用户名: 密码: 验证码:
爆破作用下岩体累积损伤效应及其稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用钻爆法进行地下岩体工程建设或矿山采掘生产,频繁爆破作业产生的动荷载,不可避免地对周围岩体产生累积损伤危害,甚至诱发地下工程岩体产生失稳破坏。爆破损伤作用体现在岩体力学性能劣化与完整性降低两个方面,必然造成岩体力学参数指标弱化,从而影响工程稳定性。目前,爆破作用下岩体累积损伤效应及其稳定性缺乏系统研究,在理论与试验方面均有待进一步探索。现有的岩体力学参数取值方法没有充分考虑开挖爆破损伤弱化作用,存在明显不足。针对上述问题,结合国家“十五"科技攻关项目“复杂多空区下强制与诱导耦合大规模落矿采矿综合技术研究”(2003BA612A-10-2)和中南大学博士研究生学位论文创新工程项目“复杂关联空区动力失稳机制及预测预报模型研究”(040109),对爆破作用下岩体累积损伤效应及其稳定性问题进行了系统深入的研究。主要研究内容如下:
     第一,率先利用声波测试技术,系统研究了多次爆破作用下岩体损伤累积增长规律。通过10次小药量模拟爆破,采用RSM-SY5智能声波测试系统,对厂坝铅锌矿某巷道围岩产生的爆破累积损伤效应进行了现场试验研究。基于大量的现场实测数据,获得了爆破动载作用下岩体累积损伤程度、岩体声波速度,与爆破作用次数之间存在的统计规律。分析了爆心距等因素对岩体爆破累积损伤效应的影响,建立了爆破累积损伤与爆心距之间的非线性递减关系。
     第二,首次发现了重复爆破作用下,随爆破次数增加,岩体爆破累积损伤程度与声波测试信号波形、主频、能量等频谱参数变化规律之间的内在联系,进一步揭示了岩体爆破损伤累积增长规律及其失稳破坏机理。创造性地运用傅立叶变换与小波(包)分析方法,找出了声波主频、能量及其频带分布随爆破次数增加的变化规律。
     第三,基于现场声波测试数据,首次建立了岩体爆破疲劳损伤非线性累积预测模型和岩体爆破累积损伤扩展模型。应用损伤力学、断裂动力学理论,系统研究了多次爆破作用下中远区岩体损伤断裂破坏机理;基于疲劳累积损伤理论,探寻了多次爆破作用下岩体损伤非线性累积特性及疲劳裂纹扩展规律。
     第四,基于爆破作业对岩体质量的损伤弱化效应,对Hoek-Brown经验公式做了进一步改进和完善,提出了爆破损伤作用下岩体力学参数研究方法—BDRMP(Blasting Damaged Rock Mechanical Parameters)法。BDRMP法充分考虑开挖爆破对岩体的损伤弱化程度,建立了爆破累积损伤程度、岩体完整程度与岩体力学参数劣化程度之间的定量关系,可以更好地确定介于破碎岩体和完整岩体之间的岩体力学参数。运用BDRMP法研究得到了厂坝铅锌矿岩体力学参数,为进一步深入开展爆破动荷载作用下地下工程岩体稳定性数值模拟研究和失稳机理的突变理论分析奠定了有力的基础。
     第五,首次系统分析了多次爆破作用诱发地下工程岩体失稳破坏的临界微扰机制,建立了爆破扰动作用下地下洞室顶板、矩形矿柱失稳的突变模型,分析了其失稳过程的非线性演化规律,导出了其失稳的充分和必要力学条件判据。确定了地下洞室顶板临界安全厚度,分析了临界安全厚度及矩形矿柱动力失稳的主要影响因素。
     第六,复杂多空区条件下,同时考虑开挖(采)过程和爆破震动作用对采空区稳定性的影响,利用FLAC~(3D)如对复杂地下采空区稳定性问题进行了系统的三维数值模拟研究。通过对比开挖过程、单次爆破震动作用和两次爆破震动联合作用三种情况对采空区稳定性的影响程度,揭示了爆破动荷载作用下复杂采空区失稳破坏机理以及爆破累积损伤效应对采空区稳定性的影响特征。
     本文立足于学科前沿,紧密结合工程实践,综合运用数学、力学方法、数值计算工具和先进的试验手段,对爆破作用下岩体累积损伤效应及其稳定性问题进行了深入的研究。为系统研究频繁爆破作业条件下采空区、地下厂房、隧道、边坡等岩体工程稳定性问题奠定了理论和技术基础,具有较为重要的理论意义和工程应用价值。
The dynamic loadings generated by recurrent blasting operations will inevitably bring cumulative damage to surrounding rock mass and even induce rock mass of underground engineering to instability, when the drilling and blasting methods are used in the underground rock mass construction engineering and the excavating production in mines. The blasting damage is embodied in two aspects, which are weakness of rock mass mechanical properties and degression of rock mass integrality. So it is certain that the mechanical parameters of rock mass will be weaken and stability of rock mass engineering will be affected accordingly. At present, researches on cumulative damage effects and stability of rock mass under blasting loadings lack systemic study. It is awaited for more researches in theory and experiment further. The weaken effects induced by excavation and blasting can not be considered sufficiently in existing methods to confirm mechanical parameters of rock mass, so there are obvious shortages. Aiming at above questions, the author studied deeply and systematically on the cumulative damage effects and its stability of rock mass under blasting loadings, combining with the two projects: the special performance of the 10th five-year national key technologies R&D subject 'Study on integrated mining technology of large-scale ore avalanche with coupling of force and abduction under complicated mined-out areas' (No. 2003BA612A-10-2), and the innovated project of PHD candidate supported by Central South University 'Study on dynamic instability mechanism and forecast models of complicated correlative mined-out areas' (No.040109). The main research contents and results in the dissertation are as follows:
     First of all, the growth laws of rock mass cumulative damage under blasting for many times have been studied systemically, taken the lead in using sonic measurement technology. The experiments were carried out in situ for blasting cumulative damage effects of surrounding rock at some laneway in Changba Lead-zinc Mine with RSM-SY5 intelligent sonic measuring system, through simulating blasting for ten times with little charge. The statistic laws between blasting times and cumulative damage degree, sonic velocity of rock mass under blasting loadings have been obtained based on a lot of measuring data in situ. The influences on rock mass blasting cumulative damage effects brought by some factors, such as the distance from the blasting center, have been analyzed and the nonlinear degression relationship between blasting cumulative damage and the distance from the blasting center has been set up.
     Secondly, the internal relationship between the blasting cumulative damage degree of rock mass and the change laws of frequency spectral parameters of sonic measuring signals, such as waveform, key frequency and energy, with increasing of blasting times under repetitious blasting have been discovered for the first time. The increasing laws of blasting damage cumulative and instability mechanism of rock mass have been uncovered further. The variation laws of key frequency, energy and its distribution of bands of sonic signals with increasing of blasting times have been found out creatively, with the Fourier transform and the wavelet (wavelet packet) analytical methods.
