用户名: 密码: 验证码:
证据理论研究及其在矿井突水预测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤矿水害是矿井建设与生产过程中的主要灾害之一。突水事故给煤矿企业带来巨大的经济损失和人员伤亡。矿井突水预测是一个涉及水文地质、工程地质、开采条件、岩石力学等诸多因素的复杂问题。论文针对矿井突水这一不确定性和非线性灾害问题,建立了基于证据理论的矿井突水预测模型。主要对基于证据理论的信息融合技术在解决冲突证据、处理具有模糊性的对象和构建基本概率赋值函数等关键问题进行深入分析和研究,并利用改进的证据理论,融合矿井突水动态前兆信息,建立多场耦合的矿井突水预测模型,为矿井突水的可靠预测奠定理论和技术基础。
     论文针对传统冲突系数识别证据冲突存在的不足,采用pignistic变换后得到的基本概率赋值函数之间的距离,结合传统冲突量化标准,讨论了Dempster组合规则适用条件,提出了一种改进的证据组合方法。该方法通过证据之间的pignistic概率距离表示证据之间的冲突程度,将证据间的冲突程度转化成相似程度,然后求出证据之间的支持程度,并确定权重系数,最后采用Dempster组合规则合成使用权重系数调整后的基本概率赋值。数值算例表明改进的方法不仅能够处理一般冲突,而且也能解决一票否决以及鲁棒性问题,并能使组合结果收敛到正确目标且收敛速度较快,这对改善信息融合系统的性能具有重要的意义。
     获取基本概率赋值是应用证据理论解决工程问题最关键的一步,也是证据理论的核心问题。但由于证据理论应用背景的复杂性和多样性,使得寻求一种通用的构造基本概率赋值函数的方法一直难以较好地得到解决。论文基于广义三角模糊数,提出了一种通用的基本概率赋值构造方法。该方法利用样本数据的最小值、平均值和最大值构造单元素命题的三角模糊数表示模型,多子集命题的广义三角模糊数表示模型用单元素命题的三角模糊数表示模型的交叠部分来表示,通过广义三角模糊数的隶属度来构造基本概率赋值。该构造策略简单实用,易于计算,有广阔的应用前景。
     由于传统证据理论无法处理具有模糊性的对象,论文利用证据理论和模糊集的优点来表示和处理不精确和模糊的信息,将证据理论向模糊集扩展。定义了一种新的模糊集贴近度计算方法。基于新的贴近度和模糊集分解定理,定义了模糊信任函数和模糊似然函数,其计算方法不受隶属度函数“关键点”的影响,能有效获取实际焦元变化信息,对焦元的微小变化也比较敏感;基于贴近度的模糊证据组合规则可有效地获取模糊焦元的变化信息,能够处理不确定和模糊信息,合成结果更有利于目标决策,这对扩大证据理论的应用范围具有重要意义。
     从信息融合的角度,将本文提出的改进的证据理论应用到矿井突水水源识别和煤层底板突水量预测中,实验结果验证了本文提出的基于证据理论的矿井突水预测模型是可行的和有效的。最后,采用Windows7+Visual Studio2010Professional+SQL Server2008平台开发了基于证据理论的矿井突水预测系统,可为矿井提供准确、可靠的灾害预测,能有效提高了煤矿安全管理水平。
Water hazard in coal mine is one of the main disasters in mine construction andproduction. Water inrush disaster does enormous economic losses and casualties tocoal mine enterprises. Water inrush prediction in mine is a complex problem, as thewater inrush results from multiple effects of hydrogeology, engineering geology,mining condition, rock mechanics, etc. For resolving the uncertain and non-linearproblem of mine water inrush, a new model of a water inrush prediction in mine basedon evidence theory is put forward. The further study of the information fusion basedon evidence theory for combining conflict evidence, processing fuzziness object andconstructing basic probability assignment function are described in this dissertation.Based on the improved evidence theory, the dynamic precursory information of minewater inrush are fused, and the multi-field coupling model for water inrush predictionin mine is establish, which lay a foundation both in theory and technique for waterinrush prediction in mine.
