用户名: 密码: 验证码:
羌塘地块白垩纪火山岩和红层古地磁学和年代学新结果及其大地构造意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青藏高原是由不同陆块由北到南依次拼贴到欧亚大陆之上组成,不同陆块间相互作用及旋转过程制约着各种地质事件的发生与发展。中生代以来的构造事件,包括羌塘与拉萨地块的拼贴、印度与欧亚大陆的碰撞,不仅使拉萨和欧亚大陆之间发生强烈构造缩短,还制约着中-新特提斯洋的演化过程。白垩纪期间羌塘与拉萨地块的碰撞拼合导致班公-怒江大洋的消失。目前,关于班公-怒江缝合带的性质、演化过程和闭合时间仍存在激烈争议。此外,白垩纪以来欧亚大陆内部的构造缩短量、陆块旋转模式和新特提斯洋规模等热点问题均存在争议。因此,羌塘和拉萨地块白垩纪期间的古地理位置成为研究板块构造演化和中-新特提斯洋演化的重要窗口。
     在对拉萨地块措勤地区则弄群火山岩古地磁研究的基础上,本论文在羌塘地块改则地区对白垩纪火山岩和红层展开系统的古地磁及年代学综合研究。改则火山岩样品U-Pb测年结果为103.8±0.46Ma,红层年龄为103.8-83.5Ma。经过系统热退磁,从改则地区火山岩和经过E/I校正后的红层中获得的古地磁极分别为79.3°N,339.8°E,A95=5.7°和49.5°N,2.6°E,A95=3.6°,支持羌塘地块103.8±0.46Ma期间位于29.3°N,10.4-83.5Ma期间位于相同的古纬度(29.2°N)。结合地质资料和前人在羌塘、拉萨地块获得的古地磁结果,本文结果支持班公湖-怒江大洋中西部闭合时间在103.8Ma附近,晚白垩期间羌塘和拉萨地块之间存在~580km的构造缩短;拉萨地块123.1Ma期间古纬度为20.1±4.8°N,与同期稳定欧亚大陆相比,二者存在9.8±4.1°古纬度差,除去晚白垩世期间羌塘和拉萨地块之间发生的构造缩短量,结果表明印度-欧亚大陆碰撞导致欧亚大陆内部发生了~500km的南北向构造缩短;早白垩世拉萨地块南缘和印度大陆北缘之间存在59.6±4.2°的古纬度差,意味着早白垩世期间印度板块与欧亚大陆之间的新特提斯大洋南北向规模达到6615.6±466km。此外,本文结合前人在青藏高原的研究结果(包括大量GPS数据和古地磁数据),支持青藏高原腹地白垩纪以来东西部经历不同旋转模式,东部发生显著的顺时针旋转,中西部发生逆时针旋转。不同区域由于走滑断层的发育导致旋转量的有所差异,但总体上符合上述规律,并且旋转的主要动力来自印度-欧亚大陆的剧烈碰撞。
The Tibet Plateau was formed by progressive accretion of several terranes to thestable Asian migrated from north to south, the interaction and the rotation processbetween different terranes provide constraints on the occurrence of various geologicalevents. Tectonic events since the Mesozoic including the collage between the Qiangtangand Lhasa terranes and the collision of India and Eurasia, not only caused the intensecrustal shortening between the Lhasa terrane and the stable Eurasia, but also restrictedthe evolution process of the Mid-Neo Tethys. The Qiangtang and Lhasa terranescollided during the Cretaceous accompanying with the closure of the Bangong-Nujiangocean. At present, some key aspects about the Bangong-Nujiang ocean, such as itsnature of the ocean basin, its evolution and closed time are still open to intense debate.In addition, there has been no consensus on the crustal shortening, rotated model andthe scale of the Neo-Tethys. Therefore, the Cretaceous paleogeography of Qiangtangand Lhasa terranes has become an important window of studying the evolution of theterranes and the Mid-Neo Tethys.
     Base on the paleomagnetic study of the Zenong volcanics sampled from Cuoqinarea, a combined geochronological and paleomagnetic investigation has been performedon Cretaceous rocks in the west of the Qiangtang terrane near Gaize area. Ageochronologic study of zircon U-Pb dating indicates that the volcanic rocks sampledfrom the Gaize area is103.8±0.46Ma while the red beds belong to103.8-83.5Ma.After thermal demagnetization, the paleopoles obtained from the volcanic rocks and redbeds corrected by the E/I method are79.3°N,339.8°E, A95=5.7°and49.5°N,2.6°E,A95=3.6°, respectively. The results support that the Qiangtang terrane located at29.3°Nduring103.8-83.5Ma. Combined with the geological evidence and previouspaleomagnetic results from the Qiangtang and Lhasa terranes, this study support that thewestern segment of the Bangong-Nujiang ocean closed at~103.8Ma and~580kmcrustal shortening happened during the later Cretaceous. Comparing the paleolatitude ofthe southern margin of the Lhasa terrane (20.1°±4.8°N) with the stable Asia at120Ma,the significant discrepancy (9.8±4.1°) implies that~500km N-S crustal shortening has taken place between them caused by the India-Asia collision which has excluded thecontribution of the Qiangtang-Lhasa terranes collision. Comparing the paleolatitudesbetween stable India and the Lhasa terrane, the paleolatitude difference is59.6±4.2°,indicating the width for the Neotethys ocean was6615.6±466km in the earlyCretaceous. Besides, combined the previous studies (including GPS data andpaleomagnetic data), this study supports that the hinterland of the Tibet plateauexperienced different rotation models from the east to the west since the Cretaceous.The southeast of the Tibet plateau has experienced a large scale clockwise while asignificant count-clockwise rotation happened in the mid-west part. Although theamount of rotation in different regions may be vary influenced by the development ofthe strike-slip faults, they agree with the above rotation models in general mainlytrigged by the India-Asia collision.
