用户名: 密码: 验证码:
塔河油田西北部奥陶系古岩溶储集层控制因素讨论
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳酸盐岩(包括石灰岩和白云岩)储层占据了世界上50%的油气储量。随着海相碳酸盐岩储集层重要性的不断增加,与之相关的研究新理论相继提出,为碳酸盐岩储集层的成因演化研究提供了新的思路。然而,由于碳酸盐岩中强烈非均质性的多种孔隙度体系使得其成为了研究碳酸盐岩储集层的难点之一。塔河油田作为我国重要的古岩溶型海相碳酸盐岩大油田,对其的研究可以作为海相碳酸盐岩储集层研究中的一个补充,同时通过研究不整合面附近的流体-岩石相互作用在储层成因及其演化中所体现出的特定意义而确定控制储集层发育的因素。
     表生期的大气水作用能导致碳酸盐岩的溶解,这是形成古岩溶储集层的基础。然而现实证明总会在不整合面附近钻遇不具有储集性的部位,这就提出了新的思考,即什么情况下有利于岩溶储集层的发育。利用镜下薄片鉴定、阴极发光、常微量元素、碳氧锶同位素、流体包裹体及相应的分析数据整理等方法对塔河油田西北部奥陶系碳酸盐岩进行了分析测试,并在此基础上对不同类型的碳酸盐岩主要经历的流体-岩石相互作用进行了详细的讨论。研究认为,主要由石灰岩组成的奥陶系碳酸盐岩不发育优质白云岩储集层,明显不同于国内外其他古生代碳酸盐岩储集层。同时形成于整体海平面上升过程中的奥陶系碳酸盐岩在准同生-早成岩作用阶段的海底胶结作用使得形成于相对较高能环境下的颗粒灰岩中的原生粒间孔隙基本上被完全充填,并在早成岩阶段未遭受明显的大气水溶蚀作用而完整地保存下来,使得碳酸盐岩基质部分具有特低孔渗值,基本不具有储集性。同时这种特性同样影响到了表生期岩溶作用的发育及分布,不整合面附近的部分碳酸盐岩基质甚至可以未遭受大气水作用,因而深入认识到只有与断层等相关的构造薄弱部位有利于发育大气水溶蚀而形成岩溶孔洞缝储集体。通过对充填于孔洞缝中方解石的地球化学特征及相应的产状分析表明,在表生期岩溶的基础上,后期的埋藏过程中有来自深部热流体、地层水及表生期大气水的混合流体在构造裂缝及岩溶孔洞缝中发生方解石沉淀,而后期深部流体向上运移的路径基本上是沿表生期大气水作用的通道,由于地层埋藏深度的持续增加或环境的突变而发生沉淀,从而堵塞孔洞缝,降低储集空间。
Carbonate rocks (limestone and dolostone) account for approximately 50% of oil and gas production around the world. As the increasing importance of marine carbonate rocks reservoirs, more new correlation theory are developed reciprocally. But the intensity heterogeneity with multiple-porosity systems is the one of difficulties about the research of the reservoirs in carbonate rocks. As the important paleokarst reservoirs of marine carbonate rocks in our country, the research of Tahe oilfield should to be a important addition to the marine carbonate reservoirs , and according to the research of fluid-rock interaction which show the specific significance about the carbonate rocks of the beneath unconformities to make sure the control factor of the reservoirs development.
     The basic theory of the paleokarst reservoirs development is the dissolution of the meteoric of epigenesis for carbonate. But actuality, a large number of wells that were drilled into non-porous carbonate rocks beneath unconformities, and it raise a new question that which condition can develop superior quality karst pore-cavity- fracture reseviors. Take the analysis-examination technique of microscope thin section, cathodoluminescence, invariable-trace element, C-O-Sr stable isotope, fluid inclusion and correlation date handle and so on to Ordovician carbonate, the northwestern of Tahe oilfield. Base on these, we give a detail discussion about the fluid-rock interaction in different type carbonate rocks and get some conclusion. The main type is limestone in Ordovician carbonate rocks, it is different with the carbonate rocks reservoirs around the world which are mainly developed with superior quality dolomite reservoirs. Because of the whole average sea-level sustain increase of Ordovician, the sea-floor cementation during eodiagenesis to early-diagenesis, the origin intergranular pore basicly which were developed in high-energy environment had been infilled and proceted completely during the burial diagenesis process because carbonate rocks of Ordovician had not exposured into meteoric during early diagenesis, so the matrix of carboante rocks represent the lowest porosity and permeability which did not own the preserve ability, and this characters influce the development and distribution of karst in epigenesis. There are some matrix of carbonate rocks which proximity to the unconformities did not to be subjected to the meteoric, therefore, the fault and some weak part of structure are easiest to develop karst pore-cavity-fracture reseviors. According to the analysis about geochemistry and represent of calcite which was filled in the fissure show that the thermal fluid, straighary water and meteoric of epigenesis mixture fluid deposited into the karst pore-cavity-fracture which was formed base on the epigenesis during the burial process, at the same time, this mixture fluid migrate path was the just the pathway of meteoric flow which blonged to epigenesis, deposited because of sustained bury and enviroment mutation, and sealed the karst pore-cavity- fracture, level down the reservoirs space.
