用户名: 密码: 验证码:
基于刻蚀衍射光栅的芯片光谱仪研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芯片实验室(lab-on-a-chip)是近年来国际科学界的一个热点研究方向。其研究目标是在一个芯片上实现传统生化实验室中由复杂贵重的设备所完成的对各种样品的分析检测功能,以实现样品分析的便携化,高效化,低成本化。对样品进行光谱分析是检测样品组分和浓度的重要方法,因此,将光谱仪芯片化是芯片实验室研究的重要内容。芯片光谱仪的结构选择多种多样,其中,随着波分复用技术的发展而逐渐成熟的平面集成波导光栅(包括阵列波导光栅和刻蚀衍射光栅)由于具有插入损耗低,波长通道间隔小,易于实现大通道数目,制作成本低等优点,成为了一种极具潜力的光谱分析结构。本文中,我们利用刻蚀衍射光栅,基于氮氧化硅波导平台,对与CMOS工艺相兼容,工作于硅吸收边1100nm波长以下光波段的亚纳米高分辨率光谱仪进行了设计、制作以及测试等整个工程体系的研究。
     文章首先介绍了平面集成光波导的理论基础,包括对二维平板波导模式进行分析的射线理论与电磁波理论,用于波导内部或波导之间模式耦合的耦合模理论。此外,介绍了用于精确计算光在波导中的模场分布和传播过程的数值仿真方法,包括有限差分法,有限元法和束传播方法、
     接着,文章介绍了用于设计刻蚀衍射光栅光栅结构的一点法,二点法和三点法,对光场在光栅中传播过程进行模拟的标量衍射理论以及用于计算光场耦合效率的重叠积分方法。同时,详细讨论了光栅结构参数与光谱仪性能参数之间的关系,提供了对光栅结构进行优化设计的思路和方法。此外,针对常用刻蚀衍射光栅基光谱仪要取得大光谱分析范围的困难,提出了一种利用光栅的频谱周期性,工作于跨衍射级次的分立波长区间高分辨率芯片光谱仪,使得刻蚀衍射光栅在保持自由光谱范围不变的情况下,扩大了光谱分析的范围,与此同时依然维持有高分辨率以及不变的输出波导或者光电探测器阵列的个数。并以植物监控领域的应用为例,设计了一种工作波长区间分别为680nm-690nm和735nm-745nm,且波长通道间隔为0.2nm的刻蚀衍射光栅芯片光谱仪。
     然后,针对可见光波段光谱分析的需求,文章采用氮氧化硅材料,基于刻蚀衍射光栅,详细研究了工作于小于硅材料吸收带1100nm波段的小尺寸高分辨率芯片光谱仪。将高折射率差刻蚀衍射光栅芯片光谱仪的研究视野从SOI材料转到了氮氧化硅材料,从常用红外通信波段,转到了可见光波段和近红外波段。对刻蚀衍射光栅的结构参数设计进行了仿真和优化,研究优化出一套完整的氮氧化硅基芯片光谱仪制作工艺流程,特别是对氮氧化硅生长和氮氧化硅二氧化硅深刻蚀工艺进行了研究和优化创新,提出了双掩膜深刻蚀氮氧化硅二氧化硅的方法,提高了刻蚀的垂直度和光滑度。此外,还开发出一套芯片光谱仪的测试装置。最终研制出拥有121个通道,工作于从830nm到855nm,通道间隔为0.25nm的芯片光谱仪。
     紧接着,在氮氧化硅基刻蚀衍射光栅芯片光谱仪的基础上,提出了一种利用SOI基底,在刻蚀衍射光栅输出面直接集成MSM探测器阵列的光电子集成芯片光谱仪。研究了MSM光电探测器的原理以及其与波导进行耦合的方法,设计优化了MSM探测器阵列的参数,开发出一整套有源无源集成且CMOS工艺兼容的芯片光谱仪的制作工艺,包括硅刻蚀,平坦化等,搭建了一套有源无源集成芯片的测试平台。所制得的光电子集成芯片光谱仪在从838nm到853nm的波长范围内,获得了波长通道间隔为0.494nm的29个通道输出,通道非均匀性小于1.5dB。
     最后,文章进行了总结并对下一步芯片光谱仪的研究工作作了展望。
Lab-on-a-chip is currently a hot research topic among the scientific society. The research objective is to realize the sample detection and analysis on a small, low cost and effective chip to replace the traditional expensive and cumbersome instrument in biological and chemical laboratories. Spectral analysis is a major way to analyze the sample composition, therefore, to make spectrometer-on-a-chip is an important research issue in lab-on-a-chip. Many structures can be chosen for the on-chip spectral analysis. Among them, planar waveguide grating, including Etched diffraction grating (EDG) and arrayed waveguide grating (AWG), has the advantage of low insertion loss, small wavelength channel spacing, easiness to scale up to large counts of waveguides, low fabrication cost and so on. Planar waveguide grating was gradually matured along with the fast development of wavelength division multiplexing technology and it is a very potential one for making commercial-use spectrometer-on-a-chip. In this thesis, we design, fabricate and characterize a series of CMOS compatible spectrometer-on-a-chip based on silicon oxynitride (SiON) waveguide platform with Etched diffraction grating working below1100nm, which is the absorption edge of silicon material.
