用户名: 密码: 验证码:
新场地区须家河组砂岩中碳酸盐胶结物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
四川盆地西部三叠系须家河组地层是盆地中最为重要的天然气产层和储层,该地层天然气资源非常丰富,潜力巨大,已成为四川盆地天然气勘探与开发的重要目的层位之一。多年的勘探开发证实,川西坳陷须家河组为典型的极度致密储层,具有超深、超低孔渗两个重要特征,而压实作用和胶结作用是影响川西坳陷须家河组储层砂岩物性的两个主要因素。
     本世纪以来,新场地区日益成为川西坳陷须家河组深层天然气资源勘探开发的最重要阵地之一,但相应的成岩作用研究在该区仍显薄弱。为此,我们试图选取新场地区须家河组储层进行相应的研究,主要对储层砂岩中碳酸盐胶结物的沉淀及形成机制进行探讨,期望这些研究成果可为预测普遍低孔低渗背景下相对优质储层的分布规律提供重要的依据。
     目前已证实不同类型或不同期次碳酸盐胶结物的形成是造成油气储层致密的一个重要影响因素。有关这些碳酸盐胶结物的形成机理、赋存状态、物质来源和及其对储层物性的影响的研究正是目前低渗透储层研究的热点问题。本文从新场地区上三叠统须家河组碎屑岩储层岩石学特征入手,在对室内资料全面分析的基础上,运用岩石学和沉积学理论,借助铸体薄片、扫描电镜、阴极发光等分析手段,对该区岩石类型、骨架颗粒组成、岩石结构等岩石学特征进行了详细研究,重点针对碳酸盐胶结物的类型、分布规律、氧碳同位素组成特征以及胶结物赋存状态等特征进行了比较全面和系统的研究,运用了岩石学、矿物学和地球化学相结合的方法,从微观角度对不同类型碳酸盐胶结物的可能成因机理进行了探讨,并就其对储层的影响进行了评价。
     研究发现,新场地区须家河组储层砂岩的岩石类型以岩屑砂岩、岩屑石英砂岩和石英砂岩为主,缺乏长石砂岩及其过渡岩石类型。贫长石富石英、高成分成熟度和低结构成熟度以及分选好、中粒为主是该区须家河组组储层砂岩的主要特征。砂岩杂基组分主要由水云母、泥质等构成。杂基含量较低,但自生矿物含量相对较高,特别是碳酸盐胶结物,是导致储层砂岩孔隙度和渗透率降低的重要因素。储层砂岩具有中等的自生矿物含量,平均值在9%左右,主要为自生碳酸盐矿物、自生石英和自生粘土矿物,其对储层质量的发育具有很大影响。
     新场地区须家河组砂岩中碳酸盐胶结物主要类型包括方解石、白云石、铁方解和和铁白云石等,另见少量菱铁矿。这些自生碳酸盐矿物以粒状或者连生方式赋存于粒间孔、粒内孔和长石粒内溶孔中。从其纵向分布来看,两个重要的储层砂岩段(须2段和须4段)的碳酸盐胶结物总量没有实质性差别,但须4段以方解石(包括铁方解石和含铁方解石)为主,而须2段以白云石(包括铁白云石)为主。
     研究区须家河组储层砂岩的储集空间主要以岩屑溶孔、杂基溶孔、晶间孔、粒间溶孔、长石溶孔等次生孔隙为主,原生孔隙不发育。相应煤系地层产生的酸性流体对铝硅酸盐矿物等易溶组分的溶解作用,一方面导致了研究区储层砂岩中次生孔隙(如长石溶孔)的形成和增加,另一方面,溶解作用所产生的物质可能是自生碳酸盐矿物的重要物质来源。
T3x2 to T3x5 zone were the gas main producing and reservoir formation,in the west of Sichuan basin. There are quite plenty of natural gas resources and huge potential for exploration. Years of exploration and development to confirm that is extremely dense typical reservoir, with ultra-deep, ultra-low porosity and permeability. The quantitative statistics show that the mechanic compaction is the main cause resulting in the disappearance of primary porosity, and the next one is cementation.
     Xinchang area increasingly becoming the most important positions of the gas exploration and development of the Xujiahe formation in the west of Sichuan basin since this century. However, the corresponding study of diagenesis still weak in the area. So, we tried to select Xujiahe reservoir of Xinchang area, to study primarily cabornate cements and its foming mechanism in the reservoir sandstones. We expect the results to give out certain theory foundations of the prediction about distribution of relative high-quality reservoirs in the general context of low porosity and low permeability.