引文
Al-Asam, I. S., Lonnee, J., Clarke, J., Multiple fluid flow events and the formation of saddle dolomite: case studies from the Middle Devonian of the Western Canada Sedimentary Basin[J]. Marine and Petroleum Geology,2002,19:209-217.
    Azmy, K., Veizer, J., Misi, A. et al., Dolomitization and isotope stratigraphy of the Vazante Formation, S?o Francisco Basin,Brazil[J]. Precambrian Research,2001,112:303-329.
    Budd, D. A., Sailer, A. H., Harris, P. M., Unconformities and porosity in carbonate strata[C]. AAPG Memoir,1995,63:1-313.
    Burruss, R. C., Cercone, K. R., Harris, P. M., Timing of hydrocarbon maturation - evidence from fluid inclusions in calcite cements, tectonics and burial history, in N. Schneidermann and P.M. Harris, eds., Carbonate Cements[C]: SEPM Special Publ. 1985,36:277-289.
    Cai, C. F., Li, K. K., Li, H. T. et al., Evidence for cross formational hot brine flow from integrated 87Sr/86Sr, REE and fluid inclusions of the Ordovician veins in Central Tarim[J]. Applied Geochemistry,2008,23,2226-2235.
    Clark, S. H. B., Poole, F. G., Wang, Z., Comparison of some sediment-hosted, stratiform barite deposits in China, the United States, and India in China, the United States, and India[J]. Ore Geology Reviews,2004,24:85-101.
    Clyde, H. M., Carbonate Reservoirs-Porosity Evolution and Diagenesis in a Sequence Stratigraphic Framework[M]. Amsterdam:Elsevier Publications,2001,1-444.
    Davies, G. R., Smith, J. L. B., Structurally controlled hydrothermal dolomite reservoir facies: An overview[J]. The American Association of Petroleum Geologists,2006,90(11): 1641-1690.
    Feazel, C. T., Schatzinger, R. A., Prevention of carbonate cementation in petroleum reservoirs: in Schneidermann N. and Harris, P. M. eds., Carbonate Cements[C]:SEPM Special Publ,1985,36:97-106.
    Fliigel, E., Microfacies of Carbonate Rocks[M]. Germany:Springer Publications,2004,1-975.
    Friedman, G. M., Early diagenesis and lithification in carbonate sediments[J]. Journal of Sedimentary Petrology,1964,34:777-813.
    Gregg, J. M., Shelton, K. L., Dolomitization and dolomite neomorphism in the back reef facies of the Boneterre and Daviss formations(Cambrian). Southeastern Missouri[J]. Journal of Sedimentary petrology,1990,57:166-189.
    Grove, M. J., Baker, P. A., Cross S. L. et al., Application of strontium isotopes to understanding the hydrology and paleohydrology of the Altiplano, Bolivia-Peru[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2003,194:281-297.
    Halley, R. B., Schmoker, J. W., High porosity Cenozoic carbonate rocks of south Florida: progressive loss of porosity with depth[C]. AAPG Bulletin,1983,67:191-200.
    International union of geological sciences, International stratigraphic chart[R]. International Commission on Stratigraphy,2008.
    James, N. P., Choquette, P. W., Paleokarst[C]. Spring-Verlag New York Inc,1987.
    Katz, D. A., Eberli, G. P., Swart, P. K. et al., Tectonic-hydrothermal brecciation associated with calcite precipitation and permeability destruction in Mississippian carbonate reservoirs, Montana and Wyoming[J]. The American Association of Petroleum Geologists,2006,90(11):1803-1841.
    Koepnick, R. B., Burke, W. H., Denison, R. E. et al., Construction of the seawater 87Sr/86Sr curve for the Cenozoic and Cretaceous:Supporting data[J]. Chemical Geology,1985,58:55-81.