     The thesis starts from the theoretical background of planar integrated waveguide, including the ray theory and electromagnetic theory for the analysis of two-dimensional planar waveguide, and the mode coupling theory used for analyzing the mode coupling inside a waveguide or between waveguide. Besides, numerical simulation method, used for the calculation of mode field distribution and propagation in a waveguide, is introduced in the thesis, including finite differentiation method (FDM), finite element method (FEM), and beam propagation method (BPM).
     Also introduced are the one-stigmatic method, two-stigmatic mehod and three-stigmatic method used for the design of grating structure in Etched diffraction grating, along with the scalar diffraction theory for the simulation of light propagation in the grating, and the overlap integral method for calculating the mode coupling efficiency between waveguides. The relationship between the grating structure parameters and the spectrometer performance parameters are discussed in detail in the thesis, which provide an efficient instruction to design the grating structure with optimization. By pointing out the difficulty to obtain large spectral analysis range and high spectral resolution at the same time with the common design method, The dissertation introduces a cross-order high resolution spectrmeter on a chip with a separated wavelength band based on the frequency periodicity of the Etched diffraction grating. It can be used in the occassion that fluorescence spectra detection at multi wavelength bands is required, a practical EDG based spectrometer-on-a-chip is designed, with a separated wavelength band of680nm~690nm and735nm~745nm and a wavelength channel spacing of0.2nm.
     After that, an EDG based spectrometer-on-a-chp on SiON waveguides working below1100nm is demonstrated. The detailed design process was introduced. Some key restrictions of fabrication for high performance spectrometer-on-a-chip are throughly studied, including photo-lithography, SiON thin film growth and the deep etching of SiON and SiO2waveguides. The56-channel spectrometer-on-a-chip is characterized with our self-established test platform and measurement results are obtained and discussed.
     We further analyze the theoretical background of metal-semiconductor-metal (MSM) photodetector and the coupling structure between waveguide and photodetector, and integrate MSM photodetector array with EDG microspectrometer on SOI wafer by CMOS compatible fabrication process. The measurement results show that, the29wavelength channel operating from838nm to853nm has a channle spacing of0.494nm, a3dB channel bandwidth of0.4nm and a channel nonuniformity of1.5dB.
     In the end. the thesis is summarized and the future research work is planned.
引文
[1]U. Fano and J.W. Cooper, "Spectral distribution of atomic oscillator strengths", Review of Modern Physics, vol.40, no.3, pp.441-507,1968.
    [2]B. Stuart, Modern IR Spectroscopy, John Wiley,1996.