引文
[1] Achache J., Courtillot V., Zhou Y.X., Paleogeographic and tectonic evolution of southernTibet since middle Cretaceous time: new paleomagnetic data and synthesis. Journal ofGeophysical Research,1984,89(B):10311-10339
    [2] Allègre C.J., Courtillot V., Tapponnier P., et al. Structure and evolution of theHimalaya-Tibet orogenic belt. Nature,1984,307,17-22
    [3] Bédard E., Hébert R., Guilmette C., et al. Petrology and geochemistry of the Saga andSangsang ophiolitic massifs, Yarlung Zangbo Suture Zone, Southern Tibet: Evidence for anarc-back-arc origin. Lithos,2009,113(1-2):48-67
    [4] Biggin A.J., van Hinsbergen D.J., Langereis C.G., et al. Geomagnetic secular variation inthe Cretaceous Normal Superchron and in the Jurassic. Physics of the Earth and PlanetaryInteriors,2008,169,3-19
    [5] Cawood P.A., Buchan C. Linking accretionary orogenesis with supercontinent assembly.Earth-Science Reviews,2007,82:217-256
    [6] Cawood P.A., Johnson M.R.W., Nemchin A.A. Early Palaeozoic orogenesis along theIndian margin of Gondwana: Tectonic response to Gondwana assembly. Earth andPlanetary Science Letters,2007,255:70-84
    [7] Chang C.F., Chen N., Coward M.P., et al. Preminary conclusions of the Royal Society andAcademia Sinica1985geotraverse of Tibet. Nature,1986,323,501-507
    [8] Chen S.Y., Yang J.S., Li Y., et al. Ultramafic blocks in Sumdo region, Lhasa Block,eastern Tibet Plateau: An ophiolite unit. Journal of Earth Science,2009,20:332-347
    [9] Chen Y., Cogne J.P., Courtillot V. Cretaceous paleomagnetic results from western Tibet andtectonic implications. Journal of Geophysical Research,1993,98(B10),17981-17999
    [10] Chu M.F., Chung S.L., Song B., et al. Zircon U-Pb and Hf isotope constrains on theMesozoic tectonics and crustal evolution of southern Tibet. Geology,2006,34(9):745-748
    [11] Cogné J., Halim N., Chen Y. Resolving the problem of shallow magnetizations of Tertiaryage in Asia: Insights from paleomagnetic data from the Qiangtang, Kunlun, and Qaidamblocks (Tibet, China), and a new hypothesis. Journal of Geophysical Research: SolidEarth,1999,104(B8),17715-17734
    [12] Cogné J., Besse J., Chen Y., et al. A new Late Cretaceous to Present APWP for Asia andits implications for paleomagnetic shallow inclinations in Central Asia and CenozoicEurasian plate deformation. Geophysical Journal International,2013,192(3):1000-1024
    [13] Coward M., Kidd W., Yun P., et al.The structure of the1985Tibet geotraverse, Lhasa toGolmud, Philosophical Transactions of the Royal Society of London. Series A,Mathematical and Physical Sciences,1988,327,307-333
    [14] Darby B.J., Ritts, B.D., Yue Y., et al. Did the Altyn Tagh fault extend beyond the TibetanPlateau?, Earth and Planetary Science Letters,2005,240,425-435
    [15] Dewey J.F., Shackleton R.M., Chang C.F., et al. The tectonic evolution of the Tibetanplateau. Philosophical Transactions of the Royal Society of London (Series A):Mathematical and Physical Science,1988,327,379-413
    [16] Dupont-Nivet G., van Hinsbergen D.J., Torsvik T.H. Persistently low Asian paleolatitudes:Implications for the India-Asia collision history, Tectonics,2010,29
    [17] Gradstein F.M., Ogg J.G., Smith A.G., et al. A geologic time scale [M]. New York,;Columbia University Press,2004
    [18] Halim N., Cogné J., Chen Y., et al. New Cretaceous and Early Tertiary paleomagneticresults from Xining‐Lanzhou basin, Kunlun and Qiangtang blocks, China: Implicationson the geodynamic evolution of Asia, Journal of Geophysical Research: Solid Earth,1998,103,21025-21045
    [19] Huang K., Opdyke N.D., Li J. et al. Paleomagnetism of Cretaceous rocks from easternQiangtang terrane of Tibet, Journal of Geophysical Research: Solid Earth,1992a,97,1789-1799.
