用户名: 密码: 验证码:
氯酚类物质在零价铁强化还原/氧化体系中的降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
零价铁是近年来迅速发展并且广泛研究应用的地下水修复技术,它能够被有效地用于处理许多难降解污染物如有机氯代溶剂、重金属和硝酸盐等,然而对于氯酚这一类难降解有机氯代物,使用单纯的零价铁技术却很难达到降解的目的。因此强化零价铁的处理能力来提高对氯酚的处理效果有着非常重要的研究意义。
     本文以氯酚类物质(CPs)作为主要目标污染物,研究了CPs在零价铁的强化还原或氧化体系中的降解行为。主要内容为:(1)考察了纳米Pd/Fe催化剂对氯酚的强化还原脱氯降解;(2)考察了非均相ZVI/H_2O_2类Fenton氧化体系,对4CP在该体系中的降解动力学行为、反应机理及降解路径进行了系统的研究;(3)将超声辐射(US)引入到一个新型的类Fenton体系(Fe/EDTA)中组成了超声/类Fenton体系,对体系反应机理、超声强化机理进行了讨论;(4)对偶氮染料废水和重金属污染土壤解吸废液在新型类Fenton体系(Fe/EDTA)中的处理进行了探索性的实验研究。本文的主要结论有:
     1.CPs在纳米级Pd/Fe体系中的强化还原脱氯降解:
     ①实验制备得平均粒径为80nm,比表面积为26±3 m~2/g的纳米双金属Pd/Fe催化剂;
     ②考察了三种CPs类物质被纳米Pd/Fe催化剂还原脱氯的降解过程。实验结果表明,纳米Pd/Fe对三种CPs的脱氯降解速率快慢顺序为TCP<DCP<MCP。在三个体系里,由目标母体化合物直接完全还原脱氯转化为苯酚是主要的还原降解路径;
     ③分别考察了催化剂用量、Pd负载比、反应温度、初始pH、其它负载金属等影响因素对246TCP还原脱氯降解的影响;
     ④考察了还原体系中氢气的产生变迁过程,并探讨了纳米Pd/Fe催化还原脱氯降解CPs的机理。ZVI的作用主要是通过腐蚀过程产氢,而Pd的功能是将H_2或H~+催化为原子态氢。CPs是通过在Pd表面的加氢反应而被脱氯。
     2.4CP在零价铁/H_2O_2类Fenton氧化体系中的降解:
     ①pH对4CP在ZVI/H_2O_2体系中的降解具有重要的影响,当pH≥5时,4CP在体系中几乎没有降解效果。当pH值在3—4之间,pH值越低,4CP降解速度越快。
     ②在ZVI/H_2O_2体系中,4CP的降解过程可以用一个二阶段的一阶降解动力学行为来表示。这个两阶段降解动力学行为是由一个初始的缓慢降解阶段(第一阶段)和随后的快速降解阶段(第二阶段)所组成,第二阶段的降解动力学常数要比第一阶段的大一个数量级。
     ③提出了4CP在ZVI/H_2O_2体系中的可能降解路径。在该体系中,4CP首先与·OH结合生成ClHP·自由基。然后降解路径可分为两条子路径—4CC路径和ClPP·路径。这两个子路径产生的中间产物都能在·OH的持续攻击下氧化成低分子脂肪酸,如马来酸等。
     3.氯酚在超声辅助类Fenton(US/Fe/EDTA)体系中的降解:
     ①考察了24DCP在US/类Fenton体系中的降解,对照实验表明,24DCP在各体系中的降解次序为US/Fe/EDTA>Fe/EDTA>US/Fe>US。超声辐射对于DCP在该类Fenton体系中的降解具有很强的协同作用。DCP的降解过程符合一级反应动力学行为。考察了初始工艺参数如DCP浓度、铁投加量、EDTA浓度及反应温度等对DCP降解的影响;
     ②以4CP为目标污染物,考察了4CP和EDTA在US/类Fenton体系中的共同降解关系。两种物质在体系中的降解都能的符合一阶反应动力学行为。EDTA和ZVI是体系中的关键性物质,它们的初始浓度变化对于4CP和EDTA的降解具有重大的影响。超声不仅对4CP的降解有协同作用,对EDTA亦然。体系中的DO浓度对两种污染物的降解具有至关重要的影响,当体系中DO过低时,降解反应会完全被抑制住。反应温度对k_(obs)(4CP)和k_(obs)(EDTA)有着正影响关系,计算得到反应活化能(Ea)分别为38.6(4CP)和24.8 kJ mol~(-1)(EDTA),提出了在US辅助类Fenton体系中主要的氧化剂应该为四价铁离子(Ferryl ion,[Fe~ⅣO]~(2+))而不是羟基自由基。
     ③考察了五种CPs在US/类Fenton体系中的降解,得到了CPs的一阶降解动力学常数。用PM3 Hamilitonian算法计算得出CPs的19个量子化学描述符。通过采用PLS方法对5个动力学常数的对数值和CPs的量子化学描述符进行计算分析得到了一个最优化的QSPR模型。最优模型结果表明,当一种氯酚物质具有越高的E_(lumo)-E_(homo)、(E_(lumo)-E_(homo))~2、Mw、~1X~Ⅴ和CCR值,它在US/类Fenton体系中就降解得越慢,而当氯酚有更高的E_(homo)、μ、TE、EE和HOF值时就降解得越快。CPs在US/类Fenton体系中可以归结于溶液中的均相Fenton氧化。超声的作用应该体现在对Fenton反应的协同影响上而并非直接的空穴氧化降解。
     4.染料废水和重金属污染土壤解吸废液在新型类Fenton(Fe/EDTA)体系中的降解:
     ①考察了模拟偶氮染料废水在类Fenton体系中的快速脱色和降解行为。结果表明,模拟染料废水能在15min内被迅速脱色,而EDTA也可在反应3h后完全被去除。对初始的工艺参数如活性染料浓度、EDTA投加量、铁粉投加量、pH和通气条件等进行了详细的考察;考察了超声波、紫外光辐射对类Fenton体系降解染料废水的协同作用。结果表明,超声波有很强的协同作用,外加紫外光则没有协同作用;
     ②对EDTA强化解吸模拟重金属污染土壤和解吸废液在类Fenton体系中的处理进行了实验研究。结果表明,反应24h后,所有重金属离子和94.8%的EDTA得到去除。
Zero-valent iron(ZVI) has been successfully used in the remediation of various groundwater and soil contaminants including a large variety of organic(e.g.,chlorinated organic solvent,PCBs) and inorganic(e.g.,heavy metal ion,arsenic,nitrate) compound. However,with respect to chlorophenols(CPs),treated by sole ZVI technology was reported inefficient.Therefore,it is essential to develop new ZVI technologies for the treatment of CPs.
     In this dissertation,CPs was chosen as the main model pollutant.Enhanced ZVI reductive/oxidative systems were established to evaluate the degradation of CPs.Firstly, enhanced ZVI reductive catalyst—nanoscale Pd/Fe was synthesized and dechlorination of 3 CPs in this reductive system was investigated.Secondly,a ZVI/H_2O_2 Fenton like oxidative system was established.The degradation kinetics,pathways and effect factors were further studied.Thirdly,degradation of CPs in a novel ultrasound(US) enhanced Fenton like system(Fe/EDTA/air) was investigated.The reaction mechanism and enhanced role of US were studied.Lastly,treatment of simulated textile wastewater and desoprtion waste from heavy metal contaminated soil in the Fenton like(Fe/EDTA/air) was investigated.The main results of this dissertation are as follows:
     1.Results of reductively dechlorination of CPs by nanoscale Pd/Fe:
     ①Nanoscale Pd/Fe bimetal catalyst with mean particle size of 80 nm and BET specific area of 26±3 m~2/g was synthesized.
     ②The reductive dechlorination of three CPs by nano scale Pd/Fe was investigated respectively.The sequence of dechlorinated rate of CPs is TCP<DCP<MCP.In the degradation of CPs,direct transformation from model parent CPs compound to phenol are all identified as the main dechlorinated degradation pathway.
     ③The effect of some experiment parameters such as catalyst loading,Pd ratio, reaction temperature and initial pH etc on the reductive dechlorination of 246TCP were investigated.
     ④Evolution of hydrogen gas in the system was observed.Catalytic reductive dechlorination mechanism of CPs by nanoscale Pd/Fe was proposed.Within the system,the role of ZVI is to produce hydrogen through metal corrosion reaction.Hydrogen gas can be associated on the Pd surface and transformed to atomic hydrogen with strong reductive ability.The degradation of CPs can be ascribed to catalytic hydrogendechlorination on Pd surface.
     2.Results of oxidative degradation of 4CP in a heterogeneous ZVI/H_2O_2 Fenton like system:
     ①Initial pH was proven to have significant effect on the degradation of 4CP and lower pH brought faster degradation rate.
     ②When initial pH was 4,two-stage first order degradation kinetic of 4CP could be applied very well in all experiments.The two-stage kinetic is composed of an initial slow degradation stage(first-stage) and a followed rapid degradation stage(second-stage),where kinetic constant(k_(obs)) of the latter stage was one magnitude larger than that of the former stage.
     ③A scheme of 4CP degradation pathways in ZVI/H_2O_2 system was proposed and two pathways--4CC pathway(attacking by hydroxyl radical(·OH)) and orthoparachlorophenolperoxyl radicals(ClPP·) pathway(participating by O_2) were expected to happen in the system.Both pathways would finally lead to the production of low molecule aliphatic organic acid.
     3.Results of Degradation of CPs in a novel ultrasound assisted Fenton like system:
     ①The sequence of the degradation rate of 24DCP in different system is US/Fe/EDTA>Fe/EDTA>US/Fe>US.It showed that ultrasound presented synergistic effect on the Fenton like system.Pseudo-first-order kinetics could be well applied in degradation of DCP.
     ②Both 4CP and EDTA were found to follow pseudo-first-order degradation kinetic in the novel US/Fenton like system at neutral pH.A non-radical degradation pathway was proposed for the neutral US/Fenton like system.The competitive degradation relationship between 4CP and EDTA is very weak.EDTA and ZVI play important roles in the system and variation of their initial concentration showed significant effect on the degradation rate of both 4CP and EDTA.Ultrasound presented significant positive effect on the degradation of 4CP and EDTA.By ultrasonic cavitation effect,kinetic barrier of O-O band was overcome,which eventually improve H_2O_2 production rate.Sufficient DO is indispensable to the neutral US/Fenton like system and degradation of 4CP and EDTA was almost inhibited at low DO concentrations.Reaction temperature also had positive effect on the degradation rate of 4CP and EDTA.Activation energy(Ea) of 4CP and EDTA was calculated as 38.6 and 24.8 kJ mol~(-1) respectively.A non-radical degradation pathway was proposed for the neutral US/Fenton like system.Ferryl-EDTA complex([Fe~ⅣO]EDTA) instead of OH·was identified as the dominant oxidant in the system.
     ③By the use of PLS method and 19 quanchemical descriptors computed by PM3 Hamilitonian,an optimized QSPR model was developed for degradation rate constants of 5 CPs in a US irradiated Fenton-like system.The model can be used to explain the degradation mechanism and enhancement role of ultrasound.CPs with greater, E_(lumo)-E_(homo),(E_(lumo)-E_(homo))~2,Mw,~1X~V and CCR values tend to be degraded slower, whereas CPs with higher values of E_(homo),μ,TE,EE and HOF values tend to be degraded faster.The degradation of CPs in the US/Fenton-like system can be ascribed to homogeneous Fenton oxidation in the bulk solution.Ultrasound irradiation is expected to enhance Fenton reaction instead of directly decompose CPs in the system.
     4.Results of degradation of textile wastewater and desorption wastewater from heavy metal contaminated soil in the Fenton like system:
     ①The degradation of simulated textile wastewater was investigated.It indicated that decolorization of the wastewater and degradation of EDTA could be completely achieved at 15min and 3h respectively.Effect of some experiment parameters was also investigated. Two types of external energy--ultrasound(US) and ultraviolet(UV) was introduced into the Fenton like system respectively and the effect of the external energies on the degradation of the wastewater was assessed.Ultrasound presented significant synergistic improvement on both the decolorization rate of the wastewater and degradation rate of EDTA.In contrast, ultraviolet light presented slight inhibition on degradation of the wastewater in the Fenton like system.
     ②Desorption wastewater from heavy metal contaminated soil in the Fenton like system could be treated by Fenton like system.The result showed that heavy metal ions could be completely removed from the water after 24h's treatment and the removal rate of EDTA achieved 94.8%as well.
引文
[1] Koch E., in: L. Hauchler (Ed.), Global Trends 93/94, Fischer Taschenbuchverlag, Frankfurt a. M., 1993,305.
    