     Thirdly, the nonlinear fatigue forecast models and the extension models of rock mass blasting cumulative damage have been established for the first time, based on the abundant sonic measurement data. The damage and fracture mechanism of rock mass subjected to blasting stress wave for many times at moderate or far distance has been studied systemically by damage mechanics and fracture dynamics theory; The nonlinear damage cumulative characters of rock mass and the laws of fatigue cracks propagation under blasting for many times have been searched for, based on the cumulative fatigue damage theory.
     Fourthly, Hoek-Brown expressions were amended and improved further and research methods of rock mass mechanical parameters damaged by blasting 'BDRMP (Blasting Damaged Rock Mechanical Parameters)' were taken forward, based on the weaken effects of rock mass quality caused by blasting damage. The method of BDRMP can take disturbed and weaken degree of rock mass caused by blasting into account well, and set up the quantitative relationship among blasting cumulative damage, rock mass integrity degree and weaken degree of rock mass mechanical parameters. It can make certain the mechanical parameters of rock mass between disturbed and undisturbed better. The mechanical, parameters of rock mass at Changba Lead-zinc Mine were obtained by BDRMP method, which laid solid foundation for further numerical simulation in three dimensuions of stability and analysis with catastrophe theory of instability mechanism of underground engineering rock mass under blasting loading.
     Fifthly, the micro-disturbance mechanisms under critical condition of the instability of rock mass in underground engineering induced by blasting for many times have been analyzed systemically for the first time. The catastrophe models of instability of the roof of underground chambers and rectangle pillars under the blasting disturbance have been set up. The nonlinear evolvement laws of instability process have been analyzed and the necessary and sufficient mechanical conditions of instability have been derived. What's more, critical safe thickness of the roof of underground chambers has been confirmed and the key influence factors of dynamic instability of critical safe thickness and rectangle pillars have been analyzed.
     Finally, taken the influence of excavtion (or mining) and blasting vibration on the stability of mined-out areas into account at the same time, numerical simulation in three dimensions was carried out for the stability of complicated mined-out areas with FLAC~(3D) under group mined-out areas. The instability mechanism of mined-out areas and influenced characters of blasting cumulative damage effects on the stability of mined-out areas were uncovered, through contrasting the influenced degree on the stability of mined-out areas of three different conditions, which were excavation process, individual action of once blasting vibration and combined action of twice blasting vibration.
     In short, the research in this dissertation is based on the frontal of the subject and combined with engineering practice close. The theories and methods of mathematical and mechanical, numerical simulation software tools and advanced experiment means, are used in studying on rock mass cumulative damage effects and its stability under blasting loading. It founded a theoretical and technological basis for studying on the stability of rock mass, such as mined-out areas, underground power chambers, tunnels and slopes, under the frequent blasting operations systemically. The research in the dissertation is of important theoretical significance and engineering application values.
引文
[1] 王思敬.中国岩石力学与工程的世纪成就与历史使命究[J].岩石力学与工程学报,2003,22(6):867-871
    [2] 杨军,金乾坤,黄风雷.岩石爆破理论模型及数值计算[M].北京:科学出版社,1999
    [3] 熊代余,顾毅成.岩石爆破理论与技术新进展[M].北京:冶金工业出版社,2002
    [4] 徐颖,宗琦.地下工程爆破理论与应用[M].北京:中国矿业大学出版社,2001
    [5] 国家标准局.爆破安全规程(GB6722-2003).北京:中国标准出版社,2003
    [6] 杨小林,王梦恕,王树仁.爆破对岩体基本质量的影响及试验研究[J].岩土工程学报,2000,22(4):461-464
    [7] 寇绍全.从第四届岩石爆破国际会议看当前岩石爆破技术的发展趋势[J].力学进展,1994,24(1):132-135
    [8] 张永哲,甄胜利.漫湾电站开挖爆破对高边坡动力稳定影响的分析研究[J].工程爆破,1996,2(1):1-11
    [9] 李廷春,沙小虎,邹强.爆破作用下高边坡的地震效应及控爆减振方法研究[J].爆破,2005,22(1):1-6
    [10] 刘慧.邻近爆破对既有隧道影响的研究[D].北京:铁道科学研究院,1998
    [11] 谭忠盛,杨小林,王梦恕.复线隧道施工爆破对既有隧道的影响分析[J].岩石力学与工程学报,2003,22(2):281-285
    [12] 闫长斌,徐国元,李夕兵.爆破震动对采空区稳定性影响的FLAC~(3D)分析[J].岩石力学与工程学报,2005,24(16):2894-2899
    [13] 鞠杨,夏昌敬,谢和平,等.爆炸荷载作用下煤岩巷道底板破坏的数值分析[J].石力学与工程学报,2004,23(21):3664-3668
    [14] 李秀地,郑颖人,徐干成.爆炸荷载作用下地下结构的震塌破坏模型研究[J].爆破,2006,23(1):6-9
    [15] Schneider L. C. A Survey of blasting vibration regulations [J]. Fragblast, 2001, 5 (3): 133-156
    [16] 张继春.三峡工程基岩爆破震动特性的试验研究[J].爆炸与冲击,2001,21(2):131-137
    [17] Hao H, Wu C h, Zhou Y X. Numerical analysis of blast-induced stress waves in a rock mass with anisotropic continuum damage models. Part Ⅰ: Equivalent material property approach [J]. Rock Mech. and Rock Eng., 2002, 35(2): 79-94
    [18] 徐则民,黄润秋.岩爆与爆破的关系[J].石力学与工程学报,2004,23(21):414-419
    [19] 王鹰,陈强,魏有仪,等.岩溶发育区深埋隧道水岩相互作用机理[J].中国铁道科学,2004,25(4):55-58
    [20] 吴英,孟繁理,李守巨.爆破作业引起井下瓦斯和煤尘爆破事故原因分析[J].爆破,1995,25(1):39-41
    [21] 刘殿书.岩石爆破破碎的数值模拟[D].北京:中国矿业大学,1992
    [22] Richards A. B., Evens R., Moore A. J. Blasting vibration and assessment techniques [A]. Proc. 4th openpit conference, Perth, 1994: 209-215