     To remedy the shortcomings in the recognition of evidence conflict by usingtraditional conflict coefficient, the application conditions of Dempster’s combinationrule are discussed by traditional conflict quantification standard and the distanceamong basic probability assignment functions transformed by pignistic. Furthermore,an improved method of evidence combination is presented. In this method, theconflict level is represented by the pignistic probability distance of evidence, after thatthe conflict level is transformed into similarity level and the support degree ofevidence is obtained. In addition, the weight coefficients are determined. Finally, thebasic probability assignments adjusted by weight coefficient are fused by Dempster’scombination rule. The numerical examples prove that the modified method not onlyhandle the evidence conflict efficiently but also solve the one-ballot veto androbustness problem, and has fast convergence speed. This is extraordinarilysignificant to improve the performance of the information fusion system.
     Determination of the basic probability assignment is the core and key issue inevidence theory, and is the most difficult step in actual application. However, thegeneral way of determining the basic probability assignment has not appeared as theapplication background of evidence theory is complexity and diversity. Based on thegeneralized triangular fuzzy number, a general method for obtaining basic probabilityassignment is proposed in this dissertation. In the proposed method, the triangular fuzzy number described model of singleton proposition is constructed using theminimum, average and maximum values of the sample data. And the generalizedtriangular fuzzy number described model of multielement proposition is representedby the crossing area of the triangular fuzzy number described models of the singletonpropositions. Based on the degree of membership of the generalized triangular fuzzynumber, the basic probability assignment is obtained. This constructing strategy issimple, practical, and easy to calculation, has broad application prospects.
     As incapable of disposing the fuzziness objects, evidence theory could begeneralized to fuzzy sets and the information about inaccuracy and fuzziness could berepresented and disposed by using the advantages of evidence theory and fuzzy sets. Amethod for defining the fuzzy closeness degree is put forward in this dissertation. Thefuzzy belief function and plausibility function are proposed on the basis of the newcloseness degree and fuzzy decomposition theorem. They are not influenced by somecritical points of the membership degree function, can gain the actual focal elementchange information effectively and are relatively sensitive to the subtle changes. Thefuzzy evidence combination rule based on fuzzy closeness degree can gain the changeinformation of the fuzzy focal elements effectively and dispose uncertain and fuzzyinformation effectively. The combination results are more conducive to objectivedecision. This is extraordinarily significant to expand the application range ofevidence theory.
     As viewed from the perspective of information fusion, the methods of waterinrush source recognition and water inrush quantity from coal floor prediction areproposed based on evidence theory and its improved methods in this dissertation. Theexperiment results verify the feasibility and effectiveness of the water inrushprediction model. According to the improved methods, intelligent prediction systemof mine water inrush is developed on a Windows7, Visual Studio2010Professionaland SQL Server2008software platform which can provide accurate and credibledisaster prediction, and effectively improves the level of coal mine safetymanagement.
引文
[1]国家安全生产监督管理总局[DB/OL]. http://media.chinasafety.gov.cn:8090/iSystem/shigumain.jsp.[2012.2]
    [2] Wu Q., Wang M., Wu X. Investigations of groundwater bursting into coal mine seam floorsfrom fault zones[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(4):557-571.
    [3] Zhang J. C., Shen B. H. Coal mining under aquifers in China: a case study[J]. InternationalJournal of Rock Mechanics and Mining Sciences,2004,41(4):629-639.
    [4]乔伟,李文平,赵成喜.煤矿底板突水评价突水系数–单位涌水量法[J].岩石力学与工程学报,2009,28(12):2466-2474.
    [5]李白英.预防矿井底板突水的“下三带”理论及其发展与应用[J].山东矿业学院学报(自然科学版),1999,18(4):11-18.
    [6]施龙青,韩进,宋扬,等.用突水概率指数法预测采场底板突水[J].中国矿业大学学报,1999,28(5):442-444.
    [7]施龙青,韩进.底板突水机理及预测预报[M].徐州:中国矿业大学出版社,2004.
    [8]刘伟韬,李加祥,张文泉.顶板涌水等级评价的模糊数学方法[J].煤炭学报,2001,26(4):399-403.
    [9]王连国,宋扬.煤层底板突水组合人工神经网络预测[J].岩土工程学报,2001,23(4):502-505.
    [10]钱家忠,吕纯,赵卫东,等. Elman与BP神经网络在矿井水源判别中的应用[J].系统工程理论与实践,2010,30(1):145-150.