    Kyger, C. L., Geochemical patterns of Meteoric diagenetic Systems and their application to studied of paleokarst, In James N. P. and Choquette P. W. eds, Paleokarst[C]:springer-verlag New York inc,1987:55-80.
    Land, L. S., Diagenesis of skeletal carbonates[J]. Journal of Sedimentary Petrology,1967,37:914-930.
    Lee, Y. I., Friedman, G. M., Deepburial dolomitization in the Ordovician Ellenburger group carbonates, West Texas and southeastren New Mexico[J]. Journal of Sidementary Petrology,1987,57:544-547.
    Leggett, J. K., McKerrow, W. S., Cocks, L. R. M. et al., Periodicity in the early Palaeozoic marine realm[J]. J. geol. Soc. London,1981,138:167-176.
    Livingstone, D. A., Chemical coposition of rivers and lades. In: Data of geochemistry[R]. U. S. Geol. Sur. 1963,41-44.
    Lonnee, J., Machel, H. G., Pervasive dolomitization with subsequent hydrothermal alteration in the Clarke Lake gas field, Middle Devonian Slave Point Formation, British Columbia, Canada[J]. The American Association of Petroleum Geologists, 2006,90(11):1739-1761.
    Luczaj, J. A., Evidence against the Dorag (mixing-zone) model for dolomitization along the Wisconsin arch—A case for hydrothermal diagenesis[J]. The American Association of Petroleum Geologists,2006,90(11):1719-1738.
    Luczaj, J. A., Harrison III, W. B., Williams, N. S., Fractured hydrothermal dolomitereservoirs in the Devonian Dundee Formation of the central Michigan Basin[J]. The American Association of Petroleum Geologists,2006,90(11):1787-1801.
    Mazzullo, S. J., Chilingarian, G. V., Diagenesis and origin of porosity: in Chilingarian G. V., Mazzullo, S. J. and Rieke, H. H., eds., Carbonate Reservoir Characterization: A Geologic-Engineering Analysis, Part I [C]. Elsevier Publ. Co., Amsterdam, Developments in Petroleum Science,1992,30,199-270.
    Mazzullo, S. J., Overview of porosity evolution in carbonate reservoirs[J]. Kansas Geological Society Bulletin,2004,79.
    McArthur, J. M., Howarth, R. J., Bailey, T. R., Strontium isotope stratigraphy: LOWESS version 3: Best fit to the marine Sr-isotope curve for 0~509Ma and accompanying Look-up table for deriving numerical age[J]. J. Geol,2001,109:155-170
    Palmer, M. R., Edmond, J. M., The strontium isotope budget of the modern ocean [J]. Earth Planet Sci L ett,1989,92:11-26.
    Pierson, B. J., The control of cathodoluminesence in dolomite by iron and manganese[J]. Sedimentary,1981,28(5):601-610.
    Roehl, P. O., Choquette, P. W. eds, Carbonate petroleum reservoirs[C]. Springer-Verlag (New York),1985.
    Shand, P., Darbyshire, D. P. F., Gooddy, D. et al., 87Sr/86Sr as an indicator of flowpaths and weathering rates in the Plynlimon experimental catchments, Wales, U.K[J]. Chemical Geology, 2007,236:247-265.
    Smith, J. L. B., Davies, G. R., Structurally controlled hydrothermal alteration of carbonate reservoirs: Introduction[J]. The American Association of Petroleum Geologists,2006,90(11): 1635-1640.
    Smith, J. L. B., Origin and reservoir characteristics of Upper Ordovician Trenton–Black River hydrothermal dolomite reservoirs in New York[J]. The American Association of Petroleum Geologists,2006,90(11):1691-1718.
    Stein, M., Starinsky, A., Agnon, A. et al., The impact of brine-rock interaction during marine evaporite formation on the isotopic Sr record in the oceans: Evidence from Mt. Sedom, Israel[J]. Geochimica et Cosmochimica Acta, 2000,64(12): 2039-2053.
    Swennen, R., Vandeginste, V., Ellam, R., Genesis of zebra dolomites (Cathedral Formation: Canadian Cordillera Fold and Thrust Belt, British Columbia)[J]. Journal of Geochemical Exploration,2003,(78-79):571-577.
    Ten, H. T., Heijnen, W., Cathodoluminescence activation and zonation in carbonate rocks: an experimental approach[J]. Geol Mijnbouw,1985,64(3):297-310.