    [3]A.C. Pease, D. Solas, et al., "Light-generated oligonucleotide arrays for rapid DNA sequence analysis", Proceedings of the National Academy of Sciences of the United States of America, vol.91, no.11, pp.5022-5026,1994.
    [4]Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D, "Light-directed, spatially addressable parallel chemical synthesis", Science, vol.251, no.4995, pp.767-773,1991.
    [5]U. Gustafsson, S. Palsson, and S. Svanberg, "Compact Fiber-optic Fluorosensor Using a Continuous-wave Violet Diode Laser and an Integrated Spectrometer", Review of Scientific Instruments, vol.71, no.8, pp.3004-3006,2000.
    [6]A. Rosema, "Potential of chlorophyll fluorescence for remote sensing of canopy photosynthesis", Proceedings of OECD Workshop on Remote Sensing for Agriculture for the Environment.2002.
    [7]Smorenburg C. Draaisma F, Oprel P, te Plate M. Visser H and de Winter D, "OMI-EOS: calibration stimuli for OMI at TNO TPD", Proceedings of 52nd International Astronautical Congress,2001.
    [8]P. Lindblom, M. Meinander, and T. Olsson, "Spectroscopy with the MEGA spectrometer, a very high resolution grating spectrometer", Review of Scientific Instrument, vol.61, no.10, pp.2546-2548,1990.
    [9]Takefumi Kanda, Akira Makino, Tomohisa Ono, Koichi Suzumori, Takeshi Morita, Minoru Kuribayashi Kurosawa, "A micro ultrasonic motor using a micro-machined cylindrical bulk PZT transducer", Sensors and Actuators A:Physical, vol.127, no.1, pp.131-138,2006.
    [10]W.S.N. Trimmer, K.J. Gabriel, "Design considerations for a practical electrostatic micro-motor", Sensors and Actuators, vol.11, no.2, pp.189-206,1987.
    [11]Austin Holland, "Earthquake data recorded by the MEMS accelerometer:field testing in Idaho", Seismological Research Letters, vol.74, no.1, pp.20-26,2003.
    [12]J. Wu, G.K. Fedder, L.R.Carley, "A low-noise low-offset capacitive sensing amplifier for a 50-μg/Hz√ monolithic CMOS MEMS accelerometer", IEEE Journal of Solid-State Circuits. vol.39, no.5, pp.722-730,2004.
    [13]Sungsu Park, Horowitz, R., "Adaptive control for the conventional mode of operation of MEMS gyroscopes". Journal of Microelectromechanical Systems, vol.12, no.1, pp. 101-108,2003.
    [14]H. Xie, G.K. Fedder, "Fabrication, characterization, and analysis of a DRIE CMOS-MEMS gyroscope", IEEE Sensors Journal, vol.3, no.5, pp.622-631,2003.
    [15]T.A. Kwa and R.F. Wolffenbuttel, "Integrated grating/detector array fabricated in silicon using micromachining techniques", Sensors and Actuators A:Physical, vol.31, no.1-3, pp. 259-266,1992.
    [16]S.H. Kong, D.D.L. Wijngaards, R.F. Wolffenbuttel "Infrared micro-spectrometer based on a diffraction grating", Sensors and Actuators A, vol.92, no.1-3, pp.88-95,2001.
    [17]J.H. Correia, G. de Graaf, S.-H. Kong, M. Bartek, and R.F. Wolffenbuttel, "Single-chip CMOS optical micro-interferometer," Sensors and Actuators A, vol.82, no.1-3, pp. 191-197,2000.
    [18]S.C. Nicholes, M.L. Masanovic, E. Lively, L.A. Coldren, and D.J. Blumenthal, "An 8x8 Monolithic Tunable Optical Router (MOTOR) Chip in InP," In Integrated Photonics and Nanophotonics Research and Applications, OSA Technical Digest (CD), paper IMB1,2009.
    [19]P. Cheben, J.H. Schmid, A. Delage, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, "A high-resolution silicon-on-insulator arrayed aveguide grating micro spectrometer with submicrometer aperture waveguides", Optics Express, vol. 15, no.5, pp.2299-2306,2007.