    [11] Xiao J. Y., Tong M. M., Fan Q., et al. Fuzzy neural network model applied in the mine waterinrush prediction[C]. International Conference on Image Processing and Pattern Recognitionin Industrial Engineering. Bellingham: SPIE,2010:78203O1-78203O7.
    [12]中国生,江文武,徐国元.底板突水的突变理论预测[J].辽宁工程技术大学学报:自然科学版,2007,26(2):216-218.
    [13]潘岳,王志强,张勇.突变理论在岩体系统动力失稳中的应用[M].北京:科学出版社,2008.
    [14]李丽,程久龙.基于信息融合的矿井底板突水预测[J].煤炭学报,2006,31(5):623-626.
    [15]张心彬,程久龙,李丽,等.多源信息融合技术在矿井奥灰突水预测中的应用[J].测绘科学,2006,31(6):146-148.
    [16] Xiao J. Y., Tong M. M., Feng W., et al. Improvement research of evidence theory in minewater inrush prediction[C]. The2nd International Workshop on Education Technology andComputer Science. Piscataway: IEEE Computer Society,2010:260-263.
    [17]肖建于,童敏明,姜春露.基于模糊证据理论的煤层底板突水量预测[J].煤炭学报,2012,37(S1):131-137.
    [18]黄平华,陈建生.基于多元统计分析的矿井突水水源Fisher识别及混合模型[J].煤炭学报,2011,36(S1):131-136.
    [19]杨永国,黄福臣.非线性方法在矿井突水水源判别中的应用研究[J].中国矿业大学学报,2007,36(3):283-286.
    [20] Yang D. D., Ma L., Qian J. Z., et al. Water inrush source of Xinzhuangzi coal mine identifiedwith gray related degree method[C]. The3rd International Conference on EnvironmentalTechnology and Knowledge Transfer. United Kingdom,2010:981-984.
    [21]闫志刚,杜培军,郭达志.矿井涌水水源分析的支持向量机模型[J].煤炭学报,2007,32(8):842-847.
    [22]闫志刚,白海波.矿井涌水水源识别的MMH支持向量机模型[J].岩石力学与工程学报,2009,28(2):324-329.
    [23]周健,史秀志,王怀勇.矿井突水水源识别的距离判别分析模型[J].煤炭学报,2010,35(2):278-282.
    [24]郑世书,孙亚军,赵林,等. GIS在殷庄煤矿微山湖下采区工作面涌水预测中的应用[J].中国矿业大学学报,1994,23(2):48-56.
    [25]王希良,王磊,郑世书,等. GIS支持下的煤矿底板突水预报研究[J].中国矿业,2001,10(2):69-71.
    [26]张海荣,周荣福,郭达志,等.基于GIS复合分析的煤矿顶板水害预测研究[J].中国矿业大学学报,2005,34(1):112-116.
    [27]武强,解淑寒,裴振江,等.煤层底板突水评价的新型实用方法Ⅲ——基于GIS的ANN型脆弱性指数法应用[J].煤炭学报,2007,32(12):1301-1306.
    [28] Wu Q., Xu H., Pang W. GIS and ANN coupling model: an innovative approach to evaluatevulnerability of karst water inrush in coalmines of north China[J]. Environmental Geology,2008,54(5):937-943.
    [29]武强,王金华,刘东海,等.煤层底板突水评价的新型实用方法Ⅳ:基于GIS的AHP型脆弱性指数法应用[J].煤炭学报,2009,34(2):233-238.
    [30] Wu Q., Liu Y. Z., Liu D. H., et al. Prediction of floor water inrush: the application ofGIS-based AHP vulnerable index method to Donghuantuo coal mine, China [J]. RockMechanics and Rock Engineering,2011,44(5):591-600.
    [31]董东林,孙文洁,朱兆昌,等.基于GIS-BN技术的范各庄矿煤12底板突水态势评价[J].煤炭学报,2012,37(6):999-1004.
    [32] Dong D. L., Sun W. J., Xi S. Water-inrush assessment using a GIS-based Bayesian networkfor the12-2coal seam of the Kailuan Donghuantuo coal mine in China[J]. Mine Water andthe Environment,2012,31(2):138-146.
