用户名: 密码: 验证码:
SU-8强限制光波导及其器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光纤通信技术和光传感技术的快速发展,集成光子器件特别是集成光滤波器由于其低成本、高集成度等特点引起了广泛的关注。在LiNbO3、SiO2、 Si、InP和聚合物等各类集成光学材料中,聚合物材料在降低器件成本、减小器件损耗等方面有着巨大的优势。对于任何材料的集成光子器件,减小器件尺寸、提高集成度是一个长期的发展方向。强限制光波导是实现小型化集成光子器件的最为有效的方法。本文基于SU-8聚合物材料,对脊形光波导和悬挂式光波导两种强限制光波导,以及基于SU-8脊形光波导的小型化阵列波导光栅和微环谐振器进行了深入的理论和实验研究。
     回顾了光波导基本理论和几种常用的数值计算方法。首先介绍了求解平板波导的解析方法和求解条形波导的近似方法。为了精确求解复杂波导及其器件问题,必须采用数值模拟方法。对有限差分方法、光束传播方法和时域有限差分方法等几种常用的数值计算方法进行了介绍。
     研究了SU-8脊形光波导这种新型强限制光波导的导波特性。通过对整个工艺过程的调试,成功制作了SU-8脊形光波导。实验得到具有不同波导宽度的SU-8脊形光波导的传输损耗为0.24~0.15dB/mm。并且,验证了这种波导可承受75μm的弯曲半径,因此SU-8脊形光波导具有提高器件集成度的巨大潜力。
     基于SU-8脊形光波导,本文研究了阵列波导光栅(AWG)和微环谐振器(MRR)两种典型的集成光滤波器。首先对基于SU-8脊形光波导的小型化阵列波导光栅进行了设计制作。由于所用波导的强限制特性,研制出的AWG尺寸仅为基于传统掩埋型SU-8波导的同类器件的1/40,从而大大提高了器件集成度。通过选取合适的波导尺寸,成功消除了AWG的偏振相关性,使TE和TM模式的信道中心波长重合。热光调谐研究表明,所研制的AWG滤波器具有调谐效率高、大范围可调等优势。另外我们还研究了基于SU-8脊形光波导的微环谐振器。采用耦合区波导的宽度进行局部减小的设计,研制出了小型化MRR,并对其光谱特性进行了表征。
     为了进一步增加光场限制,减小波导的弯曲半径,提高器件集成度,我们对SU-8脊形光波导进行了结构改进。通过将SU-8脊形光波导的Si02下包层腐蚀掉,获得了在侧向和纵向都为强限制型的悬空波导,其弯曲半径可以小至7gm,比相应的脊形光波导小一个数量级。为了实现这种超高集成度的悬空型光波导,研制出低损耗(<0.1dB)的支撑臂结构。基于这种悬空型光波导制作出微盘谐振器,获得了较大自由光谱范围和高消光比的响应特性。
As optical communication and sensing technologies progress rapidly, optical integrated devices, especially optical filters, attract more and more interests because of their low cost and compactness. Among various materials for optical integration, polymer shows superior performances in terms of cost reduction and low loss. On the other hand, to achieve lower cost and better performance, higher integration density is desirable for optical integrated devices, where the strongly confined waveguide with a high refractive index contrast is a prerequisite. In this work, two kinds of strongly confined SU-8polymer waveguides, namely, ridge and suspended waveguides are studied systematically. Based on these waveguides, two typical optical filters, i.e., arrayed waveguide gratings (AWG) and microring resonators (MRR), are developed for practical use.
     The fundamentals of optical waveguides are briefly reviewed. While the slab waveguide mode can be solved analytically, numerical simulation is necessary to solve waveguide problems with more complex situations. Several numerical simulation methods, such as finite difference method (FDM), beam propagation method (BPM), and the finite-difference time-domain (FDTD) method, are introduced. These methods are intensively used in the following.