    [20] Huang K., Opdyke N.D., Peng X., Et al. Paleomagnetic results from the Upper Permian ofthe eastern Qiangtang Terrane of Tibet and their tectonic implications, Earth and PlanetaryScience Letters,1992b,111,1-10
    [21] Johnson C., Constable C., Tauxe L., et al. Recent investigations of the0–5Mageomagnetic field recorded by lava flows, Geochemistry, Geophysics, Geosystems,2008,9(4):31; doi:10.1029/2007GC001696
    [22] Kapp P., Yin A., Harrison T.M., et al. Cretaceous-Tertiary shortening, basin development,and volcanism in central Tibet. Geologic Society of American Bulletin,2005,117(7):865-878
    [23] Kapp P., Yin A., Manning C.E., et al. Tectonic evolution of the Early Mesozoicblueschist-bearing Qiangtang metamorphic belt, central Tibet. Tectonics,2003,22(4),1043
    [24] Kapp P., Yin A., Manning C.E., et al. Blueschist-bearing metamorphic core complexes inthe Qiangtang block reveal deep crustal structure of northern Tibet. Geology,2000,28(1):19-22
    [25] Kapp P., Decelles P.G., Gehrels G.E., et al. Geological records of the Lhasa-Qiangtang andIndo-Asian collisions in the Nima area of central Tibet. Geological Society of AmericaBulletin,2007,119,917-932
    [26] Kapp P., Murphy M.A., Yin A., et al. Mesozoic and Cenozoic tectonic evolution of theShiquanhe area of western Tibet. Tectonics,2003,22(4),1029-1033
    [27] Li Y.L., Wang C.S., Li Y.T., et al. The Cretaceous tectonic event in the Qiangtang Basinand its implications for hydrocarbon accumulation. Petroleum Science,2010,7(4):466-471
    [28] Li Y.L., He J., Wang C., et al. Late Cretaceous K-rich magmatism in central Tibet:Evidence for early elevation of the Tibetan plateau?, Lithos,2013,160,1-13
    [29] Liebke U., Appel E., Ding L., et al. Position of the Lhasa terrane prior to India-Asiacollision derived from palaeomagnetic inclinations of53Ma old dykes of the LinZhouBasin: constraints on the age of collision and post-collisional shortening within theTibetan Plateau. Geophysical Journal International,2010, l182:1199-1215
    [30] Ma Y.M., Yang T.S., Yang Z.Y., et al. Paleomagnetism and U-Pb zircon geochronology ofLower Cretaceous lava flows from the western Lhasa terrane: New constraints on theIndia-Asia collision process and intracontinental deformation within Asia (submitted)
    [31] McFadden, P.L. A new fold test for palaeomagnetic studies. Geophysical JournalInternational,1990,103,163–169
    [32] McFadden P., Merrill R., McElhinny M., et al. Reversals of the Earth's magnetic field andtemporal variations of the dynamo families, Journal of Geophysical Research: Solid Earth,1991,96,3923-3933
    [33] Meng J., Wang C., Zhao X.X., et al. India-Asia collision was at24°N and50Ma:palaeomagnetic proof from southernmost Asia, Scientific reports,2012,2,925;doi:10.1038/srep00925
    [34] Metcalfe I. Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys.Australian Journal of Earth Science,1996,43:101-118.
    [35] Metcalfe I. Palaeozoic and Mesozoic geological evolution of the SE Asian regionmultidisciplinary constraints and implications for biogeography. In: Robert Hall andJeremy D. Holloway (Eds.),Biogeography and Geological Evolution of SE Asia,1998:25-41.
    [36] Metcalfe I. The ancient Tethys oceans of Asia: How many? How old? How deep? Howwide? UNEAC Asia Papers,1999,(1):1-9
    [37] Metcalfe I. Permian tectonic framework and palaeogeography of SE Asia. Journal ofAsian Earth Sciences,2002,20(6):551-566.
    [38] Metcalfe I. Palaeozoic and Mesozoic tectonic evolution and palaeogeography of EastAsian crustal fragments: The Korean Peninsula in context. Gondwana Research,2006,9:24-46
    [39] Metcalfe I., Gondwana dispersion and Asian accretion: Tectonic and palaeogeographicevolution of eastern Tethys, Journal of Asian Earth Sciences,2013,66,1-33
    [40] Mory A.J, Iasky R.P, Ghori K.A.R. A summary of the geological evolution and petroleumpotential of the Southern Carnarvon Basin, Western Australia [J]. Western AustraliaGeological Survey, Report,2003,86:1-26