    [33]张立新,李长洪,赵宇.矿井突水预测研究现状及发展趋势[J].中国矿业,2009,18(1):88-90,108.
    [34]刘严岩.多传感器数据融合中几个关键技术的研究[D].合肥:中国科学技术大学,2006.
    [35]胡良梅.基于信息融合的图像理解方法研究[D].合肥:合肥工业大学,2006.
    [36] Wald L. Definitions and terms of reference in data fusion[C]. International Archives ofPhotogrammetry and Remote Sensing.1999:2-6.
    [37] Wald L. Some terms of reference in data fusion[J]. IEEE Transactions on Geoscience andRemote Sensing,1999,37(3):1190-1193.
    [38]刘同明,夏祖勋,解洪成.数据融合技术及其应用[M].北京:国防工业出版社,1998.
    [39]林志贵.基于证据理论的信息融合研究及其在水质监测中的应用[D].南京:河海大学,2005.
    [40]韩崇昭,朱洪艳,段战胜.多源信息融合[M].北京:清华大学出版社,2006.
    [41] Dempster A. P. Upper and lower probabilities induced by a multivalued mapping[J]. Annalsof Mathematical Statistics,1967,38(2):325-339.
    [42] Dempster A. P. A generalization of Bayesian inference[J]. Journal of the Royal StatisticalSociety. Series B (Methodological),1968,30(2):205-247.
    [43] Shafer G. A mathematical theory of evidence[M]. Princeton: Princenton University Press,1976:78-103.
    [44] Pohl C., Van Genderen J. L. Multisensor image fusion in remote sensing: concepts, methodsand applications[J]. International Journal of Remote Sensing,1998,19(5):823-854.
    [45] Premaratne K., Dewasurendra D. A., Bauer P. H. Evidence combination in an environmentwith heterogeneous sources[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A:Systems and Humans,2007,37(3):298-309.
    [46] Panigrahi S., Kundu A., Sural S., et al. Credit card fraud detection: A fusion approach usingDempster–Shafer theory and Bayesian learning[J]. Information Fusion,2009,10(4):354-363.
    [47] Shoyaib M., Abdullah-Al-Wadud M., Chae O. A skin detection approach based on theDempster–Shafer theory of evidence[J]. International Journal of Approximate Reasoning,2012,53(4):636–659.
    [48] Deng Y., Jiang W., Xu X. B., et al. Determinging BPA under uncertainty environments andits application in data fusion[J]. Journal of Electronics (China),2009,26(1):13-17.
    [49] Kudak H., Hester P. Application of Dempster-Shafer theory in aircraft maintenance timeassessment: A case study[J]. Engineering Management Journal,2011,23(2):55-62.
    [50] Merigó J. M., Casanovas M. Decision-making with uncertain aggregation operators using theDempster-Shafer belief structure[J]. International Journal of Innovative Computing,Information and Control,2012,8(2):1037-1061.
    [51] Denoeux T. A neural network classifier based on Dempster-Shafer theory[J]. IEEETransactions on Systems, Man and Cybernetics, Part A,2000,30(2):131-150.
    [52] Poroseva S. V., Lay N., Yousuff Hussaini M. Multimodel approach based on evidence theoryfor forecasting tropical cyclone tracks[J]. Monthly Weather Review,2010,138(2):405-420.
    [53]朱友文,黄刘生,陈国良,等.分布式计算环境下的动态可信度评估模型[J].计算机学报,2011,34(1):55-64.
    [54] Guo X. Q. The using of D-S evidence theory in building the trust model in B-Ce-commerce[J]. Journal of Convergence Information Technology,2011,6(8):263-269.
    [55] Xie H., Ma J. F., Yang L., et al. A trust Method of MANETs based on D-S evidence theory[J].International Journal of Advancements in Computing Technology,2012,4(2):247-257.
    [56] Fan X. F., Zuo M. J. Fault diagnosis of machines based on D-S evidence theory. Part2:Application of the improved D-S evidence theory in gearbox fault diagnosis[J]. Patternrecognition letters,2006,27(5):377-385.
    [57] Basir O., Yuan X. H. Engine fault diagnosis based on multi-sensor information fusion usingDempster-Shafer evidence theory[J]. Information Fusion,2007,8(4):379-386.
