic manufacturing cells. International Journal of production Research, 2005, 43(14): 3011-3025
    [205]. Aytug, H., Koehler, G.J., Snowdon, J.L. Genetic learning of dynamic scheduling within a simulation environment. Computers and Operations Research, 1994, 21: 909-925
    [206]. Abumaizar, R. J. and Svestka, J.A. Rescheduling job shops under random disruptions. International Journal of Production Research, 1997, 35(7): 2065-2082
    [207].李琳,江志斌.虚拟生产系统的自适应动态调度机理及算法.计算机集成制造系统, 2006, 12(9): 1444-1452
    [208]. Yang, H. H. and Wu Z.M. The application of adaptive genetic algorithms in FMS dynamic rescheduling. International Journal of Computer Integrated Manufacturing, 2003, 16(6): 382-39
    [209]. Hoitomt, D.J., Luh, P.B., Pattipati, K.R. A practical approach to job-shop scheduling problems. IEEE Transactions on Robotics and Automation 1993; 9(1): 1-13
    [210]. Antonio, J.K. and Tsai, W. K., Huang, G. M. Time complexity of a path formulated optimal routing algorithm. IEEE Transaction on Automation Control, 1994, 39(9): 1839-1844
    [211]. www.agentbuilder.com
    [212]. http://www-cdr.stanford.edu/ProcessLink/papers/JATL.html
    [213]. http://cordis.europa.eu/infowin/acts/analysys/products/thematic/agents/ch4/ch4.htm#2
    [214]. http://sourceforge.net/projects/aglets/
    [215]. http://www.agent-software.com/products/jack/index.html
    [216]. Bellifemine F., Caire G., Poggi A., Rimassa G. 2003, JADE A White Paper. http://sharon.cselt.it/projects/jade.
    [217]. http://jade.tilab.com/
    [218]. JADE Programmer’s Guide, JADE3.3, 02 March-2005
    [219].秦斌.基于MAS技术的焦炉集气管压力智能解耦与协调控制研究.中南大学博士学位论文, 2006年9月

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700