    [2] WHO, Global Water Supply and Sanitation Assessment 2000 Report, WHO/UNICEF Joint Monitoring Programme for Water Supply and Sanitation, World Health Organization and United Nations Children Fund.
    
    [3] U.S. EPA. PCP Carcinogenicity summary table. AWBERC library: Cincinnati, 1990.
    
    [4] EPA, July 2002. http://www.scorecard.org.
    
    [5] Hayward K., Drinking water contaminant hit-list for US EPA, Water 21, September- October, 4, 1998.
    
    [6] Keith L.H., Telliard W.A., Priority pollutants: a prospective view. Environ. Sci. Technol., 1979,13:416-424.
    
    [7] EC Decision 2455/2001/EC of the European Parliament and of the Council of November 20, 2001 establishing the list of priority substances in the field of water policy and amending Directive 2000/60/EC (L 331 of 15-12-2001).
    
    [8] Abe K.I., Tanaka K., Fe~(3+) and UV-enhanced ozonation of chlorophenolic compounds in aqueous medium. Chemosphere, 1997, 35: 2837-2847.
    
    [9] Wegman R.C.C., Van den Broek H.H., Chlorophenols in river sediment in The Netherlands. Water Res., 1983,17:227-230.
    
    [10] J. Paasivirta, J. Sarkka, T. Leskijarvi, et al, Transportation and enrichment of chlorinated phenolic compounds in different aquatic food chains. Chemosphere, 1980, 9:441-456.
    