    [41] Murphy M.A., Yin A., Harrison T.M., tt al., Did the Indo-Asian collision alone create theTibetan plateau? Geology,1997,25(8):719-722
    [42] Otofuji Y., Inoue Y., Funahara S., et al. Palaeomagnetic study of eastern Tibet-deformationof the Three Rivers region. Geophys Journal International,1990,103,85-94
    [43] Otofuji Y., Mu C.L., Tanaka K., et al. Spatial gap between Lhasa and Qiangtang blocksinferred from Middle Jurassic to Cretaceous paleomagnetic data, Earth and PlanetaryScience Letters,2007,262,581-593
    [44] Otofuji Y., Yokoyama M., Kitada K., et al. Paleomagnetic versus GPS determined tectonicrotation around eastern Himalayan syntaxis in East Asia, Journal of Asian Earth Sciences,2010,37,438-451
    [45] Pozzi J.P., Westphal M., Zhou Y.X., et al. Positon of the Lhasa Block, South Tibet, duringthe Late Cretaceous. Nature,1982,297:319~321
    [46] Quade J., Cater J.M.L., Ojha T.P., et al. Late Miocene environmental change in Nepal andthe northern Indian subcontinent: Stable isotopic evidence from paleosols. GeologicalSociety of America Bulletin,1995,107(12),1381-1397
    [47] Ratschbacher L., Krumrei I., Blumenwitz M., et al. Rifting and strike-slip shear in centralTibet and the geometry, age and kinematics of upper crustal extension in Tibet, GeologicalSociety, London, Special Publications,2011,353,127-163
    [48] Replumaz A., Tapponnier P. Reconstruction of the deformed collision zone between Indiaand Asia by backward motion of lithospheric blocks, Journal of Geophysical Research:Solid Earth,2003,108:2285
    [49] Royden L.H., Burchfiel B.C., King R.W., et al. Surface deformation and lower crustalflow in eastern Tibet, science,1997,276,788-790
    [50] Ruddiman W.F., Kutzbach J.E., Forcing of Late Cenozoic northern hemisphere climate byplateau uplift in southern Asia and the American west. Journal of Geophysical Research,1989,94(D15),18409-18427
    [51] Sato K., Liu Y., Zhu Z., et al. Paleomagnetic study of middle Cretaceous rocks fromYunlong, western Yunnan, China: evidence of southward displacement of Indochina, Earthand Planetary Science Letters,1999,165,1-15
    [52] Seng r A.M.C., Tectonics of the tethysides: orogenic collage development in a collisionalsetting. Annual Review of Earth and Planetary Sciences,1987,15,213-244
    [53] Seng r A.M.C., Altlner D., Cin A., et al. Origin and assembly of the Tethyside orogeniccollage at the expense of Gondwana land. Geological Society. London, Special Publications,1988,37,119-181
    [54] Seng r A.M.C., Cin A., Rowley D.B., et al. Space-time patterns of magmatism along theTethysides: a preliminary study. Journal of Geology,1993,101,51-84
    [55] Sun Z.M., Jiang W., Li H.B., et al. New paleomagnetic results of Paleocene volcanic rocksfrom the Lhasa block: Tectonic implications for the collision of India and Asia.Tectonophysics,2010,490:257-266
    [56] Sun, Z.M., Pei, J.L., Li, H.B., et al. Palaeomagnetism of late Cretaceous sediments fromsouthern Tibet: evidence for the consistent palaeolatitudes of the southern margin ofEurasia prior to the collision with India, Gondwana Research,2012,21,53-63
    [57] Tan X.D., Gilder S., Kodama K.P., et al. New paleomagnetic results from the Lhasa block:Revised estimation of latitudunal shortening across Tibet and implications for dating theIndia-Asia collision. Earth and Planetary Science Letter,2010,293:396-404
    [58] Tauxe L., Kent D.V. A simplified statistical model for the geomagnetic field and thedetection of shallow bias in paleomagnetic inclinations: was the ancient magnetic fielddipolar?, Geophysical Monograph Series,2004,145,101-115
    [59] Van der Voo V.R. The reliability of paleomagnetic data. Tectonophysics,1990,184:1-9
    [60] Van der Voo V.R., Spakman W., Bijwaard H. Tethyan subducted slabs under India. Earthand Planetary Science Letters,1999,171,7-20