    [20]I. Akca, N. Ismail, F. Sun, V.D. Nguyen, J. Kalkman, T.G. Van Leeuwen, A. Driessen. K. Worhoff, M. Pollnau, and R.M. de Ridder, "Integrated Arrayed Waveguide Grating Spectrometer for On-chip Optical Coherence Tomography", Conference on Lasers and Electro-Optics,2010.
    [21]K. Kodate, Y. Komai, "Compact spectroscopic sensor using an arrayed waveguide grating", Journal of Optics A:Pure and Applied Optics, vol.10, no.4, pp.044011-044018,2008.
    [22]D.A. Zauner, A.M. Jorgensen, T.A. Anhoj, and J. Hubner, "Concave reflective SU-8 photoresist gratings for flat-field integrated spectrometers", Applied Optics, vol.45, no.23, pp.5877-5880,2006.
    [23]A.M., Prabhu, A. Tsay, Z. Han, V. Van, "Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR", IEEE Photonics Technology Letters, vol.21, no.10, pp. 651-653,2009.
    [24]G.T. Reed, G. Mashanovich, F.Y. Gardes and D.J. Thomson, "Silicon optical modulators", Nature Photonics, vol.4, pp.518-526,2010.
    [25]S.J. Emelett and R. Soref, "Design and simulation of silicon microring optical routing switches", Journal of Lightwave Technology, vol.23, no.4, pp.1800-1804,2005.
    [26]Zhixuan Xia, Ali Asghar Eftekhar, Mohammad Soltani, Babak Momeni, Qing Li, Maysamreza Chamanzar, Siva Yegnanarayanan, and Ali Adibi, "High resolution on-chip spectroscopy based on miniaturized microdonut resonators", Optics Express, vol.19, no.13, pp.12356-12364,2011.
    [27]Babak Momeni, Ehsan Shah Hosseini, and Ali Adibi, "Cascaded silicon-nitride integrated spectrometers for wideband high-resolution spectral interrogation", Proceedings of SPIE, 7609,76090L-2,2009
    [28]Hatice Altug, Dirk Englund and Jelena Vuckovic, "Ultrafast photonic crystal nanocavity laser", Nature Physics, vol.2, pp.484-488,2006.
    [29]Virginie Lousse, Wonjoo Suh, Onur Kilic, Sora Kim, Olav Solgaard, and Shanhui Fan, "Angular and polarization properties of a photonic crystal slab mirror", Optics Express, vol. 12, no.8, pp.1575-1582,2004.
    [30]Yoshihiro Akahane, Takashi Asano, Bong-Shik Song and Susumu Noda. "High-Q photonic nanocavity in a two-dimensional photonic crystal", Nature, vol.425, pp.944-977.2003.
    [31]Hideo Kosaka, Takayuki Kawashima, Akihisa Tomita, Masaya Notomi, Toshiaki Tamamura, Takashi Sato and Shojiro Kawakami, "Superprism phenomena in photonic crystals", Physical Review B, vol.58, no.16, pp.10096-10099,1998.
    [32]Babak Momeni, Ehsan Shah Hosseini, and Ali Adibi, "Planar photonic crystal microspectrometers in silicon-nitride for the visible range", Optics Express, vol.17, no.19, pp.7060-17069,2009.
    [33]J. Vibian, "Dispersion compensation fiber", US Patent, no.0015569 A1,2002.
    [34]Y. Liu,W.B. Mattingly, D.K. Smith, C.E. Lacy, J.A. Cline, E.M. De Liso, "Design and fabrication of locally dispersion-flatterned large effective area fibers", Proceedings of 24th European Conference on Optical Communication, vol.1, pp.37-38,1998.
    [35]T.A. Birks, J.C. Knight, P.S.J. Russel, "Endlessly single-mode photonic crystal fiber" Optics Letters, vol.22, no.13, pp.961-963,1997.