    [11] WHO, Chlorophenols other than pentachlorophenol, Environmental Health Criteria 93, World Health Organisation, 1989.
    
    [12] Folke J., Birklund J., Danish coastal levels of 2,3,4,6-tetrachlorophenol, pentachlorophenol, and total organohalogens in blue mussels (Mytrulus edulis). Chemosphere, 1986,15: 895-900.
    [13] Grimwood M., Mascarenhas R., Proposed environmental quality standards for 2-, 3- and 4-chlorophenol and 2,4-dichlorophenol in water, Environment Agency Technical Report P46/i688, WRc Report No. EA4215, 1997.
    [14]Howard P.H.,Handbook of Environmental Fate and Exposure Data for Organic Chemical,vol.Ⅰ,Large Production and Priority Pollutants,Lewis Publishers,Chelsea,MI,USA,1989.
    [15]EPA,National Recommended Water Quality Criteria,Federal Register 57-60848,1992.
    [16]Jones A.P.,Watts R.J.,Dry phase dioxide-mediated photocatalysis:basis for in situ surface destruction of hazardous chemicals.J.Environ.Eng.,1997,123:974-981.
    [17]Shul'pin G.B.,Bochkova M.M.,Nizova G.V.,et al,Aerobic photodegradation of phenols in aqueous solutions promoted by metal compounds.Appl.Catal.B,1997,12:1-19.
    [18]Ahlborg U.G.,Thunberg T.M.,Chlorinated phenols:occurrence,toxicity,metabolism and environmental impact.CRC Crit.Rev.Toxicol.,7:1-35.
    [19]Ullmann's Encyclopedia of Industrial Chemistry,6th ed.,Wiley,New York,1998.
    [20]EPA,USA,Report 440/5-86-001,1987.
    [21]EPA,USA,Report 440/5-80-034,PB 81-117459,1980.
    [22]EPA,USA,Fed.Reg.44(144):43660-43665,1979.
    [23]Devillers J.,Chambon P.,Acute toxicity and QSAR of chlorophenols on Daphnia magna.Bull.Environ.Contam.Toxicol.,1986,37:599-605.
    [24]Jardim W.F.,Moraes S.G.,Takiyama M.M.K.,Photocatalytic degradation of aromatic chlorinated compounds using TiO_2:toxicity of intermediates.Water Res.1997,31:1728-1732.
    [25]钱易,汤鸿霄,文湘华,水体颗粒物和难降解有机物的特性与控制技术原理,北京,中国环境出版社,2000.
    [26]Danis T.G.,Albanis T.A.,Petrakis D.E.,et al,Removal of chlorinated phenols from aqueous solutions by adsorption on alumina pillared clays and mesoporous alumina aluminium phosphates.Water Res.,1998,32:295-302.
    [27]Bigda R.J.,Consider Fenton chemistry for wastewater treatment.Chem.Eng.Prog.1995,91:62-66.
    [28]Lin J.G.,Ma Y.S.,Oxidation of 2-chlorophenol in water by ultrasound/ Fenton method.J.Environ.Eng.,2000,126:130-137.
    [29]M.Tezuka,M.Iwasaki,Plasma induced degradation of chlorophenols in aqueous solution.Thin.Sol.Films,1998,316:123-127.
    [30]Willberg D.M.,Lang P.S.,H(o|¨)chemer R.H.,et al,Degradation of 4-chlorophenol,3,4-dichloroaniline,and 2,4,6-trinitrotoluene in an electrohydraulic discharge reactor.Environ.Sci.Technol.1996,30:2526-2534.
    [31]Fenton H.J.H.,Oxidation of tartaric acid in presence of iron.J.Chem.Soc.,1894,65:899-910.
    [32]J.Prousek,Fenton reaction after a century.Chem.Listy.,1995,89:11-21.
    [33]Mazellier P.,Mailhot G.,Bolte M.,Photochemical behavior of the iron(Ⅲ)/2,6-dimetylphenol system.New J.Chem.,1997,21:389-397.
    [34]Brillas E.,Calpe J.C.,Casado J.,Mineralization of 2,4-dichlorophenol by advanced proceses in drinking water treatment.Water Res.,2000,34:2253-2262.
    [35]Tang W.Z.,Huang C.P.,Effect of chlorine content of chlorinated phenols on their oxidation kinetics by Fenton's reagent.Chemosphere 1996,33:1621-1635.
    [36]Tang W.Z.,Huang C.P.,The effect of chlorine positions of chlorinated phenols of their dechlorination kinetics by Fenton's reagent.Waste Manage.,1995,15:615-622.
    [37]B.G.Kwon,D.S.Lee,N.Kang,J.Yoon,Characteristics of p-chlorophenol oxidation by Fenton's reagent.Water Res.1999,33:2110-2118.
    [38]Barbeni M.,Minero C.,Pelizzetti E.,et al,Chemical degradation of chlorophenols with Fenton's reagent,Chemosphere.1987,16:2225-2237.
    [39]Dosanjh M.K.,Wase D.A.J.,Oxygen uptake studies on various sludges adapted to a waste containing chloro-,nitro- and amino-substituted xenobiotics.Water Res.,1987,21:205-209.
    [40]Lu M.C.,Oxidation of chlorophenols with hydrogen peroxide in the presence of goethite,Chemosphere 1999,40:125-130.
    [41]Linsebigler A.L.,Lu G.,Yates Jr.J.T.,Photocatalysis on TiO_2 surfaces:principles,mechanisms and selected results.Chem.Rev.1995,95:735-758.
    [42]Benitez F.J.,Beltran-Heredia J.,Acero J.L.,Rubio F.J.,Rate constants for the reactions of ozone with chlorophenols in aqueous solutions.J.Hazard.Mater.B,2000,79:271-285.
    [43]Benitez F.J.,Beltran-Heredia J.,Acero J.L.,et al,Oxidation of several chlorophenolic derivatives by UV irradiation and hydroxyl radicals.J.Chem.Technol.Biotechnol.,2001,76:312-320.
    [44]Chamarro E.,Marco A.,Esplugas S.,Use of Fenton reagent to improve organic chemical biodegradability.Water.Res.,2001,35:1047-1051.
    [45] Benitez F.J., Beltran-Heredia J., Acero J.L., et al, Contribution of free radicals to chlorophenols decomposition by several advanced oxidation techniques. Chemosphere,2000,41: 1271-1277.
    [46] Benitez F.J., Beltran-Heredia J., Acero J.L., et al, Chemical decomposition of 2,4,6- trichlorophenol by ozone, Fenton's reagent, and UV radiation. Ind. Eng. Chem. Res., 1999,38:1341-1349.
    [47] Yeh C.K.J., Kao Y.A., Cheng C.P., Oxidation of chlorophenols in soil at natural pH by catalysed hydrogen peroxide: the effect of soil organic matter. Chemosphere, 2002,46: 67-73.
    [48] Yoon J., Kim S., Lee D.S., et al, Characteristics of p-chlorophenol degradation by photo-Fenton oxidation. Water Sci. Technol., 2000,42: 219-224.
    [49] Dong C., Destruction of hazardous organic contaminants by advanced oxidation process, PhD dissertation, University Delaware, DE, USA, 1993.
    [50] Kim S.M., Vogelpohl A., Degradation of refractory organic compounds by the photo-Fenton process utilizing Fe(II)/H2O2/UV or Fe(III)oxalate/H2O2/UV, in: Proceedings of the Fourth International Conference on Advanced Oxidation Technologies for Water and Air Remediation, Abstract 67,1996.
    [51] Walling C., Fenton's reagent revisited. Acc. Chem. Res., 1975, 8:121-131.
    [52] Al-Hayek L., Dore M., Oxidation des phenols par le peroxide d'hydrogene en milieu aqueux en presence de fer supportesur alumine. Water Res., 1990,24: 973-982.
    [53] Fajerweg K., Debellefontaine H., Wet oxidation of phenol by hydrogen peroxide using heterogeneous catalysis, Fe-ZSM-5: a promising catalyst. Appl. Catal. B, 1996, 10: L229-L235.
    [54] Lin S.S., Gurol M.D., Catalytic decomposition of hydrogen peroxide on iron oxide: kinetics, mechanism and implications. Environ. Sci. Technol., 1998, 32:1417-1423.
    [55] Valentine R.L., Wang H.C.A., Iron oxide surface catalysed oxidation of quinoline by hydrogen peroxide. J. Environ. Eng., 1998, 124: 31-38.
    [56] Ravikumar J.X., Gurol M.D., Fenton's reagent as a chemical oxidant to soil contaminants, Chem. Oxid., 1994,2,206-229.
    [57] B. Zinder, G. Furrer, W. Stumm, The coordination chemistry of weathering II. Dissociation of Fe (III) oxides. Geochim. Cosmochim. Acta, 1986, 50: 1861-1869.
    [58] Lucking F., Koser H., Jank M., et al, Iron powder, graphite and activated carbon as catalysts for the oxidation of 4-chlorophenol with hydrogen peroxide in aqueous solution. Water Res., 1998, 32: 2607-2614.
    [59] Huling S.C.G., Arnold R.G., Sierka R.A., et al, Contaminant adsorption and oxidation via Fenton reaction, J. Environ. Eng., 2000,126: 595-600.
    [60] Sabhi S., Kiwi J., Degradation of 2,4-dichlorophenol by immobilized iron catalysts, Water Res., 2001,35: 1994-2002.
    [61] Orth W. S., Gillham R. W, Dechlorination of trichloroethene in aqueous solution using FeO. Environ. Sci. Technol., 1996, 30: 66-71.
    [62] Sayles G. D., You G. R., Wang M. X., et al, DDT, DDD and DDE dechlorination by zero valent iron, Environ. Sci. Technol., 1997, 31: 3448-3454.
    [63] Matheson L.J., Tratnyek P.G., Reductive dehalogenation of chlorinated urethanes by iron. Environ. Sci. Technol., 1994,28: 2045-2053.
    [64] Sweeny K. H., Reductive degradation treatment of industrial and municipal wastewaters, in: Proc.Water Reuse Symposium; American Water Works Association Research Foundation: Denver 1979,2,1487-1497.
    [65] Sweeny K. H. The Reductive treatment of industrial wastes.II Process applications. AIChE Symp. Ser., 1981, 77: 72-78.
    [66] Gillham, R.W., O'Hannesin S.F., Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water, 1994, 32: 958-967.
    [67] Muftikian R., A method for the rapid dechlorination of low molecular weight chlorinated hydrocarbons in water. Water Res., 1995, 29: 2434-2439.
    [68] Masciangioli T., Zhang W.X., Environmental technologies at the nanoscale. Environ. Sci. Technol., 2003, 37: 102-108.
    [69] Elliott D.W., Zhang W.X., Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ. Sci. Technol., 2001, 35: 4922-4926.
    [70] Xu Y., Zhang W. X., Subcolloidal Fe-Ag particles for reductive dehalogenation of chlorinated benzenes. Ind. Eng. Chem. Res., 2000, 39: 2238-2244.
    [71] Grittini C., Malcomson M., Fernando Q., et al, Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system. Environ. Sci. Technol., 1995,29: 2898-2900.
    [72] Blowes D.W., Pttacek C.J., Jambor J.L., In-situ remediation of Cr(VI)-contaminated groundwater using permeable reactive walls: laboratory studies. Environ. Sci. Technol., 1997: 3348-3357.
    [73] Cantrell K.J., Kaplan D.I., Wietsma T.W., Zero-valent iron for the in situ remediation of selected metal in groundwater.J.Hazar.Mat.,1995,42:201-212.
    [74]Zhang W.X.,Wang C.B.,Lien H.L.,Treatment of chlorinated organic contaminants with nanoscale bimetallic particles.Cata.Today,1998,40:387-395.
    [75]Mu Y.,Yu H.Q.,Zheng J.C.,et al,Reductive degradation of nitrobenzene in aqueous solution by zero-valent iron.Chemosphere,2004,54:789-794.
    [76]Pearson C.R.,Hozalski R.M.,Arnold W.A.,Degradation of chloropicrin in the presence of zero-valent iron.Environ.Toxicol.Chem.,2005,24:3037-3042.
    [77]Dombek T.,Dolan E.,Schultz J.,et al,Rapid reductive dechlorination of atrazine by zero-valent iron under acidic conditions.Environ.Pollut.,2001,111:21-27.
    [78]Ghauch A.,Suptil J.,Remediation of s-triazines contaminated water in a laboratory scale apparatus using zero-valent iron powder,Chemosphere,2000,41,1835-1843.
    [79]Ghauch A.,Degradation of benomyl,picloram,and dicamba in a conical apparatus by zero-valent iron powder.Chemosphere,2001,43:1109-1117.
    [80]Volpe A.,Lopez A.,Mascolo G.,et al,Chlorinated herbicide(triallate)dehalogenation by iron powder.Chemosphere,2004,57:579-586.
    [81]Hinz D.C.,Wai C.M.,Wenclawiak B.W.,Remediation of a nonachloro biphenyl congener with zero-valent iron in subcritical water.J.Environ.Monit.,2000,2:45-48.
    [82]Perey J.R.,Chiu P.C.,Huang C.P.,et al,Zero-valent iron pretreatment for enhancing the biodegradability of Azo dyes.Water Environ.Res.,2002,74:221-225.
    [83]Chen Y.M.,Li C.W.,Chen S.S.,Fluidized zero valent iron bed reactor for nitrate removal,Chemosphere,2005,59,753-759.
    [84]Hao Z.W.,Xu X.H.,Wang D.H.,Reductive denirrification of nitrate by scrap iron filings.J.Zhejiang Univ.Sci.B,2005,6:182-186.
    [85]Farrell J.,Wang J.,O'Day P.,et al,Electrochemical and spectroscopic study of arsenate removal from water using zero-valent iron media.Environ Sci.Technol.,2001,35,2026-2032.