    [23] Yang R. T., Rocque P., Katsabanis P. Measurement and ananlysis of near-field blast vibration and damage [J]. Geotechnical & Geological Engineeing, 1994, 12(3): 1699-182
    [24] 张雪亮,黄树棠.爆破地震效应[M].北京:地震出版社,1981
    [25] Charles H. D. Monitoring and control of blast effect [J]. Mining Engineeing, 1990, 42(7): 746-760
    [26] 确保地下水工建筑物在爆破时的完整性[J].1983,(5):30-32
    [27] Otuonye F. O. Response of ground roof bolt to blasting loading [J]. International Journal of Rock Mechanics & Mining Sciences, 1988, 25(5): 345-349
    [28] Napier J AN L, Peirce A P. The Use of a Multiple Expansion Techniques to Analyze Large Scale Fracture Process and Seismic Recurrence Effects in Deep Level Mines [J]. International Journal of Rock Mechanics & Mining Sciences, 1997, 34(3/4): 680-691
    [29] 汪旭光,熊代余.第六届国际岩石爆破破碎(Fragblast 6)学术会议综述[J].爆破,2000,17(增刊):1-5
    [30] 阳生权.爆破地震累积效应理论和应用初步研究[D].长沙:中南大学,2002
    [31] 马建军.软岩巷道在周边爆破作用下的稳定性研究[D].北京:北京理工大学,2004
    [32] 欧进萍,王光远.结构随机振动[M].北京:高等教育出版社,1998
    [33] GradyD. L, KippM. L. Continuum modeling of explosive fracture in oil shale [J]. Int. J. Rock Mech. Min. Sci and Geomech. Abst, 1980, 17(2): 147-157
    [34] Taylor L M, Chen E P, Kuszmaul J S. Microcrack induced damage accumulation in brittle rock under dynamic loading [J]. Computer Method in App. Mech. & Engng. 1986, 55: 301-320
    [35] O'connell R J, Budiansky B. Elastic moduli of cracked solids [J]. Int. J. Solids Struct, 1976, 12: 81-95
    [36] Kuszmaul J S. A new constitution model for fragmentation of rock under dynamic loading. In: Proc of 2nd Int. Symp. on Frag. by Blasting, Keystone, Canada. 1987, 412-423
    [37] Thome B J, Hommert P J, Brown B. Experimental and computational investigation of the fundamental mechanisms of cratering. In: Proc. of 3rd Int. Symp. on Frag. by Blasting, Brisbane, 1990, 117-124
    [38] 卢文波.岩石爆破中应力波的传播及其效应研究[D].武汉:武汉大学水利水电工程学院,1994
    [39] Yang R, Brwden W F, Katsabanis P D. A new constitutive model for blast damage [J]. International Journal of Rock Mechanics & Mining Sciences, 1996, 33(3): 345-349
    [40] Liu Liqing, Katsabanis P D. Development of a Continuum Damage Model for Blasting Analysis [J]. International Journal of Rock Mechanics & Mining Sciences 1997, 34(2): 217-231
    [41] Song J, Kim K. Micromechanical modeling of the dynamic fracture process during rock blasting [J]. International Journal of Rock Mechanics & Mining Sciences, 1996, 33(3): 387-394
    [42] 杨军,王树仁.岩石爆破分形损伤模型研究[J].爆炸与冲击,1996,16(1):5-10
    [43] MacKown, A. F. Perimeter controlled blasting for underground excavations in fractured and weathered rocks [J]. Bull. Assoc. Engg. Geol. ⅩⅩⅢ (4), 1986: 461-478
    [44] Ricketts T. E. Estimating underground mine damage produced by blasting [A]. In: 4th Mini Symp. On Explosive and Blasting Res., Soc. Explosive Engg, Anaheim, California, 1988: 1-156
    [45] ForsythW. W. A discussion on the blast induced over-break around underground excavations [J]. Fragblast, 1993, (4): 161-166
    [46] Persson, P. -A., Holmberg, R. & Lee, J. Rock Blasting and Explosive Engineering [M]. CRC Press, Tokyo, 1996: 265-285
    [47] Raina A. K., Chakraborty A. K., Ramulu M. et al. Rock mass damage from underground blasting, a literature review, and lab- and full scale tests to estimate crack depth by ultrasonic method [J]. Fragblast, 2000, (4): 103-125
    [48] Rustan, A. Rock Blasting Terms and Symbols: 49. Rotterdam: A. A. Balkema. 1998
    [49] 杨小林,员小有,吴忠,等.爆破损伤岩石力学特性的试验研究[J].岩石力学与工程学报,2001,20(4):436-439
    [50] 赫建明,柳崇伟,郭东明.爆破对预留岩体力学特性影响的试验研究[J].矿冶工程,2003,23(6):11-14
    [51] Singh P. K., Roy M. P. Responses of roof and pillars of underground coal mines to vibration induced by adjacent open-pit blasting [J]. Environmental Geology, 2005, 47(2): 205-214
    [52] Anders Ansell. In situ testing of young shotcrete subjected to vibrations from blasting [J]. Tunnelling and Underground Space Technology, 2004, 19(4): 587-596
    [53] 季月伦.小浪底水电站隧洞开挖爆破振动观测[J].爆破,1996,13(4):83-84
    [54] 彭德红.边坡开挖爆破的声波测试技术[J].武汉理工大学学报,2004,26(12):38-41
    [55] 李俊如,李海波,高建光,等.黄麦岭采场边坡爆破振动响应研究[J].岩石力学与工程学报,2004,23(17):2954-2958
    [56] Seto, M., Nag, D. K. & Vutukuri, V. S. Evaluation of rock mass damage using acoustic emission technique. Rock Fragmentation by Blasting FRAGBLAST-4, 1996: 135-1398
    [57] 蔡德所,张继春,刘浩吾,等.圈定基岩爆破损伤范围的声层析成象技术[J].岩土工程学报,1997,19(6):11-15
    [58] Yu, T. R., Vongpaisal S. New blast damage criteria for underground blasting [J]. CIM Bull. 1996, 89(998): 139-145
    [59] Chakraborty A. K., Raina, A. K., Ramulu, M., et al. Lake Tap at Koyna [J]. World Tunnel. Subsurface Exc. November, 1998b: 456-460
    [60] 李造鼎.岩体测试技术[M].北京:冶金工业出版社,1993
    [61] 何发亮,李苍松,粟健等.声波探测技术的新发展及其应用[J].中国铁道科学,1999,20(4):83-87
    [62] 赵明阶,徐蓉.岩石声学特性研究现状及展望[J].重庆交通学院学报,2000,19(2):79-86
    [63] 陈成宗.工程岩体声波探测技术[M].北京:中国铁道出版社,1990
    [64] 陈庆发,张世雄,王官宝,等.倾斜薄层岩体巷道围岩松动圈测试研究[J].矿山压力与顶板管理,2005,(2):61-63
    [65] 赵奎,万林海,饶运章,等.基于声波测试的矿柱稳定性模糊推理系统及其应用[J].岩石力学与工程学报,2004,23(11):1804-1809
    [66] Liu Zhu-ping, Wu Xiao-wei, Chu Ze-han. Laboratory study of acoustic parameters of rock [J]. Acta Geophysical Sciences, 1994, 37(5): 659-666
    [67] 许波涛,王煜霞.动测法确定岩体动力参数的对比试验研究[J].岩石力学与工程学报,2004,23(2):284-288
    [68] Insun Song, Mancheol Suh, Yong-Kyun Woo, et al. Determination of the elastic modulus set of foliated rocks from ultrasonic velocity measurements [J]. Engineering Geology, 2004, 72(3): 293-308