    Tucker, M. E., Wright, V. P., Carbonate Sedimentology[M]. Oxford:Blackwell ScientificPublications,1990,1-482.
    Veizer, J., Ala, D., Azmy, K. et al., 87Sr/86Sr,δ13C andδ18O evolution of Phanerozoic seawater[J]. Chem. Geol.,1999,161:59-88.
    Wierzbicki, R., Dravis, J. J., Al-Aasm, I. et al., Burial dolomitization and dissolution of Upper Jurassic Abenaki platform carbonates, Deep Panuke reservoir, Nova Scotia, Canada[J]. The American Association of Petroleum Geologists, 2006,90(11):1843-1861.
    William, J. M., Isabel, P. M., Read, J. F., Ordovician Knox Paleokarst Unconformity, Appalachians: In James N. P. and Choquette P. W. eds, Paleokarst[C]: springer-verlag New York inc,1987:211-228.
    Zenger, D. H., Burial dolomitization in the Lost Burro Formation(Devonian), East-central California and the significationce of late diageneic dolomitization[J]. Geology,1983,11:519-522.
    蔡春芳,彭立才,梅博文等,塔里木盆地巴楚隆起地层水的硼、锶、氧、氢同位素组成[J].地质学报,2006,80(8):1207.
    陈广坡,潘建国,陶云光,碳酸盐岩岩溶型储层综合预测评价技术的应用及效果分析[J].石油物探,2005,44(1):33-36.
    陈红汉,李纯泉,张希明等,运用流体包裹体确定塔河油田油气成藏期次及主成藏期[J]. 地学前缘(中国地质大学,北京),2003,10(1).
    陈洪德,张锦泉,叶德胜等,新疆塔里木盆地北部古岩溶储集体特征及控油作用[M]. 成都科技大学出版社,1994.
    陈强路,钱一雄,马红强等,塔里木盆地塔河油田奥陶系碳酸盐岩成岩作用与孔隙演化[J].石油实验地质,2003,25(6):729-734.
    程绪彬,洪海涛,张荫本等,塔里木盆地奥陶系储层空隙类型及成因分析[J].天然气勘探与开发,2000,23(1):36-42.
    丁道桂,塔里木盆地形成与演化[M].北京:河海大学出版社,1996.
    顾家裕,塔里木盆地下奥陶统白云岩特征及成因[J].新疆石油地质,2000,21(2):120-22.
    郭建华,塔北、塔中地区下古生界深埋藏古岩溶[J].中国岩溶,1996,15(3):207-216.
    何登发,塔里木盆地构造演化与油气聚集[M].北京:地质出版社,1996.
    何发歧,塔里木盆地北部碳酸盐岩油气田[M].北京:中国地质大学出版社,2002.
    何发歧,碳酸盐岩地层中不整合-岩溶风化壳油气田—以塔里木盆地塔河油田为例[J].地质论评,2002,48(4):391-397.
    黄思静, Qing, H. R.,裴昌蓉等,川东三叠系飞仙关组白云岩锶含量、锶同位素组成与白云石化流体[J].岩石学报,2006,22(8):2123-2132.
    黄思静, Qing, H. R.,胡作维等,四川盆地东北部三叠系飞仙关组硫酸盐还原作用对碳酸盐成岩作用的影响[J].沉积学报,2007,25(6):815-814.
    黄思静,海相碳酸盐矿物的阴极发光性与其成岩蚀变的关系[J].岩相古地理,1990,4:9-15.
    黄思静,刘树根,李国蓉等,奥陶系海相碳酸盐锶同位素组成及受成岩流体的影响[J].成都理工大学学报(自然科学版),2004,31(1):1-7.
    黄思静,石和,毛晓冬等,早古生代海相碳酸盐的成岩蚀变性及其对海水信息的保存性[J].成都理工大学学报(自然科学版),2003,30(1):9-18.
    黄思静,碳酸盐矿物的阴极发光性与其Fe,Mn含量的关系[J].矿物岩石,1992,12(4):74-79.
    黄思静,王春梅,黄培培等,碳酸盐成岩作用的研究前沿和值得思考的问题[J].成都理工大学学报(自然科学版),2008,35(1):1-10.
    贾振远,蔡忠贤,碳酸盐岩古风化壳储集层(体)研究[J].地质科技情报,2004,23(4):94-104.
    金之钧,朱东亚,胡文瑄等,塔里木盆地热液活动地质地球化学特征及其对储层影响[J].地质学报,2006,80(2):245-253.