     The SU-8polymer ridge waveguides with strong light confinement are studied. The fabrication process is optimized and the fabricated waveguides perform well with a low loss of0.24~0.15dB/mm. According to the measurement results, this kind of waveguide can afford a bending radius as small as75μm, indicating its large potential to increase the integration density.
     Two typical optical filters, i.e., AWG and MRR, are realized based on the SU-8polymer ridge waveguides. By using this strongly confined waveguide, the fabricated AWG is only1/40in size of that based on the traditional buried SU-8polymer waveguide, showing a considerable increase of the integration density. By adjusting the size of the waveguide, the polarization dependency is eliminated. Besides, the present AWG shows fairly good thermal-optic tuning performances in terms of a high tuning efficiency and a large tuning range. MRR based on SU-8polymer ridge waveguides is also investigated. The waveguides in the coupling region are locally narrowed to improve the light coupling while maintaining a reasonable gap size. The spectral response of the fabricated MRR is characterized. To further enhance the light confinement and reduce the device size, we developed the SU-8suspended waveguide by etching away the buffer layer of the SU-8ridge waveguide. Since this waveguide is strongly confined in both lateral and vertical directions, the bending radius can be reduced to7μm, which is an order smaller than that of the ridge waveguide. While crossing structures (as the supporting elements) are inevitable to realize the suspended waveguide, low-loss (<0.1dB) supporting structures are developed. The microdisk resonators based on the suspended waveguide are fabricated and show a large free spectral range and a high extinction ratio.
引文
[1]. S. E. Miller, Integrated Optics:An Introduction, Bell Syst. Tech.1996, (48): 2059-2068.
    [2]. J. J. Hu, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling. Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing. Opt. Lett.2008,33(21):2500-2502.
    [3]. J. T. Robinson, L. Chen, and M. Lipson. On-chip gas detection in silicon optical microcavities. Opt. Express.2008,16(6):4296-4301.
    [4]. C. A. Barrios, M. J. Banuls, V. Gonzalez-Pedro, K. B. Gylfason, B. Sanchez, A. Griol, A. Maquieira, H. Sohlstrom, M. Holgado, and R. Casquel. Label-free optical biosensing with slot-waveguides. Opt. Lett.2008,33(7):708-710.
    [5]. A. Densmore, M. Vachon, D. X. Xu. Silicon photonic wire biosensor array for multiplexed real-time and label-free molecular detection. Opt. Lett.2009, 34(23):3598-3600.
    [6]. D. X. Xu, A. Densmore, A. Delage. Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding. Opt. Express 2008,16(19):15137-15148.
    [7]. F. X Gu, L. Zhang, X. F. Yin. Polymer single-nanowire optical sensors. Nano Lett.,8(9):2757-2761,2008.
    [8]. H. Zhu, Y. Q. Wang, B. J. Li. Tunable refractive index sensor with ultracompact structure twisted by poly (trimethylene terephthalate) nanowires. ACS Nano. 2009,3(10):3110-3114
    [9]. Z. L. Ran, Y. J. Rao, J. Zhang. A Miniature Fiber-Optic Refractive-Index Sensor Based on Laser-Machined FabryPerot Interferometer Tip. J. Lightwave Technol. 2009,27(23):5426-5429.
    [10]. S. Assefa, F. Xia, W. M. J. Green, C. L. Schow, A. V. Rylyakov, and Y. A. Vlasov. CMOS-integrated optical receivers for on-chip interconnects. IEEE J. Sel. Top. Quantum Electron.2010,16(5):1376-1384.
    [11]. P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B.J. Offrein, and A. Benner. Low power and high density optical interconnects for future supercomputers. Conference on OFC/NFOEC, Mar. 2010.
    [12]. L. Chen, K. Preston, S. Manipatruni, and M. Lipson. Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors. Opt. Express 2009,17(17):15248-15256.