    [36]Jialiang Jin, Lei Wang, Tingting Yu, Yin Wang, and Jian-Jun He, "Widely wavelength switchable V-coupled-cavity semiconductor laser with ~40dB side-mode suppression ratio", Optics Letters, vol.36, no.21, pp.4230-4232,2011.
    [37]L. Tang, S.E. Kocabas, S. Latif, A.K. Okyay, D.L. Gagnon, K. C. Saraswat, and D.A.B. Miller, "Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antena", Nature Photonics, vol.2, pp.226-229,2008.
    [38]D.M. Beggs, T.P. White, L.O. Faolain, T.F. Krauss, "Ultracompact and low-power optical switch based on silicon photonic crystals", Optics Letters, vol.33, no.2, pp.147-149,2008.
    [39]P.D. Trinh, S. Yegnanarayanan, B. Jalali, "Integrated optical directional couplers in silicon-on-insulator", Electronics Letters, vol.31, no.24, pp.2097-2098,1995.
    [40]D. Taillaert, P. Bienstman, R. Baets, "Compact efficient broadband grating coupler for silicon-on-insulator waveguides", Optics Letters, vol.29, no.23, pp.2749-2751,2004.
    [41]L.A. Coldren, S.W. Corzine, M.L. Mashanovitch, "Diode lasers and photonic integrated circuits", John Wiley,1995.
    [42]D. Dai, S. He, H.K. Tsang, "Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide", Journal of Lightwave Technology, vol.24, no.6, pp.2428-2433, 2006.
    [43]M.J. Adams, "An introduction to optical waveguide", John Willey,1981.
    [44]刘式墉,《半导体集成光学》,吉林大学出版社,第三章,1986.
    [45]C.S. Ma, H.M. Zhang, D.M. Zhang, Z.C. Cui, and S.Y. Liu, "Effects of trapezoid core cross-sections on transmission characteristics of polymer arrayed waveguide grating multiplexers". Optics Communications, vol.241, no.4-6. pp.321-331.2004.
    [46]L. Thylen, "The beam propagation method:an analysis of its applicability", Optical and Quantum Electronics, vol.15, no.5, pp.433-439,1985.
    [47]G.R. Hadley, "Wide-angle beam propagation using Pade approximant operators", Optics Letters, vol.17. no.20, pp.1426-1428,1992.
    [48]M. Kshiba and Y. Tsuji, "A wide-angle finite element beam propagation method", IEEE Photonic Technology Letters, vol.8, no.9, pp.1208-1210,1996.
    [49]J. Yamauchi, J. Shibayama, and H. Nakano, "Modified finite-difference beam propagation method on the generalized Douglas scheme for variable coefficients", IEEE Photonic Technology Letters, vol.7, no.6, pp.661-663,1995.
    [50]W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, "Numerical Recipes", Cambridge University Press,1992.
    [51]G.R. Hadley, "Multistep method for wide angle beam propagation", Optics Letters, vol.17, no.24, pp.1743-1745,1992.
    [52]H.A. Rowland, "On concave gratings for optical purposes", Philosophical Magazine Series 5,1941-5990. vol.16, no.99, pp.197-210,1883.
    [53]R. Marz, and C. Cremer, et al. "On The Theory of Planar Spectrographs", Journal of Lightwave Technology, vol.10, no.12, pp.2017-2022,1992
    [54]J.-J. He, B. Lamontagne, A. Delage, L. Erickson. M. Davis, and E. S. Koteles, "Monolithic integrated wavelength demultiplexer based on a waveguide Rowland circle grating in InGaAsP/InP", Journal of Lightwave Technology, vol.16, no.4, pp.631-638,1998.
    [55]S. Janz, A. Balakrishnan, S. Charbnneau, P. Cheben, M. Cloutier, A. Del age, K. Dossou, L. Erickson, M. Gao, P.A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, "Planar waveguide Etched gratings in silica-on-silicon", IEEE Photonics Technology Letters, vol.16, no.2, pp.503-505,2004.