    [86]Ramaswami A.,Tawachsupa S.,Isleyen M.,Batch-mixed iron treatment of high arsenic waters.Water Res.,2001,35:4474-4479.
    [87]Nikolaidis N.P.,Dobbs G.M.,Lackovic J.A.,Arsenic removal by zero-valent iron:field,laboratory and modeling studies,Water Res.,2003,37,1417-1425.
    [88]Lee T.,Lim H.,Lee Y.,et al,Use of waste iron metal for removal of Cr(Ⅵ) from water.Chemosphere,2003,53:479-485.
    [89] Morrison S.J., Metzler D.R., Dwyer B.P., Removal of As, Mn, Mo, Se, U, V and Zn from groundwater by zero-valent iron in a passive treatment cell: reaction progress modeling. J Contain. Hydrol., 2002,56: 99-116.
    [90] Wilkin R.T., McNeil M.S., Laboratory evaluation of zero-valent iron to treat water impacted by acid mine drainage, Chemosphere, 2003,53: 715-725.
    [91] Wang C., Zhang W., Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol., 1997, 31: 2154-2156.
    [92] Zhang W., Nanoscale iron particles for environmental remediation: An overview. J. Nanopart. Res., 2003, 5: 323-332.
    [93] Zhang W., Wang C, Lien H., Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal. Today, 1998, 40: 387-395.
    [94] Nutt M., Hughes J., Wong M., Designing Pd-on-Au bimetallic nanoparticle catalysts for trichloroethene hydrodechlorination. Environ. Sci Technol., 2005, 39: 1346-1353.
    [95] Doyle J., Miles T., Parker E., et al, Quantification of total polychlorinated biphenyl by dechlorination to biphenyl by Pd/Fe and Pd/Mg. Microchem. J., 1998, 60: 290- 295.
    [96] Elliott D., Cao J., Zhang W., et al., Characterization of zero-valent iron nanoparticles. in: The 225th ACS National Meeting, New Orleans, LA, United States, 2003, 43:564-569.
    [97] He F., Zhao D.Y., Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water, Environ. Sci. Technol. 2005,39: 3314-3320.
    [98] Liu Y.Q., Majetich S.A., Tilton R.D., et al, TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ. Sci Technol., 2005, 39: 1338-1345.
    [99] Alowitz M., Scherer M., Kinetics of nitrate, nitrite, and Cr (VI) reduction by iron metal. Environ. Sci. Technol., 2002, 36: 299-306.
    [100] Cao J., Elliott D., Zhang W., Perchlorate reduction by nanoscale iron particles. J. Nanopart. Res., 2005, 7: 499-506.
    [101] Xu J., Dozier A., Bhattacharyya D., Synthesis of nanoscale bimetallic particles in polyelectrolyte membrane matrix for reductive transformation of halogenated organic compounds. J. Nanopart. Res., 2005, 7: 449-467.
    [102] Kanel S., Manning B., Charlet L., et al., Removal of arsenic (III) from groundwater by nanoscale zero-valent iron.Environ.Sci.Technol.,2005,39:1291-1298.
    [103]Glazier R.,Venkatakrishnan R.,Gheorghiu F.,Walata L.,Nash R.,Zhang W.,Nanotechnology takes root.Civ.Eng.,2003,73:64-69.
    [104]Quinn J.,Geiger C.,Clausen C.,et al.,Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron.Environ.Sci.Technol.2005,39:1309-1318.
    [105]Mulftian R.,Fernando Q.,Korte N.A.,Method for the rapid dechlorination of low molecular weight chlorinated hydrocarbons in water.Water Res.,1995,29:2434-2439.
    [106]全燮,刘会娟,杨凤林等,二元金属体系对水中多氯代有机物的催化还原脱氯特性,环境科学,1998,18:333-336.
    [107]Schrick B.,Blough J.L.,Jones A.D.,et al,Hydrodechlorination of Trichloroethylene to Hydrocarbons Using Bimetallic Nickel Iron-Nanoparticles.Chem.Mater.,2002,14:5140-5147.
    [108]Grittini C.,Malcornson M.,Fernando Q.,.et al,Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system.Environ.Sci.Technol.,1995,29:2898-2900.
    [109]Xu X.H.,Zhou H.Y,Wang D.H.,Catalytic dechlorination of chlorobenzene in water by Pd/Fe system.Chin.Chem.Lett.,2003,14:700-703.
    [110]Xu X.,Zhou H.,Wang D.,Structure relationship for catalytic dechlorination rate of dichlorobenzenes in water.Chemosphere,2005,S8:1497-1502.
    [111]Kim Y.H.,Carraway,E.R.,Reductive dechlorination of TCE by zero valent bimetals.Environ.Technol.,2003:24,69-75.
    [112]Kim Y.H.,Shin,W.S.,Ko S.O.,Reductive dechlorination of chlorinated biphenyls by palladized zero-valent metals.J.Environ.Sci.Health A,2004,39:1177-1188.
    [113]Cheng S.F.,Wu S.C.,The enhancement methods for the degradation of TCE by zero-valent metals.Chemosphere,2000,41:1263-1270.
    [114]Geiger C.L.,Clausen C.A.,Brooks K.,et al.,Nanoscale and microscale iron emulsions for treating DNAPL.in:Chlorinated solvent and DNAPL remediation ACS symposium series,2003,837:132-140
    [115]Li,F.,Vipulanandan C.,Mohanty K.K.,Microemulsion and solution approaches to nanoparticle iron production of degradation of trichloroethylene.Colloids Surf.A, 2003,223,103.
    [116] Suslick K.S., Fang M, Hyeon T. Sonochemical sythesis of iron colloids. J. Am. Chem. Soc., 1996,118:11960-11961.
    [117] Khalil H., Mahajan D., Rafailovich M., et al, Synthesis of zerovalent nanophase metal particles stabilized with poly-(ethylene glycol). Langmuir, 2004, 20: 6896- 6903.
    [118] Sun, Y.P., Zhang W.X., Dispersion of zero-valent iron nanoparticles. In: Abstracts of Papers IEC-090, 229th ACS National Meeting, March 13-17, 2005; American Chemical Society: San Diego, CA, 2005.
    [119] He F., Zhao D., Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ. Sci. Technol., 2005, 39: 3314-3320.
    [120] He F., Zhao D., Liu J., et al, Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind. Engr. Chem. Res., 2007, 46: 29-34.
    [121] Schrick B., Hydutsky B.W., Blough, J.L., et al, Delivery vehicles for zero valent metal nanoparticles in soil and groundwater. Chem. Mater., 2004, 16: 2187-2193.
    [122] Saleh N., Phenrat, T., Sirk K., et al., Adsorbed triblock copolymers deliver reactive iron nanoparticles to the Oil/Water interface. Nano Lett., 2005, 5: 2489-2494.
    [123] Ponder S.M., Darab J.G., Bucher J., et al., Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants, Chem. Mater., 2001,13: 479-486.
    [124] Zhang P.F., Tao X., Li Z.H., et al, Enhanced perchloroethylene reduction in column systems using surfactant-modified zeolite/zerovalent iron pellets, Environ. Sci. Technol., 2002, 36: 3597-3603.
    [125] Xu J., D. Bhattacharyya, Fe/Pd Nanoparticle immobilization in microfiltration membrane pores: synthesis, characterization, and application in the dechlorination of polychlorinated biphenyls, Ind. Eng. Chem. Res., 2007,46: 2348-2359.
    [126] Shimotori T., Nuxoll E.E., Cussler E.L., et al, A polymer membrane containing FeO as a contaminate barrier. Environ. Sci. Technol., 2004, 38: 2264-2270.
    [127] Mackenzie P.D., Horney D.P., Sivavec T.M., Mineral precipitation and porosity losses in granular iron columns. J. Hazard. Mater., 1999, 68: 1-17.
    [128] Joo S.H., Feitz A.J., Waite T.D., Oxidative degradation of the carbothioate herbicide, molinate,using nanoscale zero-valent iron.Environ.Sci.Technol.,2004,38:2242-2247.
    [129]Joo S.H.,Feitz A.J.;Sedlak D.L.,et al,Quantification of the oxidizing capacity of nanoparticulate zero-valent iron.Environ.Sci.Technol.,2005,39:1263-1268.
    [130]Leupin,O.X.,Hug,S.J.,Oxidation and removal of arsenic(Ⅲ) from aerated groundwater by filtration through sand and zerovalent iron.Water Res.,2005,39:1729-1740.
    [131]US EPA,(1997).Permeable reactive barrier technologies for contaminant remediation.EPA/600/R-98/125.
    [132]US EPA,(1997).Field applications of in situ remediation technologies:permeable reactive barrier.Report prepared under contract 68-W-00-084.
    [133]Gillham R.W.,Discussion of nano-scale iron for dehalogenation.Ground Water Monit.Remed.,2003,23:,6-9.
    [134]Tratnyek P.G.and Johnson R.L.,Nanotechnologies for environmental cleanup Nano Today,2006,1:44-48.
    [135]Ince N.H.,Ultrasound as a catalyzer of aqueous reaction systems:the state of the art and environmental application,Appl.Catal.B,2001,29:167-176.
    [136]吴胜举,超声降解处理水体污染物的研究状况与发展,物理,2001,30(12):782-786.
    [137]冯若,李化茂,声化学及其应用,安徽科技出版社,1992,84-88.
    [138]冯若,声化学基础研究中的声学问题,物理学进展,1996,16(3,4):402.
    [139]刘冬莲,黄艳斌,·OH的形成机理及在水处理中的应用,环境科学与技术,2003,26(1):44-47.
    [140]Mason T.J.,Sonochemistry-theory,application and uses of ultrasound in chemistry and chemical engineering,Ellis Horwood,1990.
    [141]Hirai K.,Decomposition of chlorofluorocarbons and hydrofluorocarbons in water by ultrasonic irradiation,Ultrason.Sono.,1996,3:S205-207.
    [142]Chang C.N.,Wu Y.S.,Enhancement of decomposition of 2-chlorophenol with ultrasound/H2O2 process.Water Sci.Technol.,1996,34:340-345.
    [143]Lin J.G.,Ma Y.S.,Magnitude of effect of reaction parameters on 2-chlorophenol decomposition by ultrasonic process.J.Hazar.Mater.1999,B66:291-305.
    [144]Teo K.C.,Xu Y.R.,Sonochemical degradation for toxic halogenated organic compounds.Ultrason.Sono.,2001,8:241-246.
    [145]Nagata Y.and Nakagawa M.,Sonochemical degradation of chlorophenols in water.Ultrason.Sono.2000,7,115-120.
    [146]Gondrexon,N.,Renaudin V.,Degradation of pentachlorophenol aqueous solutions using a contious flow ultrasonic reactor:experimental performance and modeling,Ultrason.Sono.,1999,5:125-131.
    [147]吴晓辉,造纸废水的超声降解研究,华中科技大学博士论文,2003.
    [148]Wei J.,Xu X.,Liu Y.,et al,Catalytic hydrodechlorination of 2,4-dichlorophenol over nanoscale Pd/Fe:reaction pathway and some experimental parameters.Water Res.,2006,40:348-354.
    [149]Matheson L.J.,Tratnyek P.G.,reductive dehalogenation of chlorinated methanes by iron metal,Environ.Sci.Technol.,1994,28:2045-2053.
    [150]Weber E.J.,Iron-mediated reductive transformations:investigation of reaction mechanism,Environ.Sci.Technol.,1996,30:716-719.
    [151]Brewster J.H.,Mechanisms of reductions at metal surfaces.I.A general working hypothesis,J.Am.Chem.Soc.,1954,76:6361.
    [152]Cheng F.,Fernando Q.,Korte N.,Reduction of nitrate to ammonia by zero-valent iron,Chemosphere,1997,31:2689-2695.
    [153]Lien H.L.,Zhang W.X.,Transformation of chlorinated methanes by nanoscale iron particles,J.Environ.Eng.,1999,125,1042-1047.
    [154]Lien H.L.,Zhang W.X.,Nanoscale iron particles for complete reduction of chlorinated ethenes,Colloids Surf.A:Physicochem.Eng.Aspects,2001,191:97-105.
    [155]Kim Y.and Carraway E.,Dechlorination of pentachlorophenol by zero valent iron and modified zero Valent Irons.Environ.Sci.Technol.2000,34:2014-2017.
    [156]Li T.,Farrell J.,Reductive dechlorination of trichloroethene and carbon tetrachloride using iron and palladized-iron cathodes,Environ.Sci.Technol.2000,34:173-179.
    [157]Phillips D.H.,Gu,B.Watson,D.B.,et al.,Performance evaluation of a zerovalent iron reactive barrier:mineralogical characteristics.Environ.Sci.Technol.2000,34:4169-4176.
    [158]Antunes R.A.,Costa I.,Faria,D.L.A.d.Characterization of corrosion products formed on steels in the first months of atmospheric exposure.Materia,2003,8:27-34.
    [159]Sun Y.P.,Li X.Q.,Cao J.,et al,Characterization of zero-valent iron nanoparticles.Advances in Colloid and Interface Science,2006,120:47-56.
    [160] Su, C., Puls R.W., Kinetics of trichloroethene reduction by zerovalent iron and tin: pretreatment effect, apparent activation energy, and intermediate products. Environ. Sci. Technol. 1999,33: 163-168.
    [161] Zhang, L., Arnold, W. A., Hozalski, R. M. Kinetics of haloacetic acid reactions with Fe(0). Environ. Sci. Technol., 2004,38:6881-6889.
    