    [13]. C. L. Schow, F. E Doany, C. W. Baks, Y. H. Kwark, D. M. kuchta, and J. A. Kash. A Single-Chip CMOS-Based Parallel Optical Transceiver Capable of 240-Gb/s Bidirectional Data Rates, J. Lightwave Technol.2009,27(7):919-925.
    [14]. M. K. Smit and C. V. Dam. Phasar based WDM devices:principles, design and applications. IEEE J. Sel. Top. Quantum Electron.1996,2(2):236-250.
    [15]. A. Kaneko, T. Goh, H. Yamada, T. Tanaka and I. Ogawa. Design and applications of silica-based planar lightwave circuits. IEEE J. Sel. Top. Quantum Electron.1999,5(5):1227-1236.
    [16]. J.-J. He, B. Lamontagne, A. Delage, L. Erickson, M. Davies, and E. S. Koteles. Monolithic integrated wavelength demultiplexer based on a waveguide Rowland circle grating in InGaAsP/lnP. J. Lightw. Technol.1998,16 (4): 631-638.
    [17]. J.-J. He. Phase-dithered waveguide grating with flat passband and sharp transitions. IEEE J. Sel. Top. Quantum Electron.2002,8(6):1186-1193.
    [18]. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine. Microring Resonator Channel Dropping Filters. J. Lightw. Technol.1997,15(6):998-1005.
    [19]. A. Yariv. Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electron. Lett.2000,36(4): 321-322.
    [20]. S. Xiao, M. H. Khan, H. Shen, and M. Qi. Silicon-on-insulator microring add-drop filters with free spectral ranges over 30nm. J. Lightwave Technol. 2008,26(2):228-236.
    [21]. S. T. Chu, B. E. Little, W. Pan, T. Kaneko, and Y. Kokubun. Cascaded microring resonators for crosstalk reduction and spectrum cleanup in add-drop filters. IEEE Photonics Technol. Lett.1999,11(11):1423-1425.
    [22]. D. Dai, L. Yang, and S. He. Ultrasmall thermally tunable microring resonator with a submicrometer heater on Si nanowires. J. Lightwave Technol.2008, 26(6):704-709.
    [23]. F. Xia, L. Sekaric, and Y.Vlasov. Ultracompact optical buffers on a silicon chip. Nat. Photonics 2007,1(1):65-71.
    [24]. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson. Mricometre-scale silicon electro-optic modulator. Nature 2005,435(7040):325-327.
    [25]. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson.12.5 Gbit/s carrier-injection-based silicon microring silicon modulators. Opt. Express 2007, 15(2):430-436.
    [26]. H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia. Low-threshold continuous-wave Raman silicon laser. Nat. Photonics 2007,1(4): 232-237.
    [27]. A. Bennecer, K. A. Williams, R. V. Penty, I. H. White, M. Hamacher, and H. Heidrich. Directly modulated wavelength-multiplexed integrated microring laser array. IEEE Photonics Technol. Lett.2008,20(16):1411-1413.
    [28]. S.-Y. Cho and N. M. Jokerst. A polymer microdisk photonic sensor integrated onto silicon. IEEE Photon. Technol. Lett.2006,18(20):2096-2098.
    [29]. C.-Y. Chao and L. J. Guoa. Biochemical sensors based on polymer microrings with sharp asymmetrical resonance. Appl. Phys. Lett.2003,83(8):1527-159.
    [30]. S. Blair and Y Chen. Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities. Appl. Opt.,2001,40(4):570-582.
    [31]. M. Kato, J. Pleumeekers, P. Evans, S. Corzine, S. Hurtt, A. Dentai, S. Murthy, M. Missey, R. Muthiah, R. A. Salvatore, C. Joyner, R. Schneider, M. Ziari, F. Kish, D. Welch. InP photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron.2010,16(5):1113-1125.
    [32]. R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno,M. Yasu, and S. Matsui. New structure of silica-based planar lightwave circuits for low-power thermooptic switch and its application to 8×8 optical matrix switch. J. Lightwave Technol.2002,20(6):993-1000.