    [69] 胡运兵,宋劲,徐宏武.声波透射法在桥桩安全检测中的应用[J].地下空间与工程学报,2005,1(5):800-803
    [70] 赵明阶,吴德伦.工程岩体的超声波分类及强度预测[J].岩石力学与工程学报,2000,19(1):89-92
    [71] 黄仁东.金属矿山隐患空区声波层析成像识别及其安全控制技术研究[D].长沙:中南大学资源与安全工程学院,2005
    [72] 张志沛,刘旭,徐汉民,等.煤矿采空区注浆工程质量检测的试验研究[J].岩土工程学报,2005,27(5):604-606
    [73] 徐鸣洁,钟锴,俞缙,等.南京地铁工程勘察中声波测试与分析[J].岩石力学与工程学报,2005,24(6):1018-1024
    [74] Meglis I. L, Chow T. M, and Martin C. D. Assessing in situ microcrack damage using ultrasonic velocity tomography [J]. International Journal of Rock Mechanics & Mining Sciences, 2005, 42(1): 25-34
    [75] Sayers C. M, Kachanov M. Microcrack - induced elastic wave anisotropy of brittle rocks [J]. Journal of Geophysical Research, 1995, 100(B3): 4149-4156
    [76] Otto Schulze, Till Popp, Hartmut Kern. Development of damage and permeability in deforming rock salt [J]. Engineering Geology, 2001, 61(2): 163-180
    [77] Pusch, R., Stanfors, R. The zone of disturbance around blasted tunnels at depth t [J]. international Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1992, 29(5): 447-456
    [78] Maxwell S. C, Young R P. Seismic imaging of blast damage [J]. International Journal of Rock Mechanics & Mining Sciences, 1993, 30(7): 1435-1440
    [79] 朱传云,喻胜春.爆破引起岩体损伤的判别方法研究[J].工程爆破,2001,7(1):12-16
    [80] 程爱宝.爆破震动对地下结构顶板稳定性的影响研究软岩巷道在周边爆破作用下的稳定性研究[D].长沙:中南大学资源与安全工程学院,2004
    [81] Rubin A M, Ahrens T J. Dynamic tensile failure induced velocity deficits in rock [J]. Geophys ResLett, 1991, 18(2): 219-223
    [82] Krautkrammer, J., Krautkrammer, H. Ultrasonic Testing of Materials [M]. New Delhi: Narosa Publishing House, 1993
    [83] He Hong-liang, Athens T. J. Mechanical properties of shock-damaged rocks [J]. International Journal of Rock Mechanics & Mining Sciences, 1994, 31(5): 525-533
    [84] 张志呈,蒲传金,史瑾瑾.不同装药结构光面爆破对岩石的损伤研究[J].爆破,2006,23(1):36-39
    [85] 胡建敏,付晖.弹性波法检测大孔径爆破对基岩松驰层厚度影响的探讨[J].岩土力学,2003,24(增):172-174
    [86] 曹孝君,吴青山,张继春,等.顺层岩质边坡的爆破振动控制标准试验研究[J].岩石力学与工程学报,2003,22(11):1924-1928
    [87] 李建军,段祝平.节理裂隙岩体爆破试验研究[J].爆破,2005,22(3):12-16
    [88] Bauer A, Calder P N. Open pit and blast seminar course [M]. Ontario: Queens University, 1978
    [89] 李锡润.岩体声波衰减测量方法的研究[J].煤炭学报,1997,22(4):385-388
    [90] Hovem J. Acoustic wave in finely layered media [J]. Geophysics, 1995, 60(4): 1217-1221
    [91] Couvreur J. F, Thimus J. F. Progressive failure of a porous limestone under cyclic loading revealed by ultrasonic attenuation [J]. International Journal of Rock Mechanics & Mining Sciences, 1998, 35(4/5): 454-455
    [92] 秦四清.岩石中声波衰减的复合Q模型[J].东北工学院学报,1991,12(6):578-582
    [93] Butt S. D., Mukherjee C. and Lebans G. Evaluation of acoustic attenuation as an indicator of roof stability in advancing headings [J]. International Journal of Rock Mechanics & Mining Sciences, 2001, 37(10): 1123-1131
    [94] Fitting D. W, Adler L. Ultrasonic spectral analysis for nondestructive evaluation [M]. New York: Plenum Press, 1983
    [95] 陈达力.岩体声波频谱分析[J].应用声学,1989,9(4):12-15
    [96] Valdeon L, De Freitas M. H, King M. S. Assessment of the quality of building stones using signal processing procedures [J]. Quarterly Joumat of Geophysical Research, 1996, 29(4): 299-308
    [97] 刘彤,徐鸣洁,胡德昭,等.风化花岗岩声谱特征分析[J].高校地质学报,2000,6(4):588-594
    [98] 简文彬,吴振祥,邓鼎兴.某地下工程围岩的声波频谱特性[J].岩土力学,2003,24(Suppl.1):623-626
    [99] 赵明阶,吴德伦.小波变换理论及其在岩石声学特性研究中的应用[J].岩土工程学报,1998,20(6):47-51
    [100] 张三宗,徐义贤,杨昌斌.小波技术在声波测试中的应用[J].工程地球物理学报,2004,1(2):186-189
    [101] 刘照升,宋作忠.小波分析在超声测试信号分析中的应用[J].哈尔滨师范大学自然科学学报,2000,16(4):10-12
    [102] Hock E. Practice Rock Engineering [M]. Rotterdam: A. A. Balkema, 2000
    [103] 姚宝魁,刘竹华,李春元,等.矿山地下开采稳定性研究[M].北京:中国科学技术出版社,1994
    [104] 陶振宇,潘别桐.岩石力学原理与方法[M].武汉:中国地质大学出版社,1991
    [105] 中华人民共和国国家标准编写组,工程岩体分级标准(GB50218-94)[S].北京:中国计划出版社,1995
    [106] Bieniawski Z. T. Geomechanics Classification of Rock Masses and Its Application in Tunneling [A]. In: Proc. 3rd Congr. Int Soc. Rock Mech. (ISRM) [C]. Denver, 1974, 27-32.
    [107] Bieniawski Z. T. Rock Mass Classification in Rock Engineering [A]. In: Proc. Symposium for Rock Engineering [C]. Johannesburg, 1976, 97-106.
    [108] Barton N. Analysis of Rock Mass Quality and Support Practice in Tunneling and a Guide for Estimating Support Requirements [J]. Rock Mechanics 1974, 6(4): 189-236
    [109] Gergi M. On the Valuation of Strength and Resistence condition of the Rock in Natural Rock Masses [A]. Proceeding of the Second Congress of the international Society for Rock Mechanics[C]. 1970. 365-374
    [110] Helgstedt. An Assessment of the In-situ Shear Strength of Rock Masses and Discontinuities [J]. Trans. Instn. Min. Metall, 1997, 105: A37-47
    [111] Sheorey P. R. Empirical Rock Failure Criteria [M]. Rotterdam: A. A. Balkema, 1997
    [112] Karanagh K, Clough R. W. Finite Element Application in the Characterization of Elastic Solids [J]. Int. J. Solids Structure, 1971, 7: 11-13
    [113] Sakurai S. Determination of Initial Stress and Mechanical Properties of Viscoelastic Underground Medium [A]. In: Proc. 3rd Congr. Int Soc. Rock Mech. (ISRM) [C]. Denver, 1974, 1: 1169-1174
    [114] Kirstem H. A. Determination of Rock Mass Elastic Moduli by Back Analysis of Deformation Measurements [A]. Exptoration for Rock Engineering [C]. Balkema, 1976, 1: 165-172.