    [162] Arnold, W.A., Ball W. P., Roberts A.L., Polychlorinated ethane reaction with zerovalent zinc: pathways and rate control. J. Contain. Hydrol., 1999,40: 183-200.
    [163] Schuth C. and Reinhard M., Hydrodechlorination and hydrogenation of aromatic compounds over palladium on alumina in hydrogen-saturated water. Appl. Catal. B, 1998,18:215-221.
    [164] Keane M. A., Hydrodehalogenation of haloarenes over silica supported Pd and Ni: a consideration of catalytic activity/selectivity and haloarene reactivity. Appl. Catal. A, 2004,271:109-118.
    [165] Lien H.L., Zhang W.X., nanoscale Pd/Fe bimetallic particles: Catalytic effects of palladium on hydrodechlorination, Appl. Catal. B, 2007, 77: 110-116.
    [166] Stumm, W. Chemistry of the solid-water interface; Wiley: New York, 1992.
    [167] Bizzigotti G.O., Reynolds D.A., Kueper, B.H., Enhanced solubilization and destruction of tetrachloroethylene by hydroxypropyl-cyclodextrin and iron. Environ. Sci. Technol. 1997, 31,472-478.
    [168] Song H., Carraway E.R., Catalytic hydrodechlorination of chlorinated ethenes by nanoscale zero-valent iron Appl. Catal. B, 2008, 78: 53-60.
    [169] Liu Y., Majetich S.A., Tilton R.D., et al, TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties, Environ. Sci. Technol. 2005,39:1338-1345.
    [170] Liu Y., Lowry G.V., Effect of particle age (Fe~0 content) and solution pH on nZVI reactivity: H_2 evolution and TCE dechlorination, Environ. Sci. Technol., 2006, 40: 6085-6090.
    [171] Masel R.I., Principles of Adsorption and Reaction on Solid Surfaces, John Wiley & Sons Inc., 1996.
    [172] Mackenzie, K., Frenzel, H., Kopinke F.D., Hydrodehalogenation of halogenated hydrocarbons in water with Pd catalysts: reaction rates and surface competition. Appl. Catal. B, 2006,63: 161-167.
    [173] Graham L. J., Jovanovic G., Dechlorination of p-chlorophenol on a Pd/Fe catalyst in a magnetically stabilized fluidized bed; Implications for sludge and liquid remediation. Chem. Eng. Sci., 1999, 54: 3085-3093.
    [174] Pera-Titus M., Garcia-Molina V., Banos M.A., et al., Degradation of chlorophenols oxidation processes: a general review, Appl. Catal., B 2004,47:219-256.
    