    [61] van Hinsbergen D.J., Kapp P., Dupont-Nivet G., et al. Restoration of Cenozoicdeformation in Asia and the size of Greater India, Tectonics,2011,30, TC5003
    [62] Volkmer J.E., Kapp P., Guynn J.H., et al. Cretaceous-Tertiary structural evolution of thenorth central Lhasa terrane, Tibet, Tectonics,2007,26(6): TC6007, doi:10.1029/2005TC001832
    [63] Wang C.S., Liu Z.F., Hebert R. The Yarlung-Zangbo paleo-ophiolite, southern Tibet:implications for the dynamic evolution of the Yarlung-Zangbo Suture zone. Journal ofAsia Earth Sciences,2000,18(6):651-661
    [64] Wang W.L., Aitchison J., Lo C.H., et al. Geochemistry and geochronology of theamphibolite blocks in ophiolitic mélanges along Bangong-Nujiang suture, central Tibet,Journal of Asian Earth Sciences,2008,33,122-138
    [65] Yan M., Van der Voo R., Tauxe L., et al. Shallow bias in Neogene palaeomagneticdirections from the Guide Basin, NE Tibet, caused by inclination error, GeophysicalJournal International,2005,163,944-948
    [66] Yang Z. Y., Besse J. Paleomagnetic study of Permian and Mesozoic sedimentary rocksfrom Northern Thailand supports the extrusion model for Indochina. Earth and PlanetaryScience Letters,1993,117(3-4):525-552
    [67] Yang T.S., Ma Y.M., Zhang S.H., et al. New insights into the India–Asia collision processfrom the Cretaceous redbed and volcanic paleomagnetic results in the Lhasa terrane.submitted
    [68] Yi Z.Y., Huang B.C., Chen J.S., et al. Paleomagnetism of early Paleogene marinesediments in southern Tibet, China: Implications to onset of the India-Asia collision andsize of Greater India. Earth and Planetary Science Letters,2011,309,153-165
    [69] Yin A., Dang Y.Q., Wang L.C., et al. Cenozoic tectonic evolution of Qaidam basin and itssurrounding regions (Part1): The southern Qilian Shan-Nan Shan thrust belt and northernQaidam basin, Geological Society of America Bulletin,2008,120,813-846
    [70] Yin A., Harrison T.M. Geologic evolution of the Himalayan-Tibetan orogen. AnnualReview of Earth and Planetary Sciences,2000,28,211-280
    [71] Yue Y., Graham S.A., Ritts B.D. et al. Detrital zircon provenance evidence for large-scaleextrusion along the Altyn Tagh fault, Tectonophysics,2005,406,165-178
    [72] Zhang K.J. Blueschist-bearing metamorphic core complexes in the Qiangtang terrainreveal deep crustal structure of northern Tibet: Comment. Geology,2001,29:90
    [73] Zhang K.J., Escape hypothesis for North and South China collision and tectonic evolutionof Qinling orogen, eastern Asia. Ecol. geol. Helv,2002,95:237-247
    [74] Zhang K.J., Cai J.X., Zhang Y.X., et al. Eclogites from central Qiangtang, northern Tibet(China) and tectonic implications. Earth Planet. Sci. Lett,2006a,245(1-2):722-729
    [75] Zhang K.J., Zhang Y.X., Li B., et al. The blueschist-bearing Qiangtang metamorphic belt(northern Tibet, China) as an in situ suture zone: Evidence from geochemical correlatingstudies with the Jinsa suture. Geology,2006b,34(6):493-496
    [76] Zhang K.J., Zhang Y.X., Xia B.D., et al. Temporal variations of the Mesozoic sandstonecomposition in the Qiangtang block, northern Tibet (China): Implications for provenanceand tectonic setting. J. Sediment. Res,2006c,76:1035-1048
    [77] Zhang K.J. Secular geochemical variations of the Lower Cretaceous siliciclastic rocksfrom central Tibet (China) indicate a tectonic transition from continental collision toback-arc rifting. Earth Planet. Sci. Lett,2004,229:73-89
    [78] Zhang K.J., Zhang Y.X., Tang X.C., et al. Late Mesozoic tectonic evolution and growth ofthe Tibetan plateau prior to the Indo-Asian collision, Earth-Science Reviews,2012,114,236-249
    [79] Zhang S. H., Li Z. X., Evans D. A., et al. Pre-Rodinia supercontinent Nuna shaping up: Aglobal synthesis with new paleomagnetic results from North China. Earth and PlanetaryScience Letters,2013,72:164-177