    [115] Gioda G., Maier G. Direct Search Solution of an Inverse Problem in Elastoplasticity: Identification of Cohesion, Friction Angle and In-situ Stress by Pressure Tunnel Tests [J]. Int. J. Num. Mech. Eng, 1980, 15: 1822-1848
    [116] Sakurai S., Abe S. A Design Approch to Dimensioning Underground Openings [A]. 3rd Numerrical Methods in Geomechanics [C]. Aachen, 1979: 649-661.
    [117] Jeon Y. S., Yang H. S. Development of a back analysis algorithm using FLAC [J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41(2): 441-442
    [118] Deng J. H, Lee C. F. Displacement back analysis for a steep slope at theThree Gorges Project site [J]. International Journal of Rock Mechanics & Mining Sciences, 2001, 38(2): 259-258
    [119] Karmen, Borut. Displacement analysis of tunnel support in soft rock around a shallow highway tunnel at Golovec [J], Engineering Geology, 2004, 75(1): 89-106
    [120] 杨志法,刘竹华.位移反分析法在地下工程设计中的初步应用[J].地下工程,1981,(2):15-24
    [121] 高玮,郑颖人.采用快速遗传算法进行岩土工程反分析[J].岩土工程学报,2001,23(1):120-122
    [122] 邓建辉,李焯芬,葛修润.BP网络和遗传算法在岩石边坡位移反分析中的应用[J].岩石力学与工程学报,2001,20(1):1-5
    [123] 赵洪波,冯夏庭.位移反分析的进化支持向量机研究[J].岩石力学与工程学报,2003,22(10):1618-1622
    [124] 徐建平,胡厚田,张安松,等.边坡岩体物理力学参数的统计特征研究[J].岩石力学与工程学报,1999,18(4):382-386
    [125] 王如路,陈乃明,刘宝琛.用随机过程原理确定岩体力学参数[J].矿冶工程,1994,14(4):16-19
    [126] 黄志全,王思敬,李华晔,等.岩体力学参数取值的置信度及其可靠性[J].岩石力学与工程学报,1999,18(1):33-35
    [127] 李胡生,熊文林.岩石力学参数概率分布的随机模糊估计方法[J].固体力学学报,1993,14(4):347-350
    [128] 原国红,陈剑平,马琳.可拓评判方法在岩体质量分类中的应用[J].岩石力学与工程学报,2005,24(9):1539-1544
    [129] 闫长斌,徐国元.对Hoek-Brown公式的改进及其工程应用[J].岩石力学与工程学报,2005,24(22):4030-4035
    [130] 郑颖人,刘兴华.近代非线性科学与岩石力学问题[J].岩土工程学报,1996,18(1):98-100
    [131] Saunsers P T.灾变理论入门[M].凌复华译.上海:上海科学技术文献出版社,1983
    [132] Zeeman E. C. Catastrophy theory [M], Scientific American, 1976
    [133] 黄润秋,许强.工程地质广义系统科学分析原理及应用[M].北京:地质出版社,1997
    [134] Kuijper A, Florack L. M. The application of catastrophy theory to medical image analysis, UU-CS-2001-24 TR: 1-9
    [135] Henley S. Catastrophe theory models in geology [J]. Mathematical Geology, 1976, 8(6): 649-655
    [136] Cubit John M., Shaw Brian. The geological implication of steady-state mechanisms in catastrophe theory [J]. Mathematical Geology, 1976, 8(6): 657-662
    [137] 刘军.突变理论在岩石力学中的应用及发展趋势[J].自然杂志,2000,22(5):264-267
    [138] 蔡美峰,孔广亚,贾立宏.岩体工程系统失稳的能量突变判断准则及其应用[J].北京科技大学学报,1997,19(4):325-328
    [139] 唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1993
    [140] 费鸿禄,唐春安,徐小荷.突变理论研究单轴加载失稳与实验验证[J].中国有色金属学报,1995,5(4):31-34
    [141] 潘岳.岩石破坏过程的折迭突变模型[J].岩土工程学报,1999,21(3):299-303
    [142] 秦四清,张倬元.非线性工程地质学导引[M].成都:西南交通大学出版社,1993
    [143] S. Qin, J. J. Jiao and S. Wang. A Cusp Catastrophe Model of Instability of Slip-buckling Slope [J]. Rock Mechanics and Rock Engineering, 2001, 34 (2), 119-134
    [144] 刘军,秦四清,张倬元.缓倾角层状岩体失稳的尖点突变模型研制[J].岩土工程学报,2001,23(1):42-44
    [145] 龙辉,秦四清,朱世平,等.滑坡演化的非线性动力学与突变分析[J].工程地质学报,2001,9(3):331-335
    [146] 康仲远.岩体准静态运动失稳的CUSP型突变模型[J].地震学报,1984,6(3):352-360
    [147] Germanovich L. N., Cherepanov G. P. On some general properties of strength criteria [J]. International Journal of Fracture, 1995, 71(1): 37-56
    [148] 殷有泉,杜静.地震过程的燕尾型突变模型[J].地震学报,1994,16(4):416-422
    [149] 杨修信,殷有泉.压纽性断层地震过程的CUSP型突变分析[J].中国科学(B辑),1994,24(6):656-663
    [150] 秦四清,张倬元.水库诱震机制新理论的探索-断层带弱化与岩体软化效应诱震理论[J].工程地质学报,1995,3(1):35-44
    [151] 潘一山,章梦涛,李国臻.洞室岩爆的尖角型突变模型[J].应用数学与力学,1994,15(10):893-900
    [152] 费鸿禄,徐小荷,唐春安.地下硐室岩爆的突变理论研究[J].煤炭学报,1995,20(1):29-33
    [153] 徐曾和,徐小荷,唐春安.坚硬顶板下煤柱岩爆的尖点突变理论分析[J].煤炭学报,1995,20(5):485-491
    [154] 马少鹏,王来贵.围压振动诱发冲击地压机制[J],矿山压力与顶板管理,1998,(3):77-79
    [155] 潘岳,刘英,顾善发.矿井断层冲击地压的折迭突变模型[J].岩石力学与工程学报,2001,20(1):43-48
    [156] 徐曾和,徐小荷.柱式开采岩爆发生条件与时间效应的尖点突变[J].中国有色金属学报,1997,7(2):17-23
    [157] 刘保县,鲜学福,姜德义.煤与瓦斯延期突出机理及其预测预报的研究[J].岩石力学与工程学报,2002,21(5):647-650
    [158] 王连国,宋扬,缪协兴.基于尖点突变模型的煤层底板突水预测研究[J].岩石力学与工程学报,2003,22(4):573-577
    [159] 白晨光,黎良杰,于学馥.承压水底板关键层失稳的尖点突变模型[J].煤炭学报,1997,22(2):149-154
    [160] 邵爱军,彭建萍,刘唐生.矿坑底板突水的突变模型研究[J].岩土工程学报,2001,23(1):38-41