    [175] Bremner D.H., Burgess A.E., Houllemare D., et al, Phenol degradation using hydroxyl radicals generated from zero-valent iron and hydrogen peroxide, Appl. Catal, B, 2006, 63: 15-19.
    [176] Raja P, Bozzi A, Jardim W.F, et al., Reductive/oxidative treatment with superior performance relative to oxidative treatment during the degradation of 4-chlorophenol, Appl. Catal, B, 2005, 59: 249-257.
    [177] Barreiro J.C., Capelato M.D., Martin-Neto L, et al, Oxidative decomposition of atrazine by a Fenton-like reaction in a H_2O_2/ferrihydrite system, Water Res. 2007, 41: 55-62.
    [178] Anipsitakis G.P., Stathatos E, Dionysiou D.D, Heterogeneous activation of oxone using Co_3O_4. J. Phys. Chem. B, 2005,109: 13052-13055.
    [179] Liao C.H., Kang S.F, Hsu Y.W, Zero-valent iron reduction of nitrate in the presence of ultraviolet light, organic matter and hydrogen peroxide, Water Res, 2003, 37:4109-4118.
    [180] Du Y.X, Zhou M.H, Lei L.C, The role of oxygen in the degradation of p- chlorophenol by Fenton system, J. Hazard. Mater. 2007, 139: 108-115.
    [181] Huang Y.H, Zhang T.C, Effects of dissolved oxygen on formation of corrosion products and concomitant oxygen and nitrate reduction in zero-valent iron systems with or without aqueous Fe~(2+), Water Res, 2005, 39,1751-1760.
    [182] Li X.J., Cubbage J.W, Tetzlaff T.A, et al, Photocatalytic degradation of 4- Chlorophenol.l. The hydroquinone pathway, J. Org. Chem. 1999, 64: 8509-8524.
    