     At present, it has been confirmed that carbonate cements of different types or different stages in oil and gas reservoirs is an important densification factor. They are hot issues of the study of low-permeability reservoir about carbonate cement formation mechanism, mode of occurrence, material sources and its impact on reservoir properties. Paper in view of the petrology characteristic in Upper Triassic clastic rock reservoir in Xinchang area, on the basis of analysis indoor data, combined with the petrology and sedimentary theories, by means of various analytical techniques including impregnated thin section analysis,scanning electron microscope(SEM),X-ray Diffraction(XRD) and so on. Based on those experiments,the petrology charater, mineral character and geochemistry character of authigenic carbonate mineral is analysed, the effect on the on reservoir quality for carbonate cements is evaluated, and its formation mechanism is discussed.
     The primarily rock types of Xujiahe formation are lithic sandstone, lithic quartzarenite and quartzarenite, but lacking feldspar sandstone. Middle grain size, locking feldspar and riching quartz, high composition maturity and poor structural maturity are the characteristics of Xujiahe formation reservoir sandstone. Reservoir sandstone has much authigenic mineral, and its average content achieves 9%.Including authigenic carbonate mineral, authigenic quartzite and clay mineral.
     The authigenic carbonate mineral mainly consists of calcite, ankerite and siderite. The are hosted in different resevoir space,for example,intergranular dissolution porosity, mineral intercrystal porosity, feldspar dissolution porosity, et al.. Total carbonate cement are almost same from longitudinal distribution. However, calcite appered mainly in T3x4 , ankerite appered mainly in T3x2.
     Reservoir space are mainly secondary dissolution pores, including lithic dissolution porosity, intergranular dissolution porosity, mineral intercrystal porosity, feldspar dissolution porosity, the primary porosity is poor. The Xujiahe formation coal stratum produces acidic fluid and it dissolve the component of aluminosilicate mineral. On the one hand, the acidic fluid increased sandstone secondary porosity, on the other hand, the material resources of th authigenic carbonate mineral come from dissolution especial feldspar in Xinchang area.
引文
[1] Bath A.H., Milodowski A.E., Spiro B., 1987.Diagenesis of carbonate cements in Permo-Triassic sandstones in theWessex and East Yorkshire-Lincolnshire basins, UK: a stable isotope study. Geological Society Special Publications.36:173-190.
    [2] Chowdhury A.H., Noble James P.A., 1996, Origin, distribution and significance of carbonate cements in the Albert Formation reservoir sandstones, New Brunswick,Canada.Marine and Petroleum Geology. 13: 837-846.
    [3] Dapples E.C.,1971,Classification of carbonate cements in quartzose sandstones.Studies in Geology. 19:308-311.
    [4] David W Housekencht. Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstones[J]. The American Association of Petroleum Geologists Bulletin, 1987, 71: 633-542.
    [5] Hayes M J, Boles J R. Volumetric relations between dissolved plagioclase and kaolinite in sandstones; implications for aluminum mass transfer in the San Joaquin Basin, California[J].Special Publication,Society of Economic Paleontologists and Mineralogists.1992,47:111-123.
    [6] Kantorowicz J.D., Bryant I.D., Dawans J.M., 1987, Controls on the geometry and distribution of carbonate cements in Jurassic sandstones: Bridport Sands, southern England and Viking Group,Troll Field, Norway, in Marshall. Diagenesis of Sedimentary Sequences. Geological Society of London, Special Publication. 36: 103-118.
    [7] Longstaff F J. Clays and the resource geology[M] . Calgary : Mineral Assoc,Canada.1981.
    [8] Machent P.G., 2000 , Spatial distribution and style of carbonate cements in distal, sandstone sequences:Upper Cretaceous Panther Tongue Member and Kenilworth Member, Book Cliffs, east-central Utah, USA. AAPG Bulletin. 84; 11, Pages 1867.
    [9] Morad S., Ihsan S.A.,Karl R., Marfil R.,Aldahan A., 1990, Diagenesis of carbonate cements in Permo-Triassic sandstones from the Iberian Range,Spain; evidence from chemical and stable isotopes. Sedimentary Geology. 67(3-4):281-295.