    [56]盛钟延,何赛灵,何建军,“蚀刻衍射光栅设计的一点法与二点法”,光电子·激光,vol.12,no.7,pp.671-674,2001.
    [57]赵春华,朱祖华,陈抗生,杨易,“二维消像差平面场型凹面光栅的设计与成像分析”光学学报,vol.18,no.8,pp.1145-1148,1998.
    [58]L. Wang, J.-J. He, J. Song, and S. He, "Design and optimization of a novel InP-based monolighically integrated optical channel monitor'", Journal of Lightwave Technology, vol. 24, no.10, pp.3743-3750,2006.
    [59]盛钟延,何赛灵,何建军,“标量衍射理论模拟蚀刻衍射光栅”,光电工程,vol.28,no.6,pp.29-32,2001.
    [60]Z. Shi, J.-J. He and Sailing He,"A hybrid diffraction method for the design of etched diffraction grating demultiplexers". Journal Lightwave Technology, vol.23, no.3, pp. 1426-1434,2005.
    [61]T.H. Teng and L. Carin, "FDTD analysis of plane-wave diffraction from microwave devices on an infinite dielectric slab", Microwave and Guided Wave Letters, vol.6, no.1, p.16-18, 1996.
    [62]Jun Song, Ning Zhu, Sailing He, "Analysis of the loss resulting from point defects for an etched diffraction grating demultiplexer using a method of moment", Journal of Optical Society of America A, vol.22, no.8, pp.1620-1623,2005.
    [63]Jun Song, Jian-jun He, Sailing He, "Polarization performance analysis of etched diffraction grating demultiplexer using boundary element method". IEEE Journal of Selected Topics in Quantum Electronics, vol.11, no.1, pp.224-231,2005.
    [64]Oi Wah Liew, Pek Ching Jenny Chong, Bingqing Li, and Anand K. Asundi, "Signature optical cues:emerging technologies for monitoring plant health", Sensors, vol.8, pp. 3205-3239,2008.
    [65]Michel Lequime, Remy Parmentier, Fabien Lemarchand, and Claude Amra, "Toward tunable thin-film filters for wavelength division multiplexing applications", Applied Optics, vol.41, no.16, pp.3277-3284,2002.
    [66]Alessandro locco, Hans Georg Limberger, Rene Paul Salathe, Lorna A. Everall, Karen E. Chisholm, John A. R. Williams, and Ian Bennion, "Bragg grating fast tunable filter for wavelength division multiplexing", Journal of Lightwave Technology, vol.17, no.7, pp. 1217-1221,1999.
    [67]M. Kuznetsov, "Cascaded coupler Mach-Zehnder channel dropping filters for wavelength-division-multiplexed optical systems", Journal of Lightwave Technology, vol. 12, no.2, pp.226-230,1994.
    [68]P. Hariharan, "Optical Holography:Principles, Techniques, and Applications", Cambridge University Press,1996.
    [69]K. Okamoto and H. Yamada, "Arrayed-waveguide grating multiplexer with flat spectral response", Optics Letters, vol.20, no.1, pp.43-45,1995.
    [70]Xiang Xia, Jun Zou, Tingting Lang, and Jian-Jun He, "Experimental demonstration of birefringence compensation using angled star couplers in silica-based arrayed waveguide grating", IEEE Photonics Journal, vol.4, no.6, pp.2236-2242,2012.
    [71]Jun Zou, Tingting Lang, Lei Wang, and Jian-Jun He, "Uniform polarization dispersion compensation of all channels in highly birefringent silicon nanowire based arrayed waveguide grating". IEEE Photonic Technology Letters, vol.23, no.23, pp.1787-1789, 2011.
    [72]M.I. Alayo, D. Criado, M.N.P. Carreno, I. Pereyra, "Fabrication of PECVD-silicon oxynitride-based optical waveguides", Materials Science and Engineering B, vol.112, pp. 154-159,2004.