    [58] Luo H., Yang S. L., Hu X. J., et al. Agent oriented intelligent fault diagnosis system usingevidence theory[J]. Expert Systems with Applications,2012,39(3):2524–2531.
    [59] Smets P. Analyzing the combination of conflicting belief functions[J]. Information Fusion,2007,8(4):387-412.
    [60] Florea M. C., Jousselme A. L., Bossé é., et al. Robust combination rules for evidencetheory[J]. Information Fusion,2009,10(2):183-197.
    [61]郎风华,谷利泽,杨义先,等.一种基于均衡交补分担准则的证据组合新方法[J].电子学报,2009,37(1):95-100.
    [62]肖建于,童敏明,朱昌杰,等.基于交补集和Pignistic变换的证据组合方法[J].计算机工程,2010,36(13):1-3.
    [63] Li Y. B., Kang J., Xie H. The algorithm aiming at conflict to improve DS evidence theory[J].Information Technology Journal,2011,10(9):1779-1783.
    [64]邓勇,蒋雯,韩德强.广义证据理论的基本框架[J].西安交通大学学报,2010,44(12):119-124.
    [65] Chaabane S. B., Sayadi M., Fnaiech F., et al. A new method for the estimation of massfunctions in the Dempster-Shafer's evidence theory: Application to colour imagesegmentation[J]. Circuits Systems and Signal Processing,2011,30(1):55-71.
    [66] Jiang W., Deng Y., Peng J. Y. A new method to determine BPA in evidence theory[J].Journal of Computers,2011,6(6):1162-1167.
    [67] Lucas C., Araabi B. N. Generalization of the Dempster-Shafer theory: a fuzzy-valuedmeasure[J]. IEEE Transactions on Fuzzy Systems,1999,7(3):255-270.
    [68]谢季坚,刘承平.模糊数学方法及其应用(第三版)[M].武汉:华中科技大学出版社,2006.
    [69] Deng Y., Su X. Y., Wang D., et al. Target recognition based on fuzzy Dempster data fusionmethod[J]. Defence Science Journal,2010,60(5):525-530.
    [70] Miao Y. Z., Ma X. P., Zhang J. W. Research on the combination rules of the D-S evidencetheory and improvement of extension to fuzzy sets[C].2010Chinese Control and DecisionConference. IEEE Computer Society,2010:2143-2149.
    [71] Yao Y. Q., Mi J. S., Li Z. J. Attribute reduction based on generalized fuzzy evidence theoryin fuzzy decision systems[J]. Fuzzy Sets and Systems,2011,170(1):64-75.
    [72]向阳,史习智.证据理论合成规则的一点修正[J].上海交通大学学报,1999,33(3):357-360.
    [73] Zadeh L. A. Fuzzy sets and information granularity[C]. Advances in Fuzzy Set Theory andApplication. Amsterdam: North-Holland Publishing Co.,1979:3-18.
    [74] Zadeh L. A. Review of a mathematical theory of evidence[J]. AI Magazine,1984,5(3):81-83.
    [75]潘泉,张山鹰,程咏梅,等.证据推理的鲁棒性研究[J].自动化学报,2001,27(6):798-805.
    [76] Voorbraak F. On the justification of Dempster's rule of combination[J]. Artificial Intelligence,1991,48(2):171-197.
    [77] Deng Y., Shi W. K., Zhu Z. F., et al. Combining belief functions based on distance ofevidence[J]. Decision Support Systems,2004,38(3):489-493.
    [78] Hunter A., Liu W. R. Fusion rules for merging uncertain information[J]. Information Fusion,2006,7(1):97-134.
    [79] Smarandache F., Dezert J. Proportional conflict redistribution rules for information fusion[M].Applications and Advances of DSmT for Information Fusion Collected Works Volume2,Smarandache F, Dezert J, Rehoboth, USA: American Research Press,2006:2,3-68.
    [80] Martin A., Osswald C. A new generalization of the proportional conflict redistribution rulestable in terms of decision[M]. Applications and Advances of DSmT for Information Fusion,Book2, Smarandache F, Dezert J, American Research Press Rehoboth,2006,69-88.
    [81] Martin A. Reliability and combination rule in the theory of belief functions[C].12thInternational Conference on Information Fusion. Piscataway: IEEE Press,2009:529-536.