    [10] Murillo A.P., Brenner R.L., Gonzalez L.A., Ludvigson G.A., Witzke B.J., Hammond R.H., 1997, Paleohydrologic and paleoclimatic evaluation of early carbonate cements in Codell Sandstone, middle Turonian, eastern margin of Cretaceous Western Interior basin. Abstracts with Programs - Geological Society of America. 29; 6, Pages 270.
    [11] Pitman J.K., Spoetl C., Crossey L.J., Loucks R., Totten M.W., 1996 , Origin and timing of carbonate cements in the St. Peter Sandstone, Illinois Basin; evidence for a genetic link to mississippi valley-type mineralization. Special Publication-SEPM (Society for Sedimentary Geology).55:187-203.
    [12] Schmid Susanne; Worden R.H., Fisher Q.J.,2006, Carbon isotope stratigraphy using carbonate cements in the Triassic Sherwood Sandstone Group; Corrib Field, west of Ireland. Chemical Geology. 225(1-2):137-155.
    [13] Shirley P. D.,Christopher D.W., Brian J.W., Djuro N., 2002, Calcite cement distribution and its effect on fluid flow in a deltaic sandstone, Frontier Formation, Wyoming. AAPG Bulletin.86(12):2007-2021.
    [14] Spoetl C.,1990, Carbonate cement diagenesis in Late Triassic sandstones, Paris Basin, France. International Sedimentological Congress. 13:520-521.
    [15] Susanne Schmid,Richard H.W.,Quentin J.F., 2002, Early diagenetic dolomite in Early Triassic sandstones, offshore west of Ireland. Annual Meeting Expanded Abstracts-American Association of Petroleum Geologists.157.
    [16] Taylor K.G., Gawthorpe R.L., Curtis C.D., Marshall J.D., Awwiller D.N., 2000, Carbonate cementation in a sequence-stratigraphic framework: Upper Cretaceous sandstones, Book Cliffs, Utah-Colorado. Journal of Sedimentary Research.70(2): 360-372.
    [17]安凤山,王信,叶军.川西坳陷中段须家河组天然气勘探开发战略研讨[J].天然气工业,2005.25(5):1-5.
    [18]蔡涛.西南油气田牛年喜冒“牛气”[EB/OL].(2009-02-05)[2009-4-23]http://www.sinopecnews. com.cn/news/content/2009-02/05/content_600152.htm/.
    [19]陈昭国.四川盆地川西坳陷深盆气探讨[J].石油实验地质,2005,25(2):32-38.
    [20]邓少云,叶泰然,吕正祥,等.川西新场构造须家河组二段气藏特征[J].天然气工业,2008,28(2):42-45.
    [21]董贞环.四川盆地西部须家河组致密砂岩成岩作用与孔隙演化模式[J].岩相古地理.1994,14(2):33-41.
    [22]伏万军.粘土矿物的成因及对储层储集性的影响[J].古地理学报,2000.2(3):13-17.
    [23]郭春清,沈忠明,张林晔,等.砂岩储层中有机酸对主要矿物的溶液蚀作用及机理研究综述.地质地球化学[J].2003,31(3):53-56.
    [24]郭宏莉,王大锐.塔里木油气区砂岩储集层碳酸盐胶结物的同位素组成与成因分析[J].石油勘探与开发.1999,26(3):31-32.
    [25]郭正吾,韩永辉,王胜,等.四川盆地碎屑岩油气地质图集[M].四川科学出版社,1996.
    [26]何鲤,段勇,罗潇,等.川西坳陷上三叠统层序地层划分新方案[J].天然气工业,2007,27(2):6-11.
    [27]黄洁,朱如凯,侯读杰,等.深部碎屑岩储层次生孔隙发育机理研究进展[J].地质科技情报.2007,26(6):76-72.
    [28]黄思静,黄喻.用MicrosoftExcel在砂岩的三角分类图上完成碎屑成分投点[J].成都理工学院学报,2002,(02):213-216.
    [29]黄思静,毛晓冬,张萌,等.孝泉-新场-合兴场地区须家河组储层砂岩成岩作用机理研究[R].成都理工大学档案馆,2005.
    [30]黄思静,石和,林金辉,等.鄂尔多斯盆地中南部延长组主要油层组有利储集体特征及展布研究[R].成都理工大学,长庆油田公司勘探开发研究院,内部资料,2001.
    [31]黄思静,武文慧,刘洁,等.大气水在碎屑岩次生孔隙形成中的作用—以鄂尔多斯盆地三叠系延长组为例[J].地球科学—中国地质大学学报,2003,28(4):419-424.