    [73]Li Qin, Lei Wang, Mingyu Li, and Jian-Jun He, "Optical sensor based on vernier-cascade of a ring resonator and an Etched diffraction grating", IEEE Photonics Technology Letters, vol. 24, no.12, pp.991-993,2012. http://elearning.stut.edu.tw/m_facture/nanotech/web/ch2.htm
    [74]庞克俭,”HMDS预处理系统”,新设备与新技术,vol.141,pp.70-72,2006.
    [75]M. Kawachi, M. Yasu, T. Edahiro, "Fabrication of SiO2-TiO2 glass planar optical waveguides by flame hydrolysis deposition", Electronics Letters, vol.19, no.15, pp. 583-584,1983.
    [76]吴远大,邢华,张乐天,韦占雄,郑伟,刘国范,张玉书,“火焰水解法制作Si02平面波导材料”,半导体光电,vol.22,no.2,pp.117-120,2001.
    [77]J. Batey, E. Tierney, "Low-temperature deposition of high-quality silicon dioxide by plasma-enhanced chemical vapor deposition", Journal of Applied Physics, vol.60, no.9, pp. 3136-3145,1986.
    [78]Yongjin Wang, Xinli Cheng, Zhilang Lin, Changsheng Zhang, Feng Zhang, "Optimization of PECVD silicon oxynitride films for anti-reflection coating", Vacuum, vol.72, pp. 345-349,2004.
    [79]I. Alayo, D. Criado, L. C. D. Goncalves, I. Pereyra, "Deposition and characterization of silicon oxynitride for integrated optical applications", Journal of Non-Crystalline Solids, vol.338-340, pp.76-80,2004.
    [80]Banqiu Wu, "Photomask plasma etching:a review", Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structure, vol.24, no.1, pp.1-15,2006.
    [81]Kwang-Ho Kwon, Seung-Youl Kang, Sang-Ho Park, Hee-Kyung Sung, Dong-Keun Kim, Jong-Ha Moon, "Additive oxygen effects in Cl2 plasma etching of chrome films", Journal of Materials Science Letters, vol.18, pp.1197-1200,1999.
    [82]M.A. Burns, B.N. Johnson, S.N. Brahmasandra, K. Handique, J.R. Webster, M. Krishnan, T.S. Sammarco, P.M. Man, D. Jones, D. Heldsinger, C.H. Mastrangelo, D.T. Burke, "An integrated nanoliter DNA analysis device", Science, vol.282, pp.484-487,1998.
    [83]S. Balslev, A.M. Jorgensen, B. Bilenber, K.B. Mogensen, D. Snakenborg, O. Geschke. J.P. Kutter and A. Kristensen. "Lab-on-a-chip with integrated optical transducers", Lab on a Chip, vol.6. pp.213-217.2006.
    [84]S.M. Sze. D.J. Coleman Jr.. A. Loya. "Current transport in metal-semiconductor-metal (MSM) structures", Solid-State Electronics, vol.14, no.12, pp.1209-1218,1971.
    [85]T. Sugeta, T. Urisu, S. Sakata and Y. Migushima, "Metal-semiconductor-metal photodetector for high-speed optoelectronic circuits", Proceeding of the 11th Conference on Solid-State Devices, Tokyo,1979.
    [86]史常忻,“金属-半导体-金属光电探测器”,上海交通大学出版社,2000.
    [87]Dieter Zurhelle, O. Blume, S. Popp, and Jorg Miiller, "Highly efficient waveguide-detector couling structures for integrated opto-electronical circuit on silicon", Journal of Lightwave Technology, vol.14, no.3, pp.410-416.1996.
    [88]K. Benaissa, A. Nathan, S.T. Chu. E. Huang, "IC compatible optical coupling techniques for integration of ARROW with photodetector". Journal of Lightwave Technology', vol.16, no. 8, pp.1423-1432,1998.
    [89]刘恩科,朱秉升,罗晋生,“半导体物理(第七版)”,电子工业出版社,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700