    [82] Florea M. C., Bossé é. Dempster-Shafer Theory: Combination of information usingcontextual knowledge[C].12th International Conference on Information Fusion. Piscataway:IEEE Computer Society,2009:522-528.
    [83] J sang A., Diaz J., Rifqi M. Cumulative and averaging fusion of beliefs[J]. InformationFusion,2009,11(2):192-200.
    [84]刘准钆,程咏梅,潘泉,等.基于证据距离和矛盾因子的加权证据合成法[J].控制理论与应用,2009,26(12):1439-1442.
    [85]郭建全,赵伟,黄松岭.一种改进的D-S证据合成规则[J].系统工程与电子技术,2009,31(3):606-609.
    [86]胡丽芳,关欣,何友.基于可信度的证据融合方法[J].信号处理,2010,26(1):17-22.
    [87]韩德强,邓勇,韩崇昭,等.利用不确定度的冲突证据组合[J].控制理论与应用,2011,28(6):788-792.
    [88]邓勇,王栋,李齐,等.一种新的证据冲突分析方法[J].控制理论与应用,2011,28(6):839-844.
    [89]韩德强,韩崇昭,邓勇,等.基于证据方差的加权证据组合[J].电子学报,2011,39(3A):153-157.
    [90] Smets P. The combination of evidence in the transferable belief model[J]. IEEETrans. on Pattern Analysis and Machine Intelligence,1990,12(5):447-458.
    [91]杨风暴.证据冲突的衡量方法研究[J].华北工学院学报,2005,26(1):58-60.
    [92] Liu W. R. Analyzing the degree of conflict among belief functions[J]. Artificial Intelligence,2006,170(11):909-924.
    [93] Liu W. R. Conflict analysis and merging operators selection in possibility theory[C].9thEuropean Conference on Symbolic and Quantitative Approaches to Reasoning withUncertainty. Berlin: Springer-Verlag,2007:816-827.
    [94]王栋,李齐,蒋雯,等.基于pignistic概率距离的冲突证据合成方法[J].红外与激光工程,2009,38(1):149-154.
    [95]蒋雯,张安,邓勇.改进的二元组冲突表示方法[J].红外与激光工程,2009,38(5):936-940.
    [96]蒋雯,彭进业,邓勇.一种新的证据冲突表示方法[J].系统工程与电子技术,2010,32(3):562-565.
    [97] Hu L. F., Guan X., Deng Y., et al. Measuring conflict functions in generalized power space[J].Chinese Journal of Aeronautics,2011,24(1):65-73.
    [98]何友,胡丽芳,关欣,等.一种度量广义基本概率赋值冲突的方法[J].中国科学:信息科学,2011,41(8):989-997.
    [99] He Y., Hu L. F., Guan X., et al. New method for measuring the degree of conflict amonggeneral basic probability assignments[J]. Science China-Information sciences,2012,55(2):312-321.
    [100] Smets P. The transferable belief model for quantifed belief representation[M]. Handbook ofDefeasible Reasoning and Uncertainty Management Systems, Gabbay D M, Smets P,1998:1,267–301.
    [101]贾宇平.基于信任函数理论的融合目标识别研究[D].长沙:国防科学技术大学,2009.
    [102] Lefevre E., Colot O., Vannoorenberghe P. Belief function combination and conflictmanagement[J]. Information fusion,2002,3(2):149-162.
    [103] Jousselme A. L., Grenier D., Bossé é. A new distance between two bodies of evidence[J].Information Fusion,2001,2(2):91-101.
    [104] Smets P. Decision making in the TBM: the necessity of the pignistic transformation[J].International Journal of Approximate Reasoning,2005,38(2):133-147.
    [105] Smets P., Kennes R. The transferable belief model[J]. Artifical Intelligence,1994,66(2):191-234.
    [106] J sang A. The consensus operator for combining beliefs[J]. Artifcial Intelligence,2002,141(1-2):157–170.
    [107] Ayoun A., Smets P. Data association in multi-target detection using the transferable beliefmodel[J]. International Journal of Intelligent Systems,2001,16(10):1167-1182.
    [108] Haenni R. Are alternatives to Dempster's rule of combination real alternatives?Commentson "about the belief function combination and the conflict management problem"[J].Information Fusion,2002,3(4):237-239.