    [80] Zhu D.C., Pan G.T., Chung S.L., et al. SHRIMP zircon age and geochemical constrains onthe origin of Early Jurassic volcanic rocks from the Yeba Formation, southern Gangdese insouth Tibet. International Geology Review,2008,50,442-471
    [81] Zhu D.C., Zhao Z.D., Niu Y.L., et al. The Lhasa Terrane: Record of a microcontinent and itshistories of drift and growth. Earth and Planetary Science Letters,2011,301,241-255
    [82] Zhu D.C., Zhao Z.D., Niu Y.L., et al. The origin and pre-Cenozoic evolution of the TibetanPlateau. Gondwana Research,2013,23(4):1429-4154
    [83]敖红,邓成龙.磁性矿物的磁学鉴别方法回顾.地球物理学进展,2007,22(2):432-442
    [84]鲍佩声,肖序常,苏犁.西藏洞错蛇绿岩的构造环境:岩石学、地球化学和年代学制约.中国科学(D辑:地球科学),2007,37(3):298-307
    [85]常承法,郑锡澜.中国西藏南部珠穆朗玛地区地质构造特征及其青藏高原东西向诸山系形成的探讨.中国科学(D辑),1973,2:190-20l
    [86]常青松,朱弟成,赵志丹,等.西藏羌塘南缘热那错早白垩世流纹岩锆石U-Pb年代学和Hf同位素及其意义.岩石学报,2011,27:2034-2044
    [87]程鑫,吴汉宁,刁宗宝,等.藏东地区晚石炭-晚二叠世古地磁新结果:对羌北-昌都地块构造演化的制约.中国科学:地球科学,2013,43(8):1312-1323
    [88]程鑫,吴汉宁,刁宗宝,等.羌北地块中—晚侏罗世雁石坪群古地磁新结果.地球物理学报,2012,55(10):3399-3409
    [89]程鑫,吴汉宁,郭强,等.青藏高原羌北地块晚古生代古地磁研究的初步结果.中国科学:地球科学,2011,41(8):1100-1108
    [90]陈国荣,刘鸿飞,蒋光武,等.西藏班公湖一怒江结合带中段沙木罗组的发现.地质通报,2004,23(2):193-194
    [91]陈玉禄,张宽忠,李关清,等.班公错-怒江结合带中段上三叠统确哈拉群与下伏岩系角度不整合关系的发现及意义.地质通报,2005,24(7):621-624
    [92]丁林.西藏雅鲁藏布江缝合带古新世深水沉积和放射虫动物群的发现及对前陆盆地演化的制约.中国科学(D辑:地球科学),2003a,(01):47-58
    [93]丁林,来庆洲.冈底斯地壳碰撞前增厚及龙神的地质证据:岛弧拼贴对青藏高原隆升及扩展历史的制约,科学通报,2003b,48(8):706-712
    [94]董学斌,王中民,谭承泽,等.青藏高原古地磁研究新结果.地质论评,1991,37(2):160-164
    [95]董彦辉,许继峰,曾庆高,等.存在比桑日群弧火山岩更早的新特提斯洋俯冲记录?岩石学报,2006,22(3):661-668
    [96]郭铁鹰,梁定益,张宜智,等.西藏阿里地质.武汉:中国地质大学出版社,1991,152-304
    [97]耿建珍,张健,李怀坤,等.10μm尺度锆石U-Pb年龄的LA-MC-ICP-MS测定.地球学报,2012,33,877-884
    [98]黄继钧.藏北羌塘盆地构造特征及演化.中国区域地质,2001,20(2):178-186
    [99]黄宝春,魏青云.华北地块早古生代地层单元的岩石磁学特征研究.地球物理学报,1995,38,796-805
    [100]黄宝春,地球古板块位置的古地磁定位方法.见:丁仲礼(主编)固体地球科学研究方法北京:科学出版社,2013:805-817
    [101]黄晟.华南地块白垩纪火山岩古地磁研究.[博士论文].北京:中国科学院地质与地球物理研究所,2012
    [102]侯可军,李延河,田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术.矿床地质,2009,481-492
    [103]胡娟,刘晓春,陈龙耀,等.扬子克拉通北缘约2.5Ga岩浆事件:来自南秦岭陡岭杂岩锆石U-Pb年代学和Hf同位素证据.科学通报,2013,58,3579-3588
    [104]胡新伟,马润则,陶晓风,等.西藏措勤地区典中组火山岩地球化学特征及构造背景.成都理工大学学报:自然科学版,2007,34,15-22
    [105]贾建称.羌塘盆地东部中新生代沉积特征与动力学演化.[博士学位论文].北京:中国地质大学(北京):32-36
    [106]康志强,许继峰,董彦辉,等.拉萨地块中北部白垩纪则弄群火山岩:Slainajap洋南向俯冲的产物?.岩石学报,2008,24(02):0303-0314
    [107]纪占胜,姚建新,武桂春.西藏措勤盆地的上古生界——下中生界:潜在的油气沉积建造,地质通报,2008,27(1):36-63
    [108]姜高磊,韩芳,宋博文,等.西藏改则盆地渐新统一中新统康托组沉积相特征.地质通报,2013,32,165-174
    [109]李才,程立人,胡克,等.西藏羌塘南部地区的冰海杂砾岩及其成因.长春地质学院学报,1995,25(4):368-374
    [110]李才,程立人,胡克.西藏龙木错一双湖古特提斯缝合带研究.北京:地质出版社,1995
    [111]李才,王天武,杨德明.西藏羌塘中央隆起区物质组成与构造演化.长春科技大学报.2001,31(l):25-31
    [112]李才,翟庆国,陈文,等.青藏高原龙木错-双湖板块缝合带闭合的年代学证据——来自果干加年山蛇绿岩与流纹岩Ar-Ar和SHRIMP年龄制约,岩石学报,2007,23,911-918.
    [113]李才,翟庆国,董永胜,等.冈瓦纳大陆北缘早期的洋壳信息——来自青藏高原羌塘中部早古生代蛇绿岩的依据.地质通报,2008a,(10):1605-1612
    [114]李才,翟庆国,董永胜,等.青藏高原羌塘早古生代蛇绿岩——堆晶辉长岩的锆石SHRIMP定年及其意义.岩石学报,2008b,(01):31-36
    [115]李才,翟刚毅,王立全,等.认识青藏高原的重要窗口——羌塘地区今年来研究进展评述(代序).地质通报,2009,28(9):1169-1177
    [116]李超,肖传桃,龚文平,等.班公湖-怒江缝合带中段构造演化再探讨.长江大学学报:自然科学版,2011,8,41-43
    [117]李怀坤,耿建珍,郝爽,等.用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究.矿物学报,2009,29,600-601
    [118]李仕虎,黄宝春,朱日祥.青藏高原东南缘构造旋转的古地磁学证据.地球物理学报,2012,55,76-94
    [119]李春昱,王荃,刘雪亚,等.亚洲大地构造图及说明书.北京:地图出版社,1982,1-10
    [120]李朋武,高锐,崔军文,等.西藏和云南三江地区特提斯洋盆演化历史的古地磁分析.地球学报,2005,26(5):387-404
    [121]李朋武,高锐,崔军文,等.西藏和云南三江地区特提斯洋盆演化历史的古地磁分析.地球学报,2005,26(5):387-404
    [122]刘成英.古地磁学中的各种极. PGL-Letters(内部期刊),2009,22-24
    [123]刘鸣.古地磁在大地构造中的应用. PGL-Letters(内部期刊),2012,13-14
    [124]刘池洋,赵红格,张参,等.青藏-喜马拉雅构造域演化的转折时期.地学前缘,2009,16(4):1-12
    [125]刘增乾,徐宪,潘桂堂,等.三江地区构造岩浆带的划分与矿产分布规律.北京:地质出版社,1993
    [126]刘增乾,徐宪,潘桂棠.青藏高原大地构造与形成演化.北京二地质出版社,1990,1-174
    [127]潘桂堂.全球洋-陆转换中的特提斯演化.特提斯地质,1994,18:23-40
    [128]潘桂棠,陈智梁,李兴振,等.东特提斯地质构造形成演化.北京:地质出版社,1997,1-218
    [129]潘桂棠,王立全,朱弟成.青藏高原区域地质调查中几个重大科学问题的思考.地质通报,2004,23:l2-l9
    [130]潘桂棠,郑海祥,徐耀荣.初论班公湖一怒江结合带见:青藏高原地质文集(12).北京:地质出版社,1983,229-242
    [131]潘桂棠,朱弟成,王立全,等.班公湖一怒江缝合带作为冈瓦纳大陆北界的地质地物理.地学前缘,2004b,11(4):371-352
    [132]祁江豪,郭兴伟,温珍河,等,羌塘盆地基地地层及大地构造性质.海洋地质前沿,2011,27(9):52-59.