    [32]黄思静,谢连文,张萌,等.中国三叠系陆相砂岩中自生绿泥石的形成机制及其与储层孔隙保存的关系[J].成都理工大学学报(自然科学版),2004,31(3):273-281.
    [33]黄思静,杨俊杰,张文正,等.不同温度条件下乙酸对长石溶蚀过程的实验研究[J].沉积学报,1995,13(1):7-17.
    [34]黄思静,张萌,朱仕全,等.砂岩孔隙成因对孔隙度/渗透率关系的控制作用——以鄂尔多斯盆地陇东地区三叠系延长组为例[J].成都理工大学学报(自然科学版).2004,31(6):645-652.
    [35]乐绍东.川西坳陷深层天然气勘探前景与对策[J].天然气工业,2004,24(6):1-3.
    [36]雷开强,孔繁征,张哨楠,等.塔巴庙地区上古生界砂岩成岩作用特征及其储集性分析[J].矿物岩石,2003,23(3).
    [37]李勇,孙爱珍.龙门山造山带构造地层学研究[J].地层学杂志,2000,24(3):201-203.
    [38]李海燕,彭仕宓.低渗透储层成岩储集相及储集空间演化模式[J].中国石油大学学报(自然科学版),2007,31(5):1-6.
    [39]李士祥,胡明毅,李浮萍.川西前陆盆地上三叠统须家河组砂岩成岩作用及孔隙演化[J].天然气工业,2007,18(4):535-539.
    [40]李汶国,张晓鹏.钟玉梅.长石砂岩次生溶孔的形成机理[J].石油与天然气地质.2005,26(2):220-229.
    [41]林良彪,陈洪德,姜平,等.川西前陆盆地须家河组沉积相及岩相古地理演化[J].天然气工业,2006,33(44)376-383.
    [42]林良彪,陈洪德,翟常博,等.四川盆地西部须家河组砂岩组分及其古地理探讨[J].石油实验地质,2006,28(6):511-517.
    [43]刘宝珺,张锦泉.沉积成岩作用[M].科学出版社.1992.
    [44]刘娅铭,姜在兴,朱井泉,等.东河砂岩中碳酸盐胶结物特征及对储层的影响[J].大气石油地质与开发.2006,25(3):13-15.
    [45]邱隆伟,姜在兴.陆源碎屑岩的碱性成岩作用[M].地质出版社.2006.
    [46]邵彦蕊,胡明毅,胡忠贵,等.川西北部上三叠统须家河组储层成岩作用研究[J].石油地质与工程,2006,05:13-16.
    [47]王琪,禚喜准,陈国俊,等.延长组砂岩中碳酸盐胶结物氧碳同位素组成特征[J].天然气工业.2007,27(10):28-32.
    [48]王宝清.川西-川西北地区上三叠统碎屑储集岩成岩作用[J].石油实验地质,2008,30(1):69-7.
    [49]王成林,杜业波,张剑.川西前陆盆地须家河组储层孔隙演化模式[J].大庆石英学院学报[J]. 2006,30(5):11-12.
    [50]王多云,郑希民,李凤杰,等.低孔渗油气富集区优质储层形成条件及相关问题[J].天然气地球科学,2003,14(2):87-91.
    [51]文龙,刘埃平,钟子川,等.川西前陆盆地上三叠统致密砂岩储层评价方法研究[J].天然气工业,2005,25(增刊):49-53.
    [52]吴胜和,马晓芬.煤系地层低渗透岩屑砂岩储层成因机理及储集特征[J].低渗透油气田,1996,1(1):13-1.
    [53]吴素娟,黄思静,孙治雷.鄂尔多斯盆地三叠系延长组砂岩中的白云石胶结物及形成机制[J].成都理工大学学报(自然科学版)[J].2005,32(6):569-575.
    [54]西北地质大学编译.碎屑岩的成岩作用[M].西北大学出版社.1986.
    [55]谢继溶,孔金祥.砂岩次生孔隙的形成机制[J].天然气勘探与开发.2000,23(1):51-56.
    [56]邢焕清,姜在兴,王亚青,等.川西前陆盆地上三叠统须家河组二段可容空间转换系统的成因与演化[J].石油与天然气地质,2004,25(5):519-523.
    [57]徐北煤,卢冰.硅质碎屑岩中碳酸盐胶结物及其对储层的控制作用的研究[J].沉积学报.1994,12(3),56-66.