    [109]邓勇,施文康,朱振福.一种有效处理冲突证据的组合方法[J].红外与毫米波学报,2004,23(1):27-32.
    [110] Yager R. R. On the Dempster-Shafer framework and new combination rules[J]. InformationSciences,1987,41(2):93-137.
    [111] Dubois D., Prade H. Representation and combination of uncertainty with belief functionsand possibility measures[J]. Computational Intelligence,1988,4:244-264.
    [112] Smets P. Belief functions: The disjunctive rule of combination and the generalized Bayesiantheorem[J]. International Journal of Approximate Reasoning,1993,9(1):1-35.
    [113]孙全,叶秀清,顾伟康.一种新的基于证据理论的合成公式[J].电子学报,2000,8(28):117-119.
    [114] Campos F., Cavalcante S. An extended approach for Dempster-Shafer theory[C]. IEEEInternational Conference on Information Reuse and Integration. IEEE Computer Society,2003:338-344.
    [115] Ferson S., Kreinovich V. Representation, propagation, and aggregation of uncertainty[R].New Mexico, USA: SANDIA National Laboratories,2002.
    [116] Murphy C. K. Combining belief functions when evidence conflicts[J]. Decision SupportSystems,2000,29(1):1-9.
    [117] Chen L. Z., Shi W. K., Deng Y., et al. A new fusion approach based on distance ofevidences[J]. Journal of Zhejiang University: Science,2005,6A(5):476-482.
    [118]林志贵,徐立中,周金陵.基于修改模型的冲突证据组合方法[J].上海交通大学学报,2006,40(11):1964-1970.
    [119]刘海燕,赵宗贵,刘熹. D-S证据理论中冲突证据的合成方法[J].电子科技大学学报,2008,37(5):701-704.
    [120]胡昌华,司小胜,周志杰,等.新的证据冲突衡量标准下的D-S改进算法[J].电子学报,2009,37(7):1578-1583.
    [121]韩峰,杨万海,袁晓光.一种有效处理冲突证据的组合方法[J].电光与控制,2010,17(4):5-8.
    [122]肖建于,童敏明,朱昌杰,等.基于pignistic概率距离的改进证据组合规则[J].上海交通大学学报,2012,46(4):636-641,645.
    [123]周哲,徐晓滨,文成林,等.冲突证据融合的优化方法[J].自动化学报,2012,38(6):976-985.
    [124] Capelle A. S., Fernandez-Maloigne C., Colot O. Introduction of spatial information withinthe context of evidence theory[C].2003IEEE International Conference on Acoustics, Speech,and Signal Processing. Institute of Electrical and Electronics Engineers Inc.,2003:785-788.
    [125] Xu L., Krzyzak A., Suen C. Y. Methods of combining multiple classifiers and theirapplications to handwriting recognition[J]. IEEE Transactions on Systems, Man andCybernetics,1992,22(3):418-435.
    [126] Pang Y. J., Du Z. F. A new method of the basic probability assignment[J]. Journal ofFushun Petroleum Institute,1994,14:52-54.
    [127] Bogler P. L. Shafer-Dempster reasoning with application to multisensor target identificationsystem[J]. IEEE Transactions on Systems, Man and Cybernetics,1997,17(6):968-977.
    [128] Zhu Y. M., Bentabet L., Dupuis O., et al. Automatic determination of mass functions inDempster-Shafer theory using fuzzy c-means and spatial neighborhood information for imagesegmentation[J]. Optical Engineering,2002,41(4):760-771.
    [129] Hu Y., Gao J., Hu L. M., et al. A new method of determining the basic belief assignment inD-S evidence theory[C]. International Conference on Machine Learning and Cybernetics.Piscataway: IEEE Computer Society,2003:3208-3211.
    [130] Boudraa A. O., Bentabet A., Salzenstein F. Dempster-Shafer's basic probability assignmentbased on fuzzy membership functions[J]. Electronic Letters on Computer Vision and ImageAnalysis,2004,4(1):1-10.
    [131] Guan X., He Y., Yi X. Attribute measure recognition approach and its applications toemitter recognition[J]. Science in China Series F: Information Sciences,2005,48(2):225-233.
    [132]孙即祥.现代模式识别(第二版)[M].北京:高等教育出版社,2008.