    [161] 谢卫红,陆士良,张玉祥.挠曲褶皱性巷道底臌机理分析及防治对策研究[J].岩石力学与工程学报,2001,20(1):57-60
    [162] 李江腾,曹平.非对称开采时矿柱失稳的尖点突变模型[J].应用数学和力学,2005,26(8):1003-1008
    [163] 郭建军.夏甸金矿矿柱及围岩稳定性分析与应用[D].泰安:山东科技大学,2005
    [164] 高波.隧道结构失稳及判据研究[D].成都:西南交通大学,2002
    [165] 刘学增,朱保华,翟德元.深部隧道失稳的尖点灾变模型[J].山东科技大学学报,2000,19(1):38-40
    [166] 闫长斌,徐国元.基于突变理论深埋硬岩隧道的失稳分析[J].工程地质学报,2006,14(4):508-512
    [167] 李造鼎,宋纳新,贾立宏.岩土动态开挖的灰色突变建模[J].岩石力学与工程学报,1997,16(3):252-257
    [168] 周辉,冯夏庭,谭云亮,等.矿震系统的胞映射—突变预测模型[J].中国有色金属学报,2002,12(1):155-160
    [169] 潘岳,王志强.岩体动力失稳的功、能增量—突变理论研究方法[J].岩石力学与工程学报,2004,23(9):1433-1438
    [170] 许强,黄润秋,王来贵.外界扰动诱发地质灾害的机理分析[J].岩石力学与工程学报,2002,21(2):280-284
    [171] 许强,黄润秋.地震作用下结构非线性响应的突变分析[J].岩土工程学报,1997,19(4):25-29
    [172] 左宇军.动静组合加载下的岩石破坏特性研究[D].长沙:中南大学资源与安全工程学院.2005
    [173] YAN Chang-bin, XU Guo-yuan. The destabilization analysis of overlapping underground chambers induced by blasting vibration with catastrophe theory [J]. Transactions of Nonferrous Metals Society of China, 2006, 16(3): 735-740
    [174] Jing L., Hudson J. A. Numerical methods in rock mechanics [J]. International Journal of Rock Mechanics & Mining Sciences, 2002, 39(3): 409-427
    [175] Itasca Consulting Group Inc. FLAC (Fast Lagrangian Analysis of Continua) Users manual, Version5.0, Minneapolis, Minnesota: Itasca Consulting Group Inc, 2005
    [176] 刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社, 2005
    [177] Dawson E. M., Roth W. H. Slope stability analysis with FLAC[A], Proceedings of the International FLAC Symposium on Numerical Modeling in Geomechanics [C], Rotterdam: A. Balkema, 1999
    [178] 寇晓东,周维垣,杨若琼,等.应用三维快速拉格朗日法进行三峡船闸高边坡锚固稳定与机理研究[J].土木工程学报,2002,35(1):68-74
    [179] 乔国文,王运生,房冬恒.西南某电站右岸开挖边坡稳定性的FLAC~(3D)分析[J].工程地质学报,2004,12(3):280-284
    [180] 杨为民,陈卫忠,李术才,等.快速拉格朗目法分析巨型地下洞室群稳定性[J].岩土工程学报,2005,27(2):230-234
    [181] 陈帅宇,周维垣,杨强,等.三维快速拉格朗日法进行水布垭地下厂房的稳定分析[J].岩石力学与工程学报,2003,22(7):1047-1053
    [182] 朱维申,李晓静,郭彦双,等.地下大型洞室群稳定性的系统性研究[J].岩石力学与工程学报,2004,23(10):1689-1693
    [183] Carranza-Torres C and Fairhurst C. The Elasto-Plastic Response of Underground Excavations in Rock Masses that Satisfy the Hoek-Brown Failure Criterion [J]. International Journal of Rock Mechanics & Mining Sciences, 1999, 36(4): 777-809
    [184] ASEF M. R., REDDISH D. J., LLOYD P. W. Rock-support interaction analysis based on numerical modeling [J]. Geotechnical & Geotechnical Engineering, 2000, 18(1): 23-37
    [185] Bonini, M., Barla M., Barla G. FLAC Applications to the Analysis of Swelling Behavior in Tunnels [A]. Billaux D. et al., Eds. Proceedings of the 2nd International FLAC Conference [C], Lisse: Swets amp; Zeitlinger, 2001
    [186] 杨新安,黄宏伟,丁全录.FLAC程序及其在隧道工程中的应用[J].上海铁道大学学报,1996,17(4):39-44
    [187] 谢和平,周宏伟,王金安,等.FLAC在煤矿开采沉陷预测中的应用及对比分析[J].岩石力学与工程学报,1999,18(4):397-401
    [188] 宋卫东,王金安,匡忠祥.程潮铁矿淹井前后采场溜井稳定性数值分析[J].北京科技大学学报,2000,22(4):292-295
    [189] 陆士良,汤雷.巷道锚注支护机理的研究[J].中国矿业大学学报,1996,25(2):1-6
    [190] Singh, R., Sheorey, P. R.; Singh, D. P. Stability of the parting between coal pillar workings in level contiguous seams [J]. International Journal of Rock Mechanics & Mining Sciences, 2002, 39(1): 9-39
    [191] Yasitli N. E., Unver B. 3D numerical modeling of longwall mining with top-coal caving [J]. International Journal of Rock Mechanics & Mining Sciences, 2005, 42(2): 219-235
    [192] 祁生文.边坡动力响应研究及应用[D].北京:中国科学院地质与地球物理研究所,2002
    [193] 刘春玲,祁生文,童立强,等.利用FLAC3D分析某边坡的稳定性[J].岩石力学与工程学报,2004,23(16):2730-2733
    [194] 陈占军,朱传云,周小恒.爆破荷载作用下岩石边坡动态响应的FLAC3D模拟研究[J].爆破,2005,22(4):8-13
    [195] 张友葩,高永涛,王杰林,等.动载荷下边坡的失稳分析[J].北京科技大学学报,2003,25(2):110-116
    [196] Kirzhner, F.; Rosenhouse, G. Numerical Analysis of Tunnel Dynamic Response to Earth Motions Tunnelling and Underground Space Technology, 2000, 15(3): 249-258
    [197] 李海波,马行东,李俊如,等.地震荷载作用下地下岩体洞室位移特征的影响因素分析[J].岩土工程学报,2006,28(3):358-362
    [198] 闫长斌,徐国元.动荷载对竖向排列地下洞室群稳定性影响分析[J].中国铁道科学,2006,27(3):27-33
    [199] 国胜兵,高培正,潘越峰.爆炸波在准饱和砂土中的传播规律[J].岩土力学,2004,25(12):1897-1902
    [200] 姜耀东,赵毅鑫,宋彦琦等.放炮震动诱发煤矿巷道动力失稳机理分析[J].岩石力学与工程学报,2005,24(17):3131-3136