    [133]邱瑞照,周肃,邓晋福,等.西藏班公湖一怒江带西段舍马拉沟蛇绿岩中辉长岩年龄测定:兼论班公湖一怒江蛇绿岩带形成时代.中国地质,2004,31(3):262-268
    [134]邱瑞照,周肃,邓晋福,等.氏西藏班公湖一怒江西段舍马拉沟蛇绿岩中辉长岩年龄定一兼论班公湖一怒江蛇绿岩带形成时代.中国地质,2004,31(3):262-268
    [135]曲晓明,辛洪波,杜德道,等.西藏班公湖-怒江缝合带中段碰撞后A型花岗岩的时代及其对洋盆闭合时间的约束.地球化学,2012,41:1-14
    [136]任海东,颜茂都,孟庆泉,等.羌塘盆地磁倾角浅化校正及其在构造上的应用——中侏罗纪以来约1000km的南北向缩短.地质科学,2013,48(2):543-556
    [137]宋彪,张玉海,万渝生,等.锆石SHRIMP样品靶制作,年龄测定及有关现象讨论.地质论评,2002,48,26-30.
    [138]宋春彦,王剑,付修根,等.青藏高原羌塘盆地晚三叠世古地磁数据及其构造意义.吉林大学学报(地球科学版),2012,42(2):526-535
    [139]史仁灯.蛇绿岩研究进展,存在问题及思考.地质评论,2005,51(6):681-693
    [140]史仁灯.班公湖552型蛇绿岩年龄对班一怒洋时限的制约.科学通报,2007,52(2):223-27
    [141]史仁灯,杨经绥,许志琴,等.西藏班公湖蛇绿混杂岩中玻安岩系火山岩的发现及构造意义.科学通报,2004,49(12):11179-1184
    [142]史仁灯,杨经绥,许志琴,等.西藏班公湖存在MOR型和552型蛇绿岩一来自两种同地慢橄榄岩的证据.岩石矿物学杂志,2005,24(5):397-408
    [143]史仁灯,支霞臣,陈雷. Re-05同位素体系在蛇绿岩应用研究中的进展.岩石学报,2006,22(6):1585-1695
    [144]孙知明,江万,裴军令,等.青藏高原拉萨地块早白垩纪火山岩古地磁结果及其构造意义.岩石学报,2008,24(07):1621-1626
    [145]唐祥德,黄宝春,杨列坤,等.拉萨地块中部晚白垩世火山岩Ar-Ar年代学和古地磁研究结果及其构造意义.地球物理学报,2013,136-149
    [146]陶晓风,刘登忠,朱利东,等.西藏措勤中-新生代沉积盆地演化.成都理工大学学报:自然科学版,2008,35,103-107
    [147]田海艳,李超,肖传桃,等.班公-怒江缝合带中段拼合时间探讨.长江大学学报(自然科学版),2011,7(8):18-21.
    [148]汪洋,张开均.青藏高原新生代构造研究最新进展和构造发展的阶段性.南京大学学报(自然科学版),2006,42(2):199-219
    [149]王成善,伊海生.西藏羌塘盆地地质演化与油气远景评价.北京二地质出版社,2001,1-249
    [150]王国芝,王成善.西藏羌塘基底变质岩系的解体和时代厘定.中国科学(D辑),2001,31(增刊):77-82
    [151]王鸿祯.中国古地理图集.北京:地质出版社,1985
    [152]王立成,魏玉帅.西藏羌塘盆地白垩纪中期构造事件的磷灰石裂变径迹证据.岩石学报,2013,29(3):1039-1047.
    [153]王立全,潘桂堂,李才,等.藏北羌塘中部果干加年山早古生代堆晶辉长岩的锆石SHRIMP U-Pb年龄--兼论原-古特提斯洋的演化,地质通报,2008,27(12):2045-2056.
    [154]王璞珺,Mattern,F,Schneider,W,等.西藏班公湖-怒江缝合带白垩纪沉积特征及其构造意义.世界地质,2003,22(2):105-110
    [155]王晓先,张进江,杨雄英,等.藏南吉隆地区早古生代大喜马拉雅片麻岩锆石SHRIMPU-Pb年龄、Hf同位素特征及其地质意义.地学前缘,2011,18(2):127-139
    [156]王忠恒,王永胜,谢元和,等.西藏班公湖一怒江缝合带中段塔仁本洋岛型玄武岩的发现及地质意义.沉积与特提斯地质,2005,25(1-2):153-162
    [157]王保弟,王立全,曾庆高,等.早三叠世北澜沧江结合带碰撞作用:类乌齐花岗质片麻岩年代学,地球化学及Hf同位素证据.岩石学报,2011,27,2752-2762
    [158]王剑,汪正江,陈文西,等.藏北北羌塘盆地那底岗日组时代归属的新证据.地质通报,2007,26
    [159]吴汉宁.古地磁学在油气勘探中的应用-地磁、大气、空间研究及应用.北京:地震出版社,1996
    [160]吴珍汉,叶培盛,胡道功等.拉萨地块北部逆冲推覆构造系统.地质论评,2003,49(1):74-80
    [161]吴怀春,张世红,韩以贵.白垩纪以来中国西部地体运动的古地磁证据和问题.地学前缘,2002,9(4):355-369
    [162]吴怀春.华北蓟县地区中元古界古地磁研究及其古大陆再造意义.[博士学位论文].北京:中国地质大学(北京),2005
    [163]吴浩若.白垩纪放射虫“Turbocapsula costata”带和藏南雅鲁藏布缝合带硅质岩系的时代问题.微体古生物学报,2007,(04):370-373
    [164]西藏自治区地质矿产局,西藏自治区区域地质志.北京:地质出版社,1993,1-707
    [165]夏代祥.班公湖-怒江、雅鲁藏布江缝合带中段演化历程的剖析.青藏高原地质文集,1985,9:123-13.