    [58]杨威,魏国齐,李跃纲,等.川西吸取须家河组二段成岩作用及其对储层发育的影响[J].天然气地质学,2008,19(2):188-192.
    [59]杨克明,徐进.川西坳陷致密碎屑岩领域天然气成藏理论与勘探开发方法技术[M].北京:地质出版社,2004.53-62.
    [60]杨克明,叶军,吕正祥.川西坳陷上三叠统成藏年代学特征[J].石油与天然气地质,2005,26(2):208-213.
    [61]杨克明,叶军,吕正祥.川西坳陷上三叠统须家河组天然气分布及成藏特征[J].石油与天然气地质,2004,25(5):501-505.
    [62]杨克明,朱彤,何鲤.龙门山逆冲推覆带构造特征及勘探潜力分析[J].石油实验地质,2003,25(6):685-683.
    [63]杨克明.川西坳陷油气资源现状及勘探潜力[J].石油与天然气地质,2003,24(4):322-326.
    [64]杨晓萍,赵文智,邹才能,等.低渗透储层成因机理及优质储层形成与分布[J].石油学报,2007,28(4):57-61.
    [65]姚光庆,孙尚如.煤系粗粒低渗储层自生粘土矿物特征及其对储层特性的影响——以焉耆盆地侏罗系三工河组油层为例[J].石油与天然气地质.2003,24(1)65-69.
    [66]叶军.川西新场X851井深部气藏新场机制研究——X851井高产工业气流的发现及其意义[J].天然气工业,2001,21(4):16-20.
    [67]雍自全,刘庆松,李倩.川西前陆盆地的发展演化、地层充填及其对油气成藏的意义[J].天然气工业,2008,28(2):26-29.
    [68]于炳松,赖兴远,高志前.克拉2气田砂岩储层中成岩方解石-白云石的平衡及其对储层质量的影响[J].自然科学进展.2007,17(3):339-345.
    [69]袁东山,张枝焕,刘洪军.油气充注对晚期碳酸盐矿物胶结作用的影响[J].石油天然气学报(江汉石油学院学报),2005,27(2):298-300.
    [70]曾大乾,李淑贞.中国低渗透砂岩储层类型及地质特征[J].石油学报.1994,15(1):38-45.
    [71]曾允孚,夏文杰.沉积岩石学[M].北京:质出版社,1980.
    [72]张健,李国辉,谢继容,等.四川盆地上三叠统划分对比研究[J],天然气工业,2006.26(1):12-15.
    [73]张萌,黄思静,冯文新,等.巧解砂岩分类三角图[J].成都理工大学(自然科学版),2005,32(4):423-429.
    [74]张萌,黄思静,王琦,等.碎屑骨架颗粒溶解的的热力学模型及地质意义[J].地球科学与环境学报.2006,28(4):21-25.
    [75]张萌,黄思静,王麒翔,等.碎屑岩成岩过程中各种造岩矿物溶解特征[J].新疆地质.2006,24(2):187-191.
    [76]张华英,黎华继,陈兰.孝泉-新场-丰谷地区须四储层储集条件分析[J].钻采工艺.2007,30(2):105-108.
    [77]张敏强,黄思静,吴志轩,等.东海盆地丽水凹陷古近系储层砂岩中碳酸盐胶结物及形成机制[J].成都理工大学学报(自然科学版),2007,34(3):259-266.
    [78]赵追,孙冲,张本书.碎屑岩储层次生孔隙形成机制及其勘探意义[J].河南石油.2001,15(2):11-16.
    [79]郑浚茂,应凤祥.煤系地层(酸性水介质)的砂岩储层特征及成岩模式[J].石油学报,1997,18(4):19-24.
    [80]郑浚茂.碎屑储集岩的成岩作用研究[M].武汉:中国地质大学出版社,1989.
    [81]钟大康,朱筱敏,李树静.等.早期碳酸盐胶结作用对砂岩孔隙演化的影响——以塔里木盆地满加尔凹陷志留系砂岩为例[J].沉积学报.2007,25(6):885-890.
    [82]周文,戴建文.四川盆地西部坳陷须家河组储层裂缝特征及分布评价[J].石油实验地质,2008,30(1):20-25.
    [83]朱彤,叶军,王胜.川西坳陷新场气田成藏环境的划分及识别标志[J].石油实验地质,2001,23(2):174-180.
    [84]朱国华.砂岩屑储集层孔隙的形成、演化和预测[J].沉积学报.1992,10(3):114-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700