    [33]. C. Kopp, S. Bernabe, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin. Silicon photonic circuits:on-CMOS integration, fiber optical coupling, and packaging. IEEE J. Sel. Top. Quantum Electron. 2010,17(3):498-509.
    [34]. D. W. Zheng, B. T. Smith, and M. Asghari. Improved efficiency Si-photonic attenuator. Opt. Express 2008,16(21):16754-16765.
    [35]. G. T. Reed, G. Mashanovich, F. Y. Gardes and D. J. Thomson. Silicon optical modulators. Nat. Photonics 2010,4:518-526.
    [36]. G. Masini, S. Sahni, G. Capellini, J. Witzens, and G. Gunn. High-speed near infrared optical receivers based on Ge waveguide photodetectors integrated in a CMOS process. Adv. Opt. Technol.2008,2008:196572.
    [37]. M. Paniccia. Integrating silicon photonics. Nat. Photonics 2010,4:498-499.
    [38]. B. Analui, E. Balmater, D. Guckenberger, M. Harrison, R. Koumans, D. Kucharski, Y. Liang, G. Masini, A. Mekis, S. Mirsaidi, A. Narasimha, M. Peterson, D. Rines, V. Sadagopan, S. Sahni, T. J. Sleboda, D. Song, Y. Wang, B. Welch, J. Witzens, J. Yao, S. Abdalla, S. Gloeckner, P. D. Dobbelaere, and G. Capellini. Monolithically integrated high-speed CMOS photonic transceivers. Conference on Group IV Photonics 2008.
    [39]. M. Hong, K. Y. J. Alex, and R. D. Larry. Polymer-based optical waveguides: materials, processing, and devices. Adv. Mater.2002,14(19):1339-1365.
    [40]. L. Eldada and L. W. Shacklette. Advances in Polymer Integrated Optics. J. Sel. Top. Quantum Electron.2000,6(1):54-68.
    [41]. L. Eldada. Nanoengineered polymers for photonic integrated circuits. Proc. SPIE 2005,5931:59310.
    [42]. S. Takenobu, Y.Kuwana, K. Takayama, Y. Sakane, M. Ono, H. Sato, N. Keil, W. Brinker, H. Yao, C. Zawadzki, Y. Morizawa, and N. Grote. All-polymer 8x8 AWG Wavelength Router using Ultra Low Loss Polymer Optical Waveguide Material (CYTOPTM). Conference on OFC/NFOEC 2008.
    [43]. J. M. Lee, Y. S. Baek, K. R. Oh, H. J. Lee, and Y. S. Kim. Temperature dependence of low loss polymeric AWG. Opt. Communications 2007,270: 189-194.
    [44]. Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian. Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients. Nat. photonics 2007,1:180-185.
    [45]. T. Rauch, M. Bober, S. F. Tedde, J. Furst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss and O. Hayden. Near-infrared imaging with quantum-dot-sensitized organic photodiodes. Nat. Photonics 2009,3:332-336.
    [46]. D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Letiner, E. J. W. List, and J. R. Krenn. organic plasmon-emitting diode. Nat. Photonics 2008,2:684-687.
    [47]. H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger. SU-8:a low-cost negative resist for MEMS. J. Micromech. Microeng.1997, 7(3):121-124.
    [48]. H. You and A. J. Steckl. Three-color electrowetting display device for electronic paper. Appl. Phys. Lett.2010,97:023514.
    [49]. Y. Moser, R. Forti, S. Jiguet, T. Lehnert, and M. A. M. Gijs. Suspended SU-8 structures for monolithic microfluidic channels. Microfluidics and Nanofluidics. 2011,10(1):219-224.
    [50]. F. Cui, W.-Y. Chen, X.-L. Zhao, X.-M. Jing, and X.-S.Wu. Metal foundation construction to consolidate electroplated structures for successful removal of SU-8 mould. Electron. Lett.2006,42(12):690-691.