    [133]蒋雯,张安,杨奇.一种基本概率指派的模糊生成及其在数据融合中的应用[J].传感技术学报,2008,21(10):1717-1720.
    [134]邓勇,韩德强.广义证据理论中的基本概率指派生成方法[J].西安交通大学学报,2011,45(2):34-38.
    [135]邓聚龙.灰色系统理论教程[M].武汉:华中理工大学出版社,1990.
    [136]申卯兴,薛西锋,张小水.灰色关联分析中分辨系数的选取[J].空军工程大学学报(自然科学版),2003,4(1):68-70.
    [137]王杰贵,靳学明,罗景青.基于ESM与ELINT信息融合的机载辐射源识别[J].电子学报,2006,34(3):424-428.
    [138] Guan X., Yi X., He Y. Study on algorithms of determining basic probability assignmentfunction in Dempster-Shafer evidence theory[C]. The Seventh International Conference onMachine Learning and Cybernetics. Piscataway: IEEE Computer Society,2008:121-126.
    [139]林云,司锡才,周若琳,等.改进灰色关联算法在辐射源识别中的应用[J].通信学报,2010,31(8A):166-171.
    [140]林云,司锡才.一种新的辐射源优化识别方法[J].宇航学报,2011,32(2):420-427.
    [141]郭华伟.证据理论及其在遥感影像融合分类中的应用研究[D].上海:上海交通大学,2007.
    [142] Chen S. J., Chen S. M. Fuzzy risk analysis based on similarity measures of generalizedfuzzy numbers[J]. IEEE Transactions on Fuzzy Systems,2003,11(1):45-56.
    [143] Marshall M. Iris data[DB/OL]. http://archive.ics.uci.edu/ml/datasets/Iris.[2011.8.3].
    [144] Yager R. R. Generalized probabilities of fuzzy events from fuzzy belief structures[J].Information sciences,1982,28(1):45-62.
    [145] Ishizuka M., Fu K. S., Yao J. Inference procedures under uncertainty for theproblem-reduction method[J]. Information Sciences,1982,28(3):179-206.
    [146] Ogawa H., Fu K. S., Yao J. An inexact inference for damage assessment of existingstructures[J]. International Journal of Man-Machine Studies,1985,22(3):295-306.
    [147] Yen J. Generalizing the Dempster–Shafer theory to fuzzy sets[J]. IEEE Transactions onSystems, Man and Cybernetics,1990,20(3):559-570.
    [148] Yang M. S., Chen T. C., Wu K. L. Generalized belief function, plausibility function, andDempster's combinational rule to fuzzy sets[J]. International Journal of Intelligent Systems,2003,18(8):925-937.
    [149] Zadeh L. A. Fuzzy sets[J]. Information and Control,1965,3(8):338-353.
    [150] Zadeh L. A. The concept of a linguistic variable and its application to approximatereasoning-I[J]. Information sciences,1975,8(3):199-249.
    [151] Hwang C. M., Yang M. S. Generalization of belief and plausibility functions to fuzzy setsbased on the Sugeno integral[J]. International Journal of Intelligent Systems,2007,22(11):1215-1228.
    [152]张许良,张子戌,彭苏萍.数量化理论在矿井突(涌)水水源判别中的应用[J].中国矿业大学学报,2003,32(3):251-254.
    [153]高卫东.熵权模糊综合评价法在矿井突水水源判别中的应用[J].矿业安全与环保,2012,39(2):22-24.
    [154]刘钦,孙亚军,徐智敏.改进型突水系数法在矿井底板突水评价中的应用[J].煤炭科学技术,2011,39(8):107-109.
    [155]邱秀梅,王连国.煤层底板突水人工神经网络预测[J].山东农业大学学报(自然科学版),2002,33(1):62-65,71.
    [156]姜谙男,梁冰.基于最小二乘支持向量机的煤层底板突水量预测[J].煤炭学报,2005,30(5):613-617.
    [157]闫志刚,白海波,张海荣.一种新型的矿井突水分析与预测的支持向量机模型[J].中国安全科学学报,2008,18(7):166-170.
    [158]陈红江,李夕兵,刘爱华,等.煤层底板突水量的距离判别分析预测方法[J].煤炭学报,2009,34(4):487-491.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700