    康玉柱,塔里木盆地寒武—奥陶系古岩溶特征与油气分布[J].新疆石油地质,2005,26(5):472-480.
    康玉柱,中国海相油气田勘探实例之四—塔里木盆地塔河油田的发现与勘探[J].海相油气地质,2005,10(4):31-38.
    李纯泉,陈红汉,陈汉林,塔河油田奥陶系热流体活动期次的流体包裹体证据[J].浙江大学学报(理学版),2005a,32(2):231-235.
    李纯泉,陈红汉,张希明等,塔河油田奥陶系储层流体包裹体研究[J].石油学报, 2005b,26(1):42-46.
    李国政,李兴威,王辉,塔河油田奥陶系油气藏形成的控制因素[J].海相油气地质,2006, 11(3):46-48.
    李慧莉,邱楠生,金之钧,利用磷灰石裂变径迹研究塔里木盆地中部地区的热历史[J].地质科学,2005,40(1):129-132.
    李慧莉,邱楠生,金之钧等,塔里木盆地塔中地区地质热历史研究[J].西安石油大学学报(自然科学版),2004,19(4):36-39.
    李宗杰,王勤聪,塔河油田奥陶系古岩溶洞穴识别及预测[J].新疆地质,2003,21(2):181-184.
    林传仙,白正华,张哲儒,矿物及有关化合物热力学数据手册[M].北京:科学出版社, 1985:87,102,274,307.
    刘春燕,吴茂炳,巩固,塔里木盆地北部塔河油田奥陶系加里东期岩溶作用及其油气地质意义[J].地质通报,2006,25(9-10):1128-1134.
    刘存革,李国蓉,朱传玲等,塔河油田中下奥陶统岩溶缝洞方解石碳、氧、锶同位素地球化学特征[J].地球科学—中国地质大学学报,2008a,33(3):377-386.
    刘存革,张钰,吕海涛,溶洞穴巨晶方解石成因及演化[J].地质科技情报, 2008b,27(4):33-38.
    刘树根,时华星,王国芝等,桩海潜山下古生界碳酸盐岩储层形成作用研究[J].天然气工业,2007,27(10):1-5.
    楼章华,顾忆,塔河油田奥陶系流体地球化学与油气成藏动力学过程研究[R].浙江大学,中国石油化工股份有限公司无锡石油地质研究所,中国石油化工股份有限公司西北分公司(内部报告),2006.
    鲁新便,吴铭东,王静,塔河油田下奥陶统碳酸盐岩储层对比及储层剖面模型[J].新疆地质,2002,20(3):196-200.
    吕修祥,杨宁,周新源等,塔里木盆地断裂活动对奥陶系碳酸盐岩储层的影响[J].中国科学D辑:地球科学,2008,38(增刊Ⅰ):48-54.
    罗静兰,翟晓先,蒲仁海等,塔河油田火山岩的层位归属、火山岩岩石学与岩相学特征[J].地质科学,2006,41(3):378-391.
    马红强,陈强路,陈红汉等,盐水包裹体在成岩作用研究中的应用—以塔河油田下奥陶统碳酸盐岩为例[J].石油实验地质,2003,25(增刊):601-606.
    马永生,郭彤楼,朱光有等,硫化氢对碳酸盐储层溶蚀改造作用的模拟实验证据—以川东飞仙关组为例[J].科学通报,2007,52(增刊Ⅰ):136-141.
    莫午零,吴朝东,碳酸盐岩风化壳储层的地球物理预测方法[J].北京大学学报(自然科学版),2006,42(6):704-707.
    钱一雄, Conxita, T.,邹森林等,碳酸盐岩表生岩溶与埋藏溶蚀比较—以塔北和塔中地区为例[J].海相油气地质,2007,12(2):1-7.
    钱一雄,蔡立国,李国蓉等,碳酸盐岩岩溶作用的元素地球化学表征—以塔河1号的S60井为例[J].沉积学报,2002,20(1):70-74.
    钱一雄,陈跃,马宏强等,新疆塔河油田奥陶系碳酸盐岩溶洞、裂隙中方解石胶结物元素分析与成因[J].沉积学报,2004,22(1)6-12.
    裘怿楠,陈子琪,油藏描述[M].石油工业出版社,2002.
    饶丹,马绪杰,贾存善等,塔河油田主体区奥陶系缝洞系统与油气分布[J].石油实验地质,2007,29(6):589-592.
    石松彦,塔河油田海西晚期火山岩储集层特征及影响因素分析[J].录井工程,2006,17(3):69-73.