    [201] Innaurato N, Mancini R, Cardu M. On the Influence of Rock Mass Quality of Blasting Work in Tunnel Driving [J]. Tunneling and Underground Space Technology, 1998, 13(1): 81-89
    [202] 李海波,蒋会军,赵坚,等.动荷载作用下岩体工程安全的几个问题[J].岩石力学与工程学报,2003,22(11):1887-1891
    [203] Cangli Liu, Ahren T. J. Stress Wave Attenuation in Shock-Damaged Rock [J]. J. Geophys. Res, 1997, 102(B2): 5243-5250
    [204] 林大能,陈寿如,刘优平.岩石循环冲击损伤围压效应的实验研究[J].矿冶工程,2005,25(4):12-15
    [205] 张敏霞.循环荷载作用下水泥土的疲劳特性及其损伤行为研究[D].福州大学,2004
    [206] 张杰,李瑾,张琦涛,等.菲金属声波测试简明用户手册(内部交流).中国科学院武汉岩土力学研究所智能仪器室,2001
    [207] 尹贤刚,李庶林,唐海燕,等.厂坝铅锌矿岩石物理力学性质测试研究[J].矿业研究与开发,2003,23(5):12-14
    [208] 陈达力.岩石超声谱测试技术[J].岩石力学与工程学报,1993,13(1):59-68
    [209] 王让甲.声波岩石分级和岩石动弹性力学参数的分析研究[M].北京:地质出版社,1997
    [210] 陈枫,孙宗颀,徐纪成.岩石压剪断裂过程中的超声波波谱特性研究[J].工程地质学报,2000,81(2):164-168
    [211] Best A. I, McCann C.and Sothcott J. The Relationships between the Velocities, Attenuations and Petrochemical Properties of Reservoir Sedimentary Rocks [J]. Geophysical Prospecting, 1994, 42(2): 151-178
    [212] 楚译涵.声波测井原理[M].北京:地震出版社,1987
    [213] Molina J. Crack Field Characterition by Ultrasonic Attennution-Preliminary Study on Rocks [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics, 1982, 19(2): 267-278
    [214] 王宝善,孙道远,李生杰,等.岩石非均匀性对超声衰减的影响及其修正[J].中国地震,2001,7(1):1-7
    [215] 赫建明,赵学亮,柳崇伟.爆炸冲击作用导致岩体损伤的模型试验研究[J].西安科技学院学报,2004,24(1):49-52
    [216] Morlet, J., G. Arens, E. Fourgeau. Wave Propagation and Sampling Theory [J]. Geophys, 1982, 47(2): 203-236
    [217] Grossman A, Morlet J. Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape [J]. SIAM J Math Anal. 1984, 1(5): 723-736
    [218] Daubechies I. Orthonormal Bases of Compactly Supported Wavelets [J]. Communications on Pure and Applied Mathematics, 1988, 41(7): 909-996
    [219] Mallat S G. A Theory for Multidimension Signal Ecomposition: The Wavelet Models [J]. IEEE Transactions on attem Analysis and Machine Intelligence, 1989, 11: 674-693
    [220] 胡昌华,张军波,夏军,等.基于MATLAB的系统分析与设计—小波分析[M].西安:西安电子科技大学,2000:4-271
    [221] Wickerhauser M V. Large-rank approximate principal component analysis with wavelets for signal feature discrimination and the inversion of complicated maps [J]. Journal of Chemical Information and Computer Science, 1994, 34(5): 1036-1046
    [222] Nyquist H. Certain topics in telegraph transmission theory [J]. Trans. AIEE, 1928, 47(1): 617-644
    [223] Shannon C. E. Communications in the presence of noise [J]. Proc. IRE. 1949, 37(1): 10-21
    [224] Bazant Z. P. and Prat P. C. Fracture Characteristics and Micromechnical thoery of Rock as a Quasibrittlr Material: Appercu of Recent Advances, in 5nd Int. Sympom Rock Fragment by blasting, Blakema, 1996: 3-12
    [225] Chong K. P. and Borest A. P. Strain Rate Dependent Mechnical Properities of New Albany Referrence [J], Int. J. Rock Mech. Min. Sci. 1990, 27(3): 199-205
    [226] Paine A. S. and Please C. P. An Improved Model of Fracture Propagatio by Gas during Rock Blasting-Some Analytical Resuits [J], Int. J. Rock Mech. Min. Sci. 1994, 31(6): 669-706
    [227] 吴从师,徐泽沛,陈昕.爆破地震作用下重力式挡土墙的稳定分析[J].岩石力学与工程学报,2003,22(11):1939-1942
    [228] 杨小林.岩石爆破损伤细观机理及力学特性研究[D].北京:中国矿业大学,1992
    [229] 纽强.岩石爆破机理[M].沈阳:东北工学院出版社,1990
    [230] Kachanov L. M. Introduction to Continuum Damage Mechanics [M]. Maritinus Nijhoff Publishers, 1986
    [231] Krajcinovic D., Fonseka G. U. The Continous Damage Theory of Brittle Materials [J]. J. Applied Mechanics Trans. of ASME, 1981, 48(4): 809-824
    [232] Drogen A., Mroz. Z. A Continuum Model for Plastic-Brittle Behaviour of Rock and Concrete [J]. Int. J. Engineering Sciences, 1979, 19: 121-137
    [233] 盖秉政.弹性波在平面多连通域中的绕射与动应力集中[J].应用数学和力学,1986,7(1):25-36
    [234] 鲍亦兴,毛昭宙.弹性波的散射与动应力集中[M].刘殿魁,苏先彬.北京:科学出版社,1993
    [235] 于骁中,谯常忻,周群力.岩石和混凝土断裂力学[M].长沙:中南工业大学出版社,1991.
    [236] Sternberg E. On the Integration of the Equation of Motion in the Classical Theory of Elasticity [J]. Arch. Rat. Mech. Anal, 1960: 34-50.