    [51]. C. Y. Wu, T. H. Chiang, N. D. Lai, D. B. Do, and C. C. Hsu. Fabrication of microlens arrays based on the mass transport effect of SU-8 photoresist using a multiexposure two-beam interference technique. Appl. Opt.2009,48:2473.
    [52]. D. Y. Kim and A. J. Steckl. Electrowetting on paper for electronic paper display. ACS Appl. Mater.2010,2:3318-3323.
    [53]. H. You and A. J. Steckl. Three-color electrowetting display device for electronic paper. Appl. Phys. Lett.2010,97:023514.
    [54]. K. K. Tung, W H. Wong and E. Y. B. Pun. Polymeric optical waveguides using direct ultraviolet photolithography process. Applied Physics A:Materials Science & Processing.2005,80(3):621-626.
    [55]. Payam Rabiei, William H. Steier, Cheng Zhang, and Larry R. Dalton. Polymer micro-Ring filters and modulators. J. Lightwave Technol.2002,20(11): 1986-1974.
    [56]. D. M. Zhang, C. M. Chen, H. M. Zhang, X. Z. Zhang, D. Zhang, S. K. Mu, X. L. Zhang, L. Li, and J. F. Song.41-channel arrayed waveguide grating multiplexer using UV curable polymer operating around 1550nm. The 6th International Conference on Information, Communications & Signal Processing.2007.
    [57]. A. Borreman, S. Musa, A. A. M. Kok, M. B. J. Diemeer, and A. Driessen. Fabrication of polymeric multimode waveguides and devices in SU-8 photoresist using selective polmerization. IEEE/LEOS Benelux Chapter 2002, 83-84.
    [58]. J. S. Kim, J. W. Kang, J. J. Kim. Simple and low cost fabrication of thermally stable polymeric multimode waveguides using a UV-curable epoxy. Jpn. J. Appl. Phys.2003,42(3):1277-1279.
    [59]. N. Pelletier, B. Beche, N. Tahani, J. Zyss, L. Camberlein, and E. Gaviot. SU-8 waveguiding interferometric micro-sensor for gage pressure measurement. Sensors & Actuators:A. Physical 2006,135:179-184.
    [60]. B. Beche, N. Tahani, E. Gaviot, and J. Zyss. Single-mode TEoo-TMoo optical waveguides on SU-8 polymer. Opt. Communications 2004,230:91-94.
    [61]. M. Nordstrom, D. A. Zauner, A. Boisen, and J. Hubner. Single-mode waveguides with SU-8 polymer core and cladding for MOEMS applications. J. Lightwave Technol.2007,25(5):1284-1289.
    [62]. T. C. Sum, A. A. Bettiol, J. A. van Kan, F. watt, E. Y. B. Pun and K. K. Tung. Proton beam writing of low-loss polymer optical waveguides. Appl. Phys. Lett. 2003,83(9):1707-1709.
    [63]. A. A. Bettiol, T. C. Sum, F. C. Cheong, C. H. Sow, S. Venugopal Rao, J. A. van Kan, E. J. Teo, K. Ansari, and F. Watt. A progress review of proton beam writing applications in microphotonics. Nucl. Insr.& Meth. Phys. Res. B 2005,231: 364-371.
    [64]. Y. Huang, G. T. Paloczi, A. Yariv, C. Zhang, and L. R. Dalton. Fabrication and replication of polymer integrated optical devices using electron-beam lithography and soft lithography. J. Phys. Chem. B 2004,108:8606-8613.
    [65]. N. Y. Lee and Y. S. Kim. A poly (dimethylsiloxane)-coated flexible mold for nanoimprint lithography. Nanotechnology 2007,18(41):415303.
    [66]. C. Y. Chao, W. Fung and L. J. Guo, Polymer Microring Resonators for Biochemical Sensing Applications, J. Sel. Top. Quantum Electron.2006,12(1): 134-142.