    [183] Li X.J., Cubbage J.W, Tetzlaff T.A, et al, Photocatalytic degradation of 4- Chlorophenol.2. The 4-Chlorocatechol pathway, J. Org. Chem. 1999, 64: 8525-8536.
    [184] Sun Y, Pignatello J.J, Photochemical reactions involved in the total mineralization of 2,4-D by Fe~(3+0/H_2O_2/UV, Environ. Sci. Technol. 1993, 27: 304-310.
    [185] Buxton G.V., Greenstock C.L., Helman W.P, et al, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O~-) in aqueous solution, J. Phys. Chem. Ref. Data, 1988,17: 513-886.
    [186] Seibig S., van Eldik R, Kinetics of [Fe-II(EDTA)] oxidation by molecular oxygen revisited. New evidence for a multistepmechanism, Inorg. Chem. 1997, 36: 4115- 4120.
    [187] Zang V., van Eldik R., Kinetics and mechanism of the autoxidation of iron(II) induced through chelation by ethylenediaminetetraacetate and related ligands, Inorg. Chem., 1990,29:1705-1712.
    [188] Noradoun C.E., Engelmann M.D., McLaughlin M., et al., Destruction of chlorinated phenols by dioxygen activation under aqueous room temperature and pressure conditions, Ind. Eng. Chem. Res. 2003,42: 5024-5030.
    [189] Noradoun C.E., Cheng I.F., EDTA degradation induced by oxygen activation in a zerovalent iron/air/water system. Environ. Sci.Technol., 2005, 39: 7158-7163.
    [190] Englehardt J.D., Meeroff D.E., Echegoyen L., et al., Oxidation of aqueous EDTA and associated organics and coprecipitation of inorganics by ambient iron-mediated seration, Environ. Sci. Technol, 2007,41: 270-276.
    [191] Bergers P.J.M., Degroot A.C., The analysis of EDTA in water by HPLC, Water Res., 1994,28:639-642.
    [192] Hung H.M., Hoffmann M.R., Kinetics and mechanism of the enhanced reductive degradation of CCl_4 by elemental iron in the presence of ultrasound, Environ. Sci. Technol., 1998,32:3011-3016.
    [193] Hung H. M., Ling F. H., Hoffmann M. R., Kinetics and mechanism of the enhanced reductive degradation of Nitrobenzene by elemental iron in the presence of ultrasound, Environ. Sci. Technol., 2000, 34: 1758-1763.
    [194] Hug S.J., Leupin O., Iron-catalyzed oxidation of aresenic(III) by oxygen and by hydrogen peroxide: pH dependent formation of oxidants in the Fenton reaction. Environ. Sci. Technol. 2003, 37: 2734-2742.
    [195] Buda, F., Ensing, B., Gribnau, M.C.M., et al, Study of the active intermediate in the Fenton reaction. Chem.Eur. J., 2001, 7: 2775-2783.
    [196] Rubio J., Matijevic E., Interaction of metal hydrous oxides with chelating agents. J. Colloid Interface Sci., 1979, 68: 408-421.
    [197] Engelmann M., Bobier R., Hiatt T., et al, Variability of the Fenton reaction Characteristics of EDTA, DTPA, and Citrate complexes of Iron. Biometals., 2003, 16: 519-527.
    