    苏中堂,陈洪德,赵俊兴等,鄂尔多斯盆地靖边北部奥陶系马五4-1段成岩作用特征[J].成都理工大学学报(自然科学版),2008,35(2):194-120.
    孙春岩,牛滨华,黄新武等,潜山风化壳碳酸盐岩油气藏地震响应特征研究及振幅横向差异属性在预测中的应用[J].现代地质,2004,18(1):127-132.
    汪啸风,陈孝红,中国各地质时代地层划分与对比[M].地质出版社,2005.
    王恕一,陈强路,马红强,塔里木盆地塔河油田下奥陶统碳酸盐岩的深埋溶蚀作用及其对储集体的影响[J].石油实验地质,2003,25(增刊):557-561.
    王晓东,陈凌,塔河油田下奥陶统溶洞分布规律初步探讨[J].西部探矿工程,2003,(8):70-71.
    翁金桃,桂林岩溶与碳酸盐岩[M].重庆出版社,1987.
    夏日元,唐建生,邹胜章等,塔里木盆地北缘古岩溶充填物包裹体特征[J].中国岩溶, 2006,25(3): 246-249.
    肖玉茹,何峰煜,孙义梅,古洞穴型碳酸盐岩储层特征研究—以塔河油田奥陶系古洞穴为例[J].石油与天然气地质,2003b,24(1):75-80.
    肖玉茹,王敦则,沈杉平,新疆塔里木盆地塔河油田奥陶系古洞穴型碳酸盐岩储层特征及其受控因素[J].现代地质,2003a,17(2):92-98.
    许效松,杜佰伟,碳酸盐岩地区古风化壳岩溶储层[J].沉积与特提斯地质,2005,25(3):1-7.
    闫相宾,张涛,塔河油田碳酸盐岩大型隐蔽油藏成藏机理探讨[J].地质论评,2004,50(4):370-375.
    阎相宾,塔河油田奥陶系碳酸盐岩储层特征[J].石油与天然气地质,2002,23(3):262-265.
    阎相宾,塔河油田下奥陶统古岩溶作用及储层特征[J].江汉石油学院学报,2002,24(4):23-25.
    杨宁,吕修祥,陈梅涛,塔里木盆地塔河油田奥陶系碳酸盐岩油气成藏特征[J].西安石油大学学报(自然科学版),2008,23(3):1-5.
    叶德胜,王根长,林忠民等,塔里木盆地北部寒武—奥陶系碳酸盐岩储层特征及油气前景[M].四川大学出版社,2000.
    殷辉安,岩石学相平衡[M].北京:地质出版社,1988.
    俞仁连,傅恒,构造运动对塔河油田奥陶系碳酸盐岩的影响[J].天然气勘探与开发,2006,29(2),1-5.
    俞益新,碳酸盐岩岩溶型储层综合预测概述[J].中国西部油气地质,2006,2(2):189-193.
    曾伟,黄先平,杨雨等,川东北地区飞仙关组储层中的埋藏溶蚀作用[J].天然气工业,2006,26(11):4-6.
    曾允孚,夏文杰,沉积岩石学[M].地质出版社,1986.
    张达景,吕海涛,张涛,塔河油田加里东期岩溶储层特征及分布预测[J].沉积学报, 2007,25(2):214-213.
    张涛,闫相宾,王恕一等,塔河油田奥陶系一间房组礁滩相溶蚀孔隙型储层特征与成因[J].石油与天然气地质,2004,25(4):462-466.
    张涛,云露,邬兴威等,锶同位素在塔河古岩溶期次划分中的应用[J].石油实验地质,2005,27(3): 299-303.
    张兴阳,顾家裕,罗平等,塔里木盆地奥陶系萤石成因及其油气地质意义[J].岩石学报, 2006,22(8):2220-2228.
    赵宗举,周新源,陈学时等,塔中地区中晚奥陶世古潜山岩溶储集层特征[J].新疆石油地质,2006,27(6):660-663.
    郑永飞,陈江峰,稳定同位素地球化学[M].科学出版社,2000.
    周永昌,王新维,杨国龙,塔里木盆地阿克库勒地区奥陶系碳酸盐岩成藏条件及勘探前景[J].石油与天然气地质,2000,21(2):104-109.
    朱东亚,胡文瑄,宋玉才等,塔里木盆地塔中45井油藏萤石化特征及其对储层的影响[J].岩石矿物学杂志,2005,24(3):205-215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700