    [67]. D. Dai, L. Liu, L. Wosinski and S. He. Design and fabrication of ultra-small overlapped AWG demultiplexer based on a-Si nanowire waveguides. Electron. Lett.2006,3(7).
    [68]. Y. Kokubun, Y.Hatakeyama, M. Ogata, S. Suzuki, and N. Zaizen. Fabrication technologies for vertically coupled microring resonator with multilevel crossing busline and ultracompact-ring radius. IEEE J. Sel. Topics Quantum Electron. 2005,11(1):4-10.
    [69]. K. Okamoto. Fundamentals of optical waveguide. New York:Academic Press. 2006.
    [70]. K. Kawano and T. Kitoh. Introduction to optical waveguide analysis:Solving Maxwell's equations and the Schrodinger equation. New York:John Wiley & Sons, Inc.2003.
    [71]. K. Van De Velde, H. Thienpont, and R. Van Geen. Extending the effective index method for arbitrarily shaped inhomogeneous optical waveguides. J. Lightwave Technol.1988,6 (6):1153-1159.
    [72]. M. Munowitz and D. J. Vezzetti. Numerical procedures for constructing equivalent slab waveguides-An alternative approach to effective-index theory. J. Lightwave Technol.1991,9 (9):1068-1073.
    [73]. K.S. Chiang. Analysis of rectangular dielectric waveguides:effective-index method with built-in perturbation correction. Electron. Lett.1992,28 (4):388-390.
    [74].时尧成,戴道锌,何赛灵一种适用于任意折射率分布的等效折射率方法光学学报2005,25(1):51-54。
    [75]. R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert. Numerical techniques for modeling guided-wave photonic devices. IEEE J. Quantum Electron.2000, 6(1):150-162.
    [76]. M. S. Stern. Semivectorial polarized finite difference method for optical waveguides with arbitrary index profiles. IEE Proceedings Pt. J.1988,135(1): 56-63.
    [77]. C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri. Full-vector mode calculations by finite difference method. IEE Proc. Optoelectron.1994,141(5): 281-286.
    [78]. N.-N. Feng, G.-R. Zhou, C. Xu, and W.-P. Huang. Computation of full-vector modes for bending waveguide using cylindrical perfectly matched layers. J. Lightwave Technol.2002,20(11):1976-1980.
    [79]. D. Dai, Y. Shi, and S. He. Characteristic analysis of nanosilicon rectangular waveguides for planar light-wave circuits of high integration. Appl. Opt.2006, 45(20):4941-4946.
    [80]. J. Jin. The Finite Element Method in Electromagnetics.2nd ed. New York:John Wiley & Sons,2002.
    [81]. R. Mittra, O.M. Ramahi, A. Khebir, R. Gordon, and A. Kouki. A review of absorbing boundary conditions for two and three-dimensional electromagnetic scattering problems. IEEE Transactions on Magnetics 1989,25 (4):3034-3039.
    [82]. O.M. Ramahi. Absorbing boundary conditions for the three-dimensional vector wave equation. IEEE Trans. Antennas Propagat.1999,47 (11):1735-1736.
    [83]. G. R. Hadley. Transparent boundary-condition for beam propagation. Opt. Lett. 1991,16(9):624-626.
    [84]. G. R. Hadley. Transparent boundary-condition for the the beam propagation method. IEEE J. Quantum Electron.1992,28 (1):363-370.
    [85]. J.-P. Berenger. A perfectly matched layer for the absorption of electromagnetic waves. J. Computational Physics 1994,114 (2):185-200.
    [86]. W.P. Huang, C.L. Xu, W. Lui, and K. Yokoyama. The perfectly matched layer boundary condition for modal analysis of optical waveguides:leaky mode calculations. IEEE Photon. Technol.Lett.1996,8 (5):652-654.
    [87]. J. Yamauchi and S. Kikuchi. Beam propagation analysis of bent step-index slab waveguides. Electron. Lett.1990,26 (12):822-833.