    [198] Suslick, K. S., Sonochemistry. Science, 1990, 247: 1439-1445.
    [199] Pettier C., Casadonte D., Advances in sonochemistry, Ultrasound in Environmental Protection;Mason,T,J.,Tiehm,A.Eds;JAI Press Inc.:Stamford,2001.91-109.
    [200]Sawyer D.,Oxygen chemistry,Oxford University Press,New York,1991.
    [201]Kim S.M.,Vogelpohl A.,Degradation of organic pollutants by the photo-Fenton-process.Chem.Eng.Technol.,1998,21:187-191.
    [202]Rush J.D.,Koppenol W.H.,Oxidizing intermediates in the reaction of ferrous EDTA with hydrogen peroxide,J.Biol.Chem.,1986,261:6730-6733.
    [203]Barb W.G.,Gorin M.H.,Ferryl ion,a compound of tetravalent iron.J.Am.Chem.Soc.,1932,54:2124.
    [204]Deguillaume L.,Leriche M.,Chaumerliac N.,Impact of radical versus non-radical pathway in the Fenton chemistry on the iron redox cycle in clouds.Chemosphere,2005,60:718-724.
    [205]Pestovsky O.,Stoian S.,Bominaar E.L.,Aqueous Fe~(Ⅳ)=O:spectroscopic identification and oxo-group exchange.Angew.Chem.Int.Ed.,2005,44:6871-6874.
    [206]Logager T.,Holcman J.,Sehested K.,et al,Oxidation of ferrous ions by ozone.Inorg.Chem.1992,31:3523-3529.
    [207]Jacobsen F.,Holcman J.,Sehested K.,Activation parameters of ferryl ion reactions in aqueous acid solutions.Int.J.Chem.Kinet.,1997,29:17-24.
    [208]Jacobsen F.,Holcman J.,Sehested K.,Rection of ferryl ion with some compounds found in cloud water.Int.J.Chem.Kinet.,1998,30:215-221.
    [209]Chalk A.J.,Beck B.,Clark T.A temperature-dependent quantum mechanical/neural net model for vapor pressure.J.Chem.Inf.Comput.Sci.,2001,41:1053-1059.
    [210]Yaffe D.,Cohen Y.Neural networks based temperature dependent quantitative structure property relations(QSPR) for predicting vapor pressure of hydrocarbons.J.Chem.Inf.Comput.Sci.,2001,41:463-477.
    [211]陈景文,有机污染物定量构效-性质关系与定量结构-活性关系,大连,大连理工大学出版社,1999,1-34.
    [212]王惠文,偏最小二乘回归分析方法及其应用,北京:国防工业出版社,1999.
    [213]Argese E.,Bettiol C.,Giurin G.,et al,Quantitatibe structure-activity relationships for the toxicity of chlorophenols to mamalian submitochondrial particles,Chemosphere,1999,38:2281-2292.
    [214] He F., Yuan X., Cheng, X., et al., The QSBR (quantitative-structure biodegradation relationship) study about the aerobic biodegradation of phenols, China Environ. Sci., 2001,21:152-155.
    [215] Yang H., Jiang Z., Shi S., Aromatic compounds biodegradation under anaerobic conditions and their QSBR models, Sci. Total Environ., 2006, 358: 265-276.
    [216] Nagata Y., Nakagawa M., Okuno H., Sonochemical degradation of chlorophenols in water. Ultrason. Sonochem., 2000, 7: 115-120.
    [217] Czaplicka M., Sources and transformations of chlorophenols in the natural Environment. Sci. Total Environ., 2004,322 ,21-39.
    [218] Ribeiro A., Neves M.H., Almeida M.F., et al., Direct determination of chlorophenols in landfill leachates by solid phase micro-extraction-gas chromatography-mass spectrometry. J. Chromatogr. A, 2002, 975: 267-274.
    [219] Feng L., Wang L.S., Zhao Y.H., et al, Effects of substituted alilines and phenols on root elongation of cabbage seed. Chemosphere, 1996, 32: 1575-1583.
    [220] Pearson P.G., Absolute electronegativity and hardness correlated with molecular orbital theory, Proc. Natl. Acad. Sci., 1986, 83: 8440-8441.
    [221] Fried V., Hameka H.F., Blukis U., Physical Chemistry, Macmillan Publishing Co. Inc., 1977, New York.
    [222] Faucon J.C., Bureau R., Faisant J., et al., Prediction of the fish acute toxicity from heterogeneous data coming from notification files, Chemosphere, 1999, 38: 3261- 3276.
    [223] Ekland B., Bruno E., Lithner G., et al, Use of etheylenediaminetetraacetic acid in pulp mills and effects on metal mobility and primary products. Environ. Toxicol. Chem., 2002, 21: 1040-1046.
    [224] Nowack B., Environmental chemistry of aminopolycarboxylate chelating agents. Environ. Sci. Technol., 2002, 36: 4009-4016.
    [225] Sillanpaa M., Orma M., Ramo J., et al, The importance of ligand speciation in environmental research: a case study. Sci. Total Environ. 2001: 267, 23-31.
    [226] Nirel P., Method for EDTA speciation deteremination: application to sewage treatment plant effluents. Water Res., 1998, 32: 3615-3620.
    
    [227] Kari F.G., Giger W, Speciation and fate of EDTA in municipal wastewater treatment. Water Res. 1996:30,122-134.
    [228] Carliell C.M., Barclay S.J., Naidoo N., et al., Microbial decolourisation of a reactive azo dye under anaerobic conditions, Water SA, 1995,21: 61 -69.
    [229] Nam S., Tratnyek P.G., Reduction of azo dyes with zero-valent iron. Water Res. 2000, 34: 1837-1845.
    [230] Bozec N.L., Compere C., EHer M., et al., Influence of stainless steel surface treatment on the oxygen reduction reaction in seawater. Corrosion Sci. 2001, 43: 765-786.
    [231] Venkatadri R., Peters R.W., Chemical oxidation technologies-Ultraviolet-light hydrogen-peroxide, Fenton Reagent, and titanium dioxide-assisted photocatalysis. Hazard. Was. Hazard. Mater. 1993,10: 107-149.
    [232] Gogate P.R., Pandit A.B., A review of imperative technologies for wastewater treatment II: hybrid methods. Advan. Environ. Sci. Technol. 2004, 8: 553-597.
    [233] Yuan S.H., Xi Z.M., Jiang Y., et al., Desorption of copper and cadmium from soils enhanced by organic acids, Chemosphere, 2007, 68: 1289-1297.
    
    [234] Chen H.M., Heavy metal pollution in sol-plant system, Science Press, Beijing, 1996.
    [235] Phillips I.R., Lamb D.T., Warker D.W., et al, Effect of pH and salinity on copper, lead, and zinc sorption rates in sediments from Moreton bay, Australia, Bull. of Environ. Contamin. & Toxicol. 2004, 73: 1041-1048.
    [236] T.E. Shokes, G. Moller, Removal of dissolved heavy metals from acid rock drainage using iron metal. Environ. Sci. Technol., 1999, 33: 282-287.
    [237] Odziemkowski M.S., Schumacher T.T., Gillham R.W., et al, Mechanism of oxide film formation on iron in simulating groundwater solutions: Raman spectroscopic studies. Corrosion Sci.1998,40: 371-389.
    [238] Roh Y, Lee S.Y., Elless M.P., Characterization of corrosion products in the permeable reactive barriers. Environ. Geolo. 2000, 40: 184-194.
    [239] Stumm W, Morgan W, In: Schnoor, J.L., Zehnder A. (Eds.), Aquatic Chemistry. Wiley, 1996, New York, USA.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700