    [237] MEL VIN EKanninen,CARL H.Popelar.高等断裂力学[M].洪其麟,郑光华, 郑祺选等.北京:北京航空学院出版社,1987
    [238] Freumd L B. Dynamic Fracture Mechanics [M]. Cambridge: Cambridge Press, 1990
    [239] RAVI-Chandar. K Dynamic Fracture [M]. Amsterdam: Elsevier, 2004
    [240] 孙玉科,牟会宠,姚宝魁.边坡岩体稳定性分析[M].北京:科学出版社,1988
    [241] Frost N. E. The Growth of Fatigue Cracks [A]. Proceedings of the First International Conference on Fracture [C]. Sendai: The Japan Society for Strength and Fracture of Materials, 1966: 1433-1459
    [242] Paris P. C., Endrogan F. A Critcal Analysis of Crack Propogation Laws [J]. J. of Basic Engineering, Transaction of the ASME, 1963, 85(3): 528-534
    [243] 徐世娘.混凝土断裂机理[D].大连:大连理工大学,1988
    [244] 黄达海,宋玉普,赵国藩.具有宏观裂纹混凝土结构的起裂特性研究[J].土木工程学报,2000,33(4):63-66
    [245] 李朝阳,宋玉普,车轶.混凝土的单轴抗压疲劳损伤累积性能研究[J].土木工程学报,2002,35(2):38-40
    [246] 葛修润,任建喜,蒲毅彬,等.岩土损伤力学宏细观试验研究[M].北京:科学出版社,2004
    [247] X. B. Li, T. S. Lok and J. Zhao. Dynamic Characteristics of Granite Subjected to Intermediate Loading Rate [J]. Rock Mechanics and Rock Engineering, 2005, 38(1): 21-39
    [248] 朱劲松,宋玉普.混凝土双轴抗压疲劳损伤特性的超声波速法研究[J].岩石力学与工程学报,2004,23(13):2230-2234
    [249] 蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002
    [250] 巫德斌.层状岩体边坡工程力学参数研究[D].南京:河海大学,2004
    [251] 高云河,刘琳芳.经验参m,s对岩体强度的影响[J].贵州工业大学学报,2004,33(1):81-84
    [252] 宋建波,于远忠.岩体经验强度准则及其强度参数m,s的确定方法[J].西南工学院学报,2001,16(1):26-29
    [253] Hoek, E., Kaiser, P. K. andBawden, and W. F. Support of Underground of Excavation in Hard Rock Tunnel [M], Rotterdam: Balkema, 1995
    [254] 张建海,何江达,范景伟.小湾工程岩体力学参数研究[J].云南水力发电,2000,l 6(2):26-27
    [255] H. Sonmez, R. Ulusay. Modifications to the Geological Strength Index (GSI) and Their Applicablity to Stability of Slopes [J] International Journal of Rock Mechanics & Mining Sciences, 1999, 36 (5): 743-760
    [256] Kendorski, F. S. Cumming, R. A. et al. Rock Mass Classication for Block Caving Mine Drift Support [A]. In: Proc.5th Int. Rock Mech. ISRM., 1983: B51-B63
    [257] Hoek E, Brown E. T. The Hoek-Brown Failure Criterion- A 1988 Update [A]. Proc. 15th Canadian Rock Mech Symp[C]. Toronto: University of Toronto Press, 1988, 31-38.
    [258] Bieniawski Z. T. Determining Rock Mass Degformability: Experiences from Case Histories [J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstract, 1978, 15(5): 237-247
    [259] Serafim J. L, Pereira J. P. Construction of the Geomechanics Classification of Bieniawski [A]. Proc. Int. Symp. Eng. Geo. & Underground Construction [C]. Lisbon, Portugal, 1983, 1(1): 33-44.
    [260] Hock Evert, Carlos Carranza-Torres, Brent Corkum. Hoek-Brown Failure Criterion-2002 Edition [A]. Process of 5th North American Rock Mechanics Society Meeting[C]. Rotterelam: A. A. Balkema, 2002, 6: 267-271
    [261] 罗一忠,叶粤文.大厂91号矿体岩石力学参数工程处理[J].江西有色金属,1998,12(3):9-12
    [262] 沈茂山,魏德敏.弹性拱振动失稳的突变模型[J].应用数学和力学,1990,11(12):1099-1102
    [263] 孙豁然,肖海军,王运森,等.爆破动载荷下平硐稳定性的研究[J].金属矿山,2001,(12):15-19
    [264] 刁虎.爆破震动对废石运输平硐稳定性的影响与综合治理[J].矿业快报,2001,(6):11-13
    [265] 李云.非线性动力系统的现代数学方法及其应用[M].北京:高等教育出版社,1997
    [266] 龙永红.概率论与数理统计[M].北京:高等教育出版社,2001
    [267] 赵达纲,朱迎善.应用随机过程[M].北京:机械工业出版社,1993
    [268] 杨桂通,张善元.弹性动力学[M].北京:中国铁道出版社,1988
    [269] 刘沐宇,徐长佑.地下采空区矿柱稳定性分析[J].矿冶工程,2003,20(1):19-22
    [270] N. P. Kripakov, M. C. Sun, D. A. Donato. ADNIA applied toward simulation of progressive failure in underground mine structures[J]. Computer & Structures, 1995, 56(2/3): 329-344
    [271] J. Deng, Z. Q. Yue, L. G. Tham. Pillar design by combining finite element methods, neural networks and reliability: a case study of the Feng Huangshan copper mine, China [J]. International Journal of Rock Mechanics & Mining Sciences, 2003, 40: 585-599
    [272] 刘学增,翟德元.矿柱可靠度设计[J].岩石力学与工程学报,2000,19(1):85-88
    [273] 杨伟忠,王勋业.控制矿柱破坏程度的爆破技术措施研究[J].金属矿山,1994,3:15-19
    [274] 吴晓.屈曲粘弹性矩形板的非线性振动分岔[J].力学与实践,2001,23(1):41-43.
    [275] 彭凡,傅衣铭.粘弹性板的非线性动力稳定特性分析[J].固体力学学报,2004,25(1):115-118.
    [276] 国家安全生产监督管理局国家安全生产科技发展规划(2004-2010)[R].北京:国家安全生产监督管理局,2004
    [277] 颜荣贵,曹阳,方建勤,等.矿山系统地压研究—重大地压灾害的创新研究策略[J].矿冶工程,2003,23(6):7-10
    [278] 来兴平.基于非线性动力学的采空区稳定性集成监测分析与预报系统研究及应用[D].北京:北京科技大学,2002
    [279] 王恩元,贾慧霖,李忠辉,等.用电磁辐射法监测预报矿山采空区顶板稳定性[J].煤炭学报,2006,31(1):16-19
    [280] Kaiser P. K., Yazici S., Malone S. Mining-induced stress change and consequences of stress path on excavation stability - a case study [J]. International Journal of Rock Mechanics & Mining Sciences, 2001, 38(1): 167-180
    [281] Swift G. M., Reddish D. J. Underground excavations in rock salt [J]. Geotechnical and Geological Engineering, 2005, 23(1): 17-42
    [282] Coulthard M. A. Applications of numerical modeling in underground mining and construction [J]. Geotechnical and Geological Engineering, 1999, 17(3): 373-385
    [283] Singh P. K. Blast vibration damage to underground coal mines from adjacent open-pit blasting [J]. International Journal of Rock Mechanics & Mining Sciences, 2002, 39 (8): 959-973
    [284] 张世雄,胡建华,阳生权,等.地下工程爆破振动监测与分析[J].爆破,2001,18(2):49-52
    [285] Itasca Consulting Group Inc. FLAC~(3D) (Fast Lagrangian Analysis of Continua in 3 Dimensions), Version2. 10, Users manual. USA: Itasca Consulting Group Inc, 2002
    [286] Cundall P. A. "Explicit Finite Difference Methods in Geomechanics" in Numerical Methods in Engineering, Proceedings of the EF Conference on Numerical Methods in Geomechanics, Blacksburg, Virginia, 1976, Vol. 1, pp. 132-150
    [287] Kunar R R, Beresford P J, Cundall P A. A tested soil-structure model for surface interaction[R]. India: Rookee Univ., 1977
    [288] Kuhlemeyer R. L, Lysmer J. Finite element method accuracy for wave propagation problems [J]. J. Soil Mech & Foundation Div. ASCE, 1973, 99(SM5): 421-42
    [289] 徐国元,刘敦文,闫长斌,等.地下空区形态层位探测技术研究[R].中南大学,2004,3
    [290] 徐国元,古德生.爆破破岩机理的试验研究[J].中南工业大学学报,1997,26(12):61-63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700