    [88]. M. Koshiba. Beam propagation method based on finite element scheme and its application to optical waveguide analysis. Electronics and Communications in Japan, Part 2,2002,85(10):29-39.
    [89]. R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert. Numerical techniques for modeling guided-wave photonic devices. IEEE J. Sel. Top. Quantum Electron.1996,6 (1):150-162.
    [90]. Y. Chung, and N. Dagli. An assessment of finite difference beam propagation method. IEEE J. Quantum Electron.1990,26 (8):1335-1339.
    [91]. G. Hadley. Wide-angle beam propagation using Pade approximant operators. Opt. Lett.1992,17 (20):1426-1428.
    [92]. H. Rao, R. Scarmozzino, and R. M. Osgood. Jr. A bidirectional beam propagation method for multiple dielectric interfaces. IEEE Photon. Technol. Lett.1999,11 (7):830-832.
    [93]. K. S. Yee. Numerical solution of initial boundary problems involving Maxwell's equation in isotropic media. IEEE Trans. Antennas Propagat.1966,14 (3):302-307.
    [94]. A. Taflove and M.E. Brodwin. Numerical solutions of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations. IEEE Trans.on Microwave Theory Tech.1975,23 (8):623-630.
    [95]. R. Hu, D. Dai, and S. He. A small polymer ridge waveguide with a high index contrast. J. Lightwave Technol.2008,26(13):1964-1968.
    [96]. C. R. Doerr and K. Okamoto. Advances in silica planar lightwave circuits. J. Lightw. Technol.2006,24(12):4763-4788.
    [97]. Y. Hibino. Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs. IEEE J. Sel. Topics Quantum Electron.2002,8(6):1090-1101.
    [98]. K. Kodate and Y. Komai. Compact spectroscopic sensor using an arrayed waveguide grating. J. Opt. A. Pure Appl. Opt.2008,10(4):044011-044018.
    [99]. P. Cheben, J. H. Schmid, A. Delage, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. waldron, and D.-X. Xu. A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with submicrometer aperture waveguides. Opt. Exp.2007,15(5):2299-2306.
    [100]. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov. Ultra-compact high order ring resonator filters using submicron silicon photonic wires for onchip optical interconnects. Opt. Express 2007,15(19):11934-11941.
    [101]. Z. Sheng, D. Dai, and S. He. Improve channel uniformity of a Si-Nanowire AWG demultiplexer by using dual-tapered auxiliary waveguides. J. Lightw. Technol.2007,25(10):3001-3007.
    [102]. S. Yamagata, T. Kato, and Y. Kokubun. Non-blocking wavelength channel switch using TO effect of double series coupled microring resonator. Electron. Lett.2005,41(10):593-595.
    [103]. K. Preston, P. Dong, B. Schmidt, and M. Lipson, "High-speed all-optical modulation using polycrystalline silicon microring resonators", Appl. Phys. Lett.,2008,92(15):151104.
    [104]. D. Liang and J. E. Bowers. Hybrid silicon (λ=1.5 mm) microring lasers and integrated photodetectors. Opt. Express 2009,17:20355-20364.
    [105]. C. Y. Chao and L. J. Guoa. Biochemical sensors based on polymer microrings with sharp asymmetrical resonance. Appl. Phys. Lett.2003,83(8):1527-159.
    [106]. D. Dai, L. Yang, Z. Sheng, B. Yang, and S. He. Compact microring resonator with 2×2 tapered multimode interference couplers. IEEE J. Lightwave Technol. 2009,27(21):4878-4883.
    [107]. Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit. Extremely small AWG demultiplexer fabricated on InP by using a double-etch process. IEEE Photon. Technol. Lett.2004,16(11): 2478-2480.
    [108]. D. Dai, X. Fu, Y. C. Shi, and S. He. Experimental demonstration of an ultracompact Si-nanowire-based reflective arrayed-waveguide grating (de)multiplexer with photonic crystal reflectors. Opt. Lett.2010,35(15): 2594-2596.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700