    [166]肖序常,李廷栋.青藏高原的构造演化与隆升机制.广州:广东科技出版社,2000,3-331
    [167]肖序常,李廷栋,李光岑.喜马拉雅岩石圈构造演化.北京:地质出版社,1988,201-210
    [168]肖序常,李廷栋.青藏高原的构造演化与隆升机制.广州:广东科技出版社,2000,239-268
    [169]肖序常,王军.青藏高原构造演化及隆升的简要评述.地质论评,1998,44(4):372-381.
    [170]许志琴,杨经绥,戚学祥,等.印度/亚洲碰撞——南北向和东西向拆离构造与现代喜马拉雅造山机制再讨论,2006,25(1-2):1-14
    [171]叶祥华,李家福.古地磁与西藏板块及特提斯演化.成都地质学院学报,1987,14(1):65-79
    [172]颜茂都,方小敏,张伟林,等.青藏高原东北部沉积物磁倾角浅化之成因探究.第四纪研究,2012,32,1-10
    [173]于枫,李志国,赵志丹,等.西藏冈底斯带中西部措麦地区林子宗火山岩地球化学特征及意义.岩石学报,2010,26,2217-2225
    [174]伊海生,林金辉,赵兵.藏北羌塘地区地层新资料.地质论评,2003,49(l):59-65
    [175]雍永源,贾宝江.板块剪式汇聚加地体拼贴-中特提斯消亡的新模式.沉积于特提斯地质.2000,20(1):85-89
    [176]翟庆国,李才,王军,等.藏北羌塘地区基性岩墙锆石SHRIMP定年及Hf同位素特征.科学通报,2009,54:2279-2285
    [177]曾庆高,毛国政,王保弟等.1:25万区域地质调查报告改则幅(I45C004001).拉萨:西藏自治区地质调查院,2006
    [178]张宏飞,徐旺春,郭建秋,等.冈底斯印支期造山事件:花岗岩类锆石U-Pb年代学和岩石成因证据.地球科学—中国地质大学学报,2007,32(2):155-166.
    [179]张开均,唐显春.青藏高原腹地榴辉岩研究进展及其地球动力学意义.科学通报,2009,(13):1804-1814
    [180]张世红,李海燕.地磁学、古地磁学和环境磁学的研究新进展-第32界国际地质大会学科总结和评述.现代地质,2004,18(4):415-422
    [181]张世红,王鸿祯.古大陆再造的回顾与展望.地质评论,2002,48(2):198-213
    [182]张晓倩,朱弟成,赵志丹,等.西藏措勤麦嘎岩基的锆石U-Pb年代学、地球化学和锆石Hf同位素:对中部拉萨地块早白垩世花岗岩类岩石成因的约束.岩石学报,2012,28(5):1615–1634
    [183]张玉修,张开均,夏邦栋,等.西藏羌塘地体中生代砂岩颗粒组分及其构造意义.沉积学报,2006a,24(2):25-34
    [184]张玉修,李勇,张开均,等.西藏羌塘盆地依仓玛地区中上侏罗统碳酸盐岩特征及其环境意义.中国地质,2006b,33(2):393-400
    [185]张玉修,张开均,黎兵,等.西藏改则南拉果错蛇绿岩中斜长花岗岩错石SHRIMP u-Pb年代学及其成因研究.科学通报,2007,52(l):100-106
    [186]张玉修.班公湖-怒江缝合带中西段构造演化.[博士学位论文].广州:中国科学院广州地球化学研究所,2007,7-27
    [187]张泽明,王金丽,沈昆,等.环东冈瓦纳大陆周缘的古生代造山作用:东喜马拉雅构造结南迦巴瓦岩群的岩石学和年代学证据[J].岩石学报,2008,24(7):1627-1637
    [188]赵政璋,李永铁,叶和飞,等.青藏高原大地构造特征及盆地演化.北京:科学出版社,2001,l-35
    [189]钟大赉,丁林.从三江及邻区特提斯带演化讨论冈瓦那大陆离散与亚洲大陆增生.北京:地震出版社,1993,5-8
    [190]张克信,王国灿,骆满生,等.青藏高原新生代构造岩相古地理演化及其对构造隆升的响应.地球科学:中国地质大学学报,2010,697-712
    [191]周征宇,廖宗廷.印度板块向欧亚板块俯冲碰撞的新模式及其对青藏高原构造演化的影响.沉积与特提斯地质,2006,25,27-32
    [192]朱弟成,潘桂棠,王立全,等.西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论.地质通报,2008,27,1535-1536
    [193]朱弟成,潘桂堂,王立全,等.西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境,地质通报,2008,27(4):458-468
    [194]朱弟成,潘桂棠,莫宣学,等.冈底斯中北部晚侏罗世一早白至世地球动力学环境:火山岩约束.岩石学报,2006b,22(3):534-54
    [195]朱弟成,潘桂棠,莫宣学,等.礼青藏高原中部中生代OIB型玄武岩的识别:年代学,地球化学及其构造环境.地质学报,2006,80(9):1312-1328
    [196]朱弟成,赵志丹,牛耀龄,等.拉萨地体的起源和古生代构造演化.高校地质学报,2012,18(1):1-15
    [197]朱湘元,刘椿,叶素娟,等.,西藏林周地区红层的天然剩余磁性和印度洋板块的北向移动.地质科学,1977,1,004.
    [198]朱志文,滕吉文,李光岑,等.冈瓦纳大陆解体后印度板块分块北移并与欧亚板块碰撞的古地磁证据